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SYLVESTER’S PROBLEM AND MOCK HEEGNER POINTS

SAMIT DASGUPTA AND JOHN VOIGHT

(Communicated by Romyar T. Sharifi)

Abstract. We prove that if p ≡ 4, 7 (mod 9) is prime and 3 is not a cube
modulo p, then both of the equations x3 + y3 = p and x3 + y3 = p2 have a
solution with x, y ∈ Q.

1. Introduction

1.1. Motivation. We begin with the classical Diophantine question: which inte-
gers n can be written as the sum of two cubes of rational numbers? More precisely,
let n ∈ Z>0 be cubefree, and let En denote the projective plane curve defined by
the equation x3 + y3 = nz3. Equipped with the point ∞ = (1 : −1 : 0), the curve
En has the structure of an elliptic curve over Q. (The equation for En can be trans-
formed via a change of variables to yield the Weierstrass equation y2 = x3−432n2.)
We have E1(Q) � Z/3Z generated by (1 : 0 : 1) and E2(Q) � Z/2Z generated by
(1 : 1 : 1); otherwise, En(Q)tors = {∞} for n ≥ 3. So our question becomes: for
which cubefree integers n ≥ 3 is rkEn(Q) > 0?

A conjecture, attributed to Sylvester, suggests an answer to this question when
n = p is prime.

Conjecture 1.1.1 (Sylvester [16], Selmer [13]). If p≡4, 7, 8 (mod 9), then rkEp(Q)
> 0.

An explicit 3-descent [11] shows that

(1.1.2) rkEp(Q) ≤

⎧⎪⎨⎪⎩
0 if p ≡ 2, 5 (mod 9);

1 if p ≡ 4, 7, 8 (mod 9);

2 if p ≡ 1 (mod 9).

In particular, primes p ≡ 2, 5 (mod 9) are not the sum of two cubes, a statement
that can be traced back to Pépin, Lucas, and Sylvester [16, Section 2, Title 1].

At the same time, the sign of the functional equation for the L-series of Ep is

(1.1.3) sign(L(Ep/Q, s)) =

{
−1 if p ≡ 4, 7, 8 (mod 9);

+1 otherwise.

Putting these together, for p ≡ 1 (mod 9), the Birch–Swinnerton-Dyer (BSD) con-
jecture predicts that rkEp(Q) = 0 or 2, depending on p in a nontrivial way. This
case was investigated by Rodriguez Villegas and Zagier [10]: they give three meth-
ods to determine for a given prime p whether or not rkEp(Q) = 0.
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1.2. Main result. We are left to consider the cases p ≡ 4, 7, 8 (mod 9). The
BSD conjecture together with (1.1.2) and (1.1.3) then predicts that rkEp(Q) = 1,
and hence that p is the sum of two cubes. In this article, we prove the following
(unconditional) result as progress towards Sylvester’s conjecture.

Theorem 1.2.1. Let p ≡ 4, 7 (mod 9) be prime and suppose that 3 is not a cube
modulo p. Then rkEp(Q) = rkEp2(Q) = 1.

In 1994, Elkies [4] announced a proof of the stronger statement that the conclu-
sion of Theorem 1.2.1 holds for all p ≡ 4, 7 (mod 9). The details of the proof have
not been published, but his methods differ substantially from ours [5].

Theorem 1.2.1 was announced and the proof sketched in earlier work [3], but
several important details were not provided and are finally given here. The con-
struction in this paper has been recently used by Shu–Yin [14] to prove that the
power of 3 dividing #X(Ep)#X(E3p2) is as predicted by the BSD conjecture,
following a method similar to the work of Cai–Shu–Tian [1]. (See also section 1.4
below.) We are not aware of any results concerning the case p ≡ 8 (mod 9) of
Conjecture 1.1.1, which appears to be decidedly more difficult.

1.3. Sketch of the proof. We now discuss the proof of Theorem 1.2.1. General
philosophy predicts that in the situation where the curve Ep has expected rank 1,
one should be able to construct rational nontorsion points on Ep using the theory
of complex multiplication (CM). One might first consider the classical method of
Heegner points. We start with the modular parameterization Φ : X0(N) → Ep,
where N is the conductor of Ep, given by

N =

{
27p2 if p ≡ 4 (mod 9),

9p2 if p ≡ 7 (mod 9).

Given a quadratic imaginary field K that satisfies the Heegner hypothesis that
both 3 and p are split, we may define a cyclic N -isogeny that yields a point
P ∈ X0(N)(H), where H denotes the Hilbert class field of K. The trace Y =
TrH/K Φ(P ) yields a point on Ep(K). By the Gross-Zagier formula [6], we expect
this point to be nontorsion. Indeed, the BSD conjecture (which in particular fur-
nishes an equality of the algebraic and analytic ranks of Ep) implies that this is the
case. But in order to apply this method, we must first choose a suitable imaginary
quadratic field K, and no natural candidate for K presents itself; after making
such a choice, it is unclear how to prove unconditionally that the resulting Heegner
points are nontorsion.

Instead, in this article we work with what are known as mock Heegner points.
This terminology is due to Monsky [8, p. 46], although arguably Heegner’s original
construction may be described as an example of such “mock” Heegner points. We
consider the field K = Q(

√
−3) = Q(ω), where ω = exp(2πi/3) is a primitive

cube root of unity. Note that the elliptic curve En has CM by the ring of integers
ZK = Z[ω], and that the prime 3 is ramified in K, so the Heegner hypothesis is not
satisfied. Nevertheless, Heegner-like constructions of points defined by CM theory
may still produce nontorsion points in certain situations: for example, one can show
that results of Satgé [11] concerning the curve x3+ y3 = 2p can be described in the
framework of mock Heegner points [3].

We take instead a fixed modular parametrization X0(243) → E9. We consider
an explicit cyclic 243-isogeny of conductor 9p which under this parameterization
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yields a point P ∈ E9(H9p), where H9p denotes the ring class field of K associated

to the conductor 9p. We descend the point P ∈ E9(H9p) with a twist by 3
√
3 to

a point Q ∈ E1(H3p). This descent argument is particularly appealing and non-
standard because it compares the action of the exotic modular automorphism group
of X0(243) as studied by Ogg [9] to the Galois action on CM points provided by
the Shimura Reciprocity Law.

We next consider the trace R = TrH3p/L Q ∈ E1(L), where L = K( 3
√
p). We

show that after translating by an explicit torsion point, R twists to yield a point
Z ∈ Ep(K) or Z ∈ Ep2(K), depending on the original choice of 243-isogeny. Again
this argument employs the group of exotic modular automorphisms of X0(243).

We conclude by showing that the point R (hence Z) is nontorsion when 3 is not
a cube modulo p, and this implies the theorem since rkZ En(Q) = rkZK

En(K). To
do this we consider the reduction of R modulo the primes above p. By an explicit
computation with η-products, we show that when 3 is not a cube modulo p, this
reduction is not the image of any torsion point in E1(L); see Proposition 5.2.8.
This reduction uses in a crucial way a generalization and refinement of Kronecker’s
congruence; see Proposition 5.2.1. In the end, we are able to show that when 3 is
not a cube modulo p, the point R is nontorsion because it is not congruent to any
torsion point modulo p. Without the descent made possible by the exotic modular
automorphism group of X0(243), our point Z (e.g., which could have been defined
more simply by taking an appropriate “twisted” trace of P from H9p to K) would
have been twice multiplied by 3, and the delicate proof that it is nontorsion would
have fallen through.

1.4. Heuristics and the work of Shu and Yin. We now explain why it should
be expected that the condition “3 is not a cube modulo p” should appear in the
statement of Theorem 1.2.1 for our construction. As mentioned above, our set-
ting does not satisfy the Heegner hypothesis and hence the classical Gross–Zagier
formula does not apply in this case. Nevertheless, Shu and Yin have proven the
following result.

Theorem 1.4.1 ([14, Theorem 4.4]). Let p ≡ 4, 7 (mod 9) be prime. Let χ3p :
Gal(H3p |K) → μ3 be the cubic character associated to the field K( 3

√
3p), i.e.,

χ(σ) = σ
(

3
√
3p
)
/ 3
√

3p for σ ∈ Gal(H3p |K).

Let Z ∈ Ep(K) be the mock Heegner point constructed above. Then

L′(E9/K, χ3p, 1)

Ω
= c · ht(Z),

where the complex period Ω ∈ C× and the rational factor c ∈ Q× are explicitly
given.

The Artin formalism for L-functions yields

L(E9/K, χ3p, s) = L(Ep/Q, s)L(E3p2/Q, s),

and hence Theorem 1.4.1 relates ht(Z) to

(1.4.2) L′(Ep/Q, 1)L(E3p2/Q, 1).

Therefore we should expect that Z is nontorsion if and only if L(E3p2/Q, 1) 
= 0.
In fact, it is possible to have L(E3p2/Q, 1) = 0 (e.g., p = 61, 193), and in such cases
our point Z ∈ Ep(K) is torsion.
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However, whenever 3 is not a cube modulo p, one can show that the Selmer group
associated to a certain rational 3-isogeny to E3p2 is trivial (see Satgé [11, Theorem
2.9(3) and p. 313]) and consequently that E3p2(Q) is finite and hence by BSD that
L(E3p2/Q, 1) 
= 0. This explains why it is reasonable to expect this condition to
appear in the statement of Theorem 1.2.1. The appeal of Theorem 1.2.1 is that it
is explicit and unconditional—i.e., it does not depend on BSD, even though BSD
and the theorem of Shu–Yin explain why the condition on 3 modulo p should be
expected to appear in the statement.

1.5. Organization. In section 2 we describe our explicit modular parameterization
and the group of modular automorphims of X0(243). In section 3 we define our
mock Heegner points, and in section 4 we descend and trace them to define points
over K. In section 5, we prove that our points are nontorsion when 3 is not a cube
modulo p.

2. The modular curve X0(243)

Throughout, let K := Q(ω) ⊂ C where ω := (−1 +
√
−3)/2 is in the upper

half-plane and ZK := Z[ω] its ring of integers. We begin in this section by setting
up a few facts about the modular curve X0(243).

2.1. Basic facts. The (smooth, projective, geometrically integral) curve X0(243)
over Q is the coarse moduli space for cyclic 243-isogenies between (generalized)
elliptic curves, and there is an isomorphism of Riemann surfaces

X0(243)(C)
∼−→ Γ0(243)\H∗,

where H∗ := H ∪ P1(Q) is the completed upper half-plane. Explicitly, to τ ∈ H we
associate the cyclic isogeny

(2.1.1)
φτ : C/〈1, τ 〉 → C/〈1, 243τ 〉

z �→ 243z

with kerφτ generated by 1/243 in the lattice Z+ Zτ . The genus of X0(243) is 19.
For further reading on automorphism groups of modular curves, we refer to Ogg

[9]. The group of modular automorphisms of X0(243) is by definition

MAut(X0(243)) := NPGL+
2 (Q)(Γ0(243))/Γ0(243),

where N denotes the normalizer. The group MAut(X0(243)) is generated by an

exotic automorphism v :=

(
1 0
81 1

)
∈ MAut(X0(243)) of order 3 and the Atkin–

Lehner involution w :=

(
0 −1
243 0

)
∈ MAut(X0(243)) of order 2. We find

MAut(X0(243)) = 〈w, v−1wv〉 × 〈v〉 � S3 × Z/3Z.

The subgroup of MAut(X0(243)) isomorphic to S3 is characteristic, and we let
Γ ≤ PGL+

2 (Q) be the subgroup generated by Γ0(243) and S3. One can check that

v normalizes Γ. Moreover, the matrix t :=

(
9 1

−243 −18

)
normalizes the group

MAut(X0(243)) and the group Γ. (But t does not normalize Γ0(243) itself.) One can
check that t3 = 729 is scalar, so t has order 3 as a linear fractional transformation.
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2.2. Explicit modular parametrization and modular automorphisms. We
now consider the quotient of X0(243) by the subgroup S3 < MAut(X0(243))

(2.2.1) X0(243) → X0(243)/S3 = X(Γ),

where X(Γ) := Γ\H∗. Riemann–Hurwitz shows that the genus of X(Γ) is 1, and
the image of the cusp ∞ ∈ X0(243)(Q) gives it the structure of an elliptic curve
over Q. This quotient morphism (2.2.1) is defined over Q and has a particularly
pleasing realization as follows. Let

(2.2.2) η(z) := q1/24
∞∏

n=1

(1− qn)

with q := exp(2πiz) be the Dedekind η-function.

Proposition 2.2.3. We have a modular parametrization

Φ: X0(243) → X(Γ)
∼−→ E9 : y

2 + y = x3 − 1

z �→ (x, y)

where

(2.2.4) x(z) =
η(9z)η(27z)

η(3z)η(81z)
, y(z) = − η(9z)4 + 9η(9z)η(81z)3

η(27z)4 − 3η(9z)η(81z)3
− 2.

Proof. The η-product x(z) is a modular function on X0(243) by Ligozat’s crite-
rion [7, Theorem 2]. By the transformation properties of the η-function, it is
straightforward to show that x(z) is invariant under the action of the subgroup
S3 < MAut(X0(243)).

The function y(z) was discovered on a computer experimentally by manipulating
η-products via their q-expansions. In a similar way, one can show that y is invariant
under Γ0(243) and the subgroup S3 < MAut(X0(243)). To prove that the equality
y2 + y = x3 − 1 holds, after clearing denominators we may equivalently show an
equality of holomorphic modular forms of weight 7—but then it suffices to verify
the equality on enough terms of the q-expansions on a computer to satisfy the Hecke
bound. �

Remark 2.2.5. The elliptic curve E9 of conductor 243 is number 243a1 in the tables
of Cremona and has LMFDB label 243.a1.

Remark 2.2.6. One can show that the y-function in (2.2.4) cannot be expressed
simply as an η-product; moreover, there is no η-product that is invariant under S3

and has a pole of order 3 at the preimage of the origin in E9. We do not use the
explicit formula for y(z) in this paper.

Because the matrices t, v normalize Γ, they give rise to automorphisms of E9 as
a genus 1 curve. The endomorphism ring of E9 as an elliptic curve is ZK = Z[ω],
where ω acts via (x, y) �→ (ωx, y). Every endomorphism of E9 as a genus 1 curve
has the form Z �→ aZ + b where a ∈ ZK and b ∈ E9. The following proposition
describes the automorphisms t and v of E9 explicitly in these terms.

Proposition 2.2.7. The automorphism t acts on the curve E9 via t(Z) = ω2Z +
(0, ω). The automorphism v acts by v(Z) = ω2(Z).

http://www.lmfdb.org/EllipticCurve/Q/243/a/1
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Proof. Since t3 is a scalar matrix, t(Z) = aZ + b for a ∈ {1, ω, ω2} and b ∈ E9(Q).
Now t(∞) = −1/27 and under the complex parametrization Φ we compute that
Φ(−1/27) = (0, ω) = b. Unfortunately, we cannot determine a by looking at
cusps. Instead, we consider τ = (ω − 1)/27 ∈ H, which has the property that
t(τ ) = τ . Letting T = Φ(τ ), it follows that (1 − a)T = b = (0, ω). In particular

T ∈ E9[3]. We compute numerically that T ≈ ( 3
√
3,−2), and since there are only

nine possibilities for T , equality holds. From this, one finds that a = ω2, and hence
t(Z) = ω2Z + (0, ω).

Next we compute the action of v, which also has order dividing 3, so again
v(Z) = aZ + b with a ∈ {1, ω, ω2}. We see that v(∞) = 1/81 and Φ(1/81) = ∞
so b = 0. As above, we compute that τ = (ω − 1)/27 has Φ(τ ) = T = ( 3

√
3,−2) is

a 3-torsion point, hence Φ(v(τ )) = a( 3
√
3,−2) is also a 3-torsion point and then we

verify numerically that a = ω2. �

3. Mock Heegner points

For the remainder of this paper, let p be a prime congruent to 4 or 7 modulo 9.
In this section, we define our mock Heegner point.

3.1. The isogeny tree. In Figure 3.1, we draw a diagram of 3-isogenies between
certain elliptic curves with CM by orders in K. For τ ∈ K ∩ H, we denote by 〈τ 〉f
the elliptic curve C/(Z+ Zτ ) with endomorphism ring the order ZK,f := Z[fω] of
conductor (or index) f in ZK .

〈ωp+6
9 〉9p

����
〈ωp+1

9 〉9p
���

〈ωp+3
9 〉9p 〈ωp

3 〉3p
���

〈ωp+1
3 〉3p

����
〈ωp+4

9 〉9p

〈ωp
9 〉9p

�����
〈ωp〉p 〈ωp+7

9 〉9p

���

〈ωp+2
27 〉9p

〈ωp+11
27 〉9p

〈ωp+18
27 〉9p

���

〈 3ωp+1
3 〉9p

��
��

��
��

��
〈ωp+2

9 〉3p

��
��
��
��
�

〈ωp+5
27 〉9p

〈ωp+14
27 〉9p

���

〈 3ωp+2
3 〉9p 〈3ωp〉3p

																						
〈ωp+2

3 〉p

























〈ωp+5
9 〉3p 〈ωp+23

27 〉9p

〈ωp+8
27 〉9p

���

〈9ωp〉9p

����������
〈ωp+8

9 〉3p

���������

〈ωp+17
27 〉9p

〈ωp+26
27 〉9p

���

Figure 3.1: Isogeny tree (for p ≡ 1 (mod 3)).

The computation of the conductors in Figure 3.1 relies only on the fact that p ≡ 1
(mod 3). Of particular interest in this diagram is the fact that the curves in the
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lower right quadrant emanating from the “central vertex” 〈ωp〉p have endomorphism
ring of lower conductor than their counterparts in the other quadrants. We have
only listed the nine curves in the tree of distance 3 from this central vertex in this
quadrant for space reasons, since these are the only curves that we will use.

Each path of length 5 in this tree (with no backtracking) corresponds to a cyclic
35-isogeny and hence yields a corresponding point on X0(243). Furthermore, the
conductor of the order associated to this cyclic 243-isogeny will be the least common
multiple of the conductors of the orders of the two curves involved in the isogeny.
In particular, for each curve 〈τ 〉9p on the left side of this diagram and each 〈ωp+i

27 〉9p
with i ≡ −1 (mod 3) on the right, there is a point on X0(243)(C) of conductor 9p
corresponding to the isogeny between these two curves.

3.2. Our mock Heegner points. Recall that our eventual goal is to produce
rational points on the curves Ep and Ep2 ; we refer to these as case 1 and case 2, and
we will eventually show that our points land on the curve Ep or Ep2 , accordingly.
Our construction starts with the points on X0(243) of conductor 9p corresponding
to the following isogenies in each of these cases. We make the following choices:

(3.2.1) P0 =

⎧⎪⎨⎪⎩
〈ωp

9

〉
→

〈ωp+ 23

27

〉
=

〈ωp− 4

27

〉
in case 1;〈ωp

9

〉
→

〈ωp+ 26

27

〉
=

〈ωp− 1

27

〉
in case 2.

This gives P0 ∈ X0(243)(C) and we write

(3.2.2) P = Φ(P0) ∈ E9(C).

Remark 3.2.3. In fact, each of the 6 · 9 = 54 possible choices gives rise to a point
on either Ep or Ep2 by the procedure we will outline, and we have simply made a
choice.

Lemma 3.2.4. The point P0 ∈ X0(243) is represented in the upper half-plane by

τ = M(ωp/9) where M =

(
2 −1
9 −4

)
for case 1 and M =

(
1 0
−9 1

)
for case 2.

Proof. We explain case 2, with case 1 being similar. We need to rewrite the isogeny
P0 in normalized terms (2.1.1). The isogeny φ is 〈ωp/9〉 → 〈ωp〉 → 〈(ωp − 1)/27〉
defined by z �→ 9z; thus, the kernel of φ is cyclic generated by (ωp − 1)/243

(modulo the lattice 〈ωp/9〉). We want a matrix M =

(
a b
c d

)
∈ SL2(Z) such that

the diagram

(3.2.5)

〈ωp/9〉 z �→9z ��

z �→ z
c(ωp/9)+d

��

〈(ωp− 1)/27〉
z �→ 27z

c(ωp/9)+d

��
〈M(ωp/9)〉 z �→243z �� 〈243M(ωp/9)〉

commutes. The matrix M =

(
1 0
−9 1

)
will do: indeed, a generator for the kernel

of the isogeny shifts to (ωp−1)/243
−9(ωp/9)+1 = − 1

243 . �

4. Descent and tracing

With our points in hand, via descent and tracing, we now show how to use the
point P defined in (3.2.2) to construct points on Ep(K) and Ep2(K).
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4.1. Field diagram. Let Hf ⊇ K be the ring class field attached to the conductor
f ∈ Z≥1. We have the following diagram of fields:

(4.1.1)

H9p = H3p(
3
√
3)

3
�����

�
H3p(p−1)/3









L = K( 3
√
p)

3





K

2���
��

Q

By the main theorem of complex multiplication, P ∈ E9(H9p). Since K has
class number 1, the Artin reciprocity map of class field theory yields a canonical
isomorphism

(4.1.2) Gal(Hf |K) � (ZK/fZK)×/(Z/fZ)×Z×
K .

4.2. Cubic twists. We pause to recall the behavior of cubic twists in our context,
referring to Silverman [15, X.2] for the general theory. Let K ′ ⊇ K be an algebraic
extension and let a ∈ (K ′)× � (K ′)×3, so L′ := K ′( 3

√
a) has [L′ : K ′] = 3. Let

(4.2.1) ρ ∈ Gal(L′ |K ′) � Z/3Z

be the generator satisfying ρ( 3
√
a) = ω 3

√
a. Then for any b ∈ (K ′)×, there is an

isomorphism of groups between the subgroup of Eb(L
′) that transforms under ρ by

multiplication by ω and Eab(K
′):

(4.2.2) Eb(L
′)ρ=ω := {X ∈ Eb(L

′) : ρ(X) = ωX} ∼−→ Eab(K
′).

4.3. Descent from H9p to H3p. We first apply the method of cubic twisting in the

previous section to the extension H9p = H3p(
3
√
3) over H3p. Let ρ ∈ Gal(H9p |H3p)

be the generator satisfying ρ( 3
√
3) = ω 3

√
3. The first step of our descent will be to

show that the point P = Φ(P0) ∈ E9(H9p) defined in (3.2.1) lies in the left-hand
side of (4.2.2) and hence corresponds to a point in E1(H3p). In the models

(4.3.1) E9 : y
2 + y = x3 − 1 and E1 : y

2 + y = 3x3 − 1,

this twisting isomorphism becomes

(4.3.2)
E9(H9p)

ρ=ω → E1(H3p)

(x, y) �→ (x/
3
√
3, y).

Proposition 4.3.3. For the points P ∈ E9(H9p) defined in (3.2.2), we have ρ(P ) =
ωP .

Proof. The idea of the proof is to use the Shimura Reciprocity Law to calculate
the action of ρ on P , and then to identify the image of this Galois action as the
image of P under the action of a geometric modular automorphism of X0(243).
Using the computations from section 2.2 for the action of the group of modular
transformations under the parameterization Φ, we deduce the desired result.

The field K( 3
√
3) has conductor 9 over K. The element β = 1 + 3ω satisfies

(4.3.4) 3(Nm(β)−1)/3 ≡ (−1/ω)2 ≡ ω (mod β),

and hence under the isomorphism (4.1.2) with f = 9, the element β correponds to

the automorphism of K( 3
√
3)/K sending 3

√
3 �→ 3

√
3ω. To lift this to the element
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ρ ∈ Gal(H9p |H3p) exhibiting the same action on 3
√
3, we must, therefore, find

an element αρ such that αρ ≡ 1 (mod 3p) and αρ ≡ β (mod 9). The element
αρ = 1 + 3pω suffices.

Since the inverse of αρ in the left side of (4.1.2) for f = 9p is 1 + 3pω2, the
Shimura Reciprocity Law [2, Theorem 3.7] implies that in case 2, ρ(P0) is the point
on X0(243) associated to the cyclic 243-isogeny

(4.3.5) Iρ ·
〈ωp

9

〉
→ Iρ ·

〈
ωp− 1

27

〉
,

where

(4.3.6) Iρ := (1 + 3pω2)ZK ∩ ZK,9p = (9p2 − 3p+ 1, 3 + 9pω2) ⊂ ZK,9p

is an invertible ideal in the order ZK,9p. (Even before carrying out this calculation,
the isogeny tree in Figure 3.1 implies that the result must be an isogeny between
one of the curves 〈ωp+k

9 〉 with k = 0, 3, or 6 and one of the curves 〈ωp−j
27 〉 with

j = 1, 10, or 19, since the adjacent curves in the tree have conductor 3p and are
hence fixed by ρ.) A simple calculation shows that the result is

(4.3.7) ρ(P0) =

(〈
ωp+ 6

9

〉
→

〈
ωp− 10

27

〉)
.

We now look for a modular automorphism A ∈ MAut(X0(243)) such that
A(P0) = ρ(P0). A quick computer search over the finite group MAut(X0(243)) re-

veals that the matrix A=

(
327 2
53460 327

)
, corresponding to the element (v−1wvw)v2

∈ S3v
2 ⊂ MAut(X0(243)), satisfies this condition. Therefore, since the action of

S3 fixes the image on E9 and v acts by ω2 on E9 by Proposition 2.2.7, we conclude
A(P ) = ρ(P ) = ωP . A similar computation holds in case 1. �

From Proposition 4.3.3, it follows that each point P ∈ E9(H9p) defined in (3.2.2)
descends with a cubic twist by 3 to a point Q ∈ E1(H3p).

4.4. Trace and descent from H3p to L. Recall from (4.1.1) that L = K( 3
√
p) ⊂

H3p. Define

(4.4.1) R := TrH3p/L Q ∈ E1(L).

Let σ be the generator of Gal(L |K) such that σ( 3
√
p) = ω 3

√
p.

Proposition 4.4.2. Using the model y2 + y = 3x3 − 1 for E1 as in (4.3.1):

σ(R) =

{
ωR + (0, ω2) in case 1;

ω2R+ (0, ω2) in case 2.

Proof. The proof is similar to that of Proposition 4.3.3 so we only sketch the salient
points. The element ασ = 1 − 2pω2 ∈ ZK has the property that under the Artin
reciprocity isomorphism (4.1.2) for f = 9p, the associated element σ ∈ Gal(H9p |K)

satisfies σ( 3
√
p) = ω 3

√
p and σ( 3

√
3) = 3

√
3. This latter fact will be important to

ensure that the 3
√
3 twisting isomorphism (4.2.2) is equivariant for the action of σ.

The Shimura Reciprocity Law yields the action of σ on P0, calculated using ασ as
in the proof of Proposition 4.3.3. Here one must further consider the cases p ≡ 4, 7
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(mod 9) separately. One obtains:

(4.4.3) σ(P0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈ωp+4

9 〉 → 〈ωp+2
27 〉 in case 1 with p ≡ 4 (mod 9);

〈ωp+4
9 〉 → 〈ωp−13

27 〉 in case 2 with p ≡ 4 (mod 9);

〈9ωp〉 → 〈ωp−1
27 〉 in case 1 with p ≡ 7 (mod 9);

〈9ωp〉 → 〈ωp+2
27 〉 in case 2 with p ≡ 7 (mod 9).

In each case, we can again identify a modular automorphism that sends P0 to
σ(P0). For example, in case 2 for p ≡ 4 (mod 9), we find that the matrix A =(
18486 103
27459 153

)
, corresponding to the element (wvwv2)t2v2, has A(P0) = σ(P0).

Since wvwv2 ∈ S3, we conclude using Proposition 2.2.7 that

(4.4.4) σ(P ) = A(P ) = ω2P + (0, ω2).

The results in all four cases are:

(4.4.5) σ(P ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωP + (0, ω2) in case 1 with p ≡ 4 (mod 9);

ω2P + (0, ω2) in case 2 with p ≡ 4 (mod 9);

ωP + (0, ω) in case 1 with p ≡ 7 (mod 9);

ω2P + (0, ω) in case 2 with p ≡ 7 (mod 9).

Since the element σ leaves 3
√
3 invariant, and since the point (0, ω) is mapped to

(0, ω) under the twisting isomorphism (4.2.2) in the models (4.3.1), we see that the
same equations hold for the point Q replacing P .

Finally, in case 1 for p ≡ 4 (mod 9) we calculate

σ(R) =
∑

ς∈Gal(H3p |L)

σ(ς(Q)) =
∑
ς

ς(σ(Q)) = ωR +
p− 1

3
(0, ω2) = ωR + (0, ω2),

since (0, ω2) is a 3-torsion point fixed by Gal(H3p |L) and [H3p : L] = (p − 1)/3.
The other three cases follow similarly. �

4.5. Descent from L to K. Unfortunately, Proposition 4.4.2 does not imply that
R is nontorsion since there are torsion points in E1(L) that satisfy these equations.
Namely, the torsion point T = (1, 1) satisfies σ(T ) = T = ω2T + (0, ω2), and
similarly T = (1,−2) satisfies σ(T ) = T = ωT + (0, ω2).

But we turn this to our advantage: in case 1 the point Y := R−T for T = (1,−2)
satisfies σ(Y ) = ωY ; and so again by the cubic twist isomorphism (4.2.2), we obtain
a point Z ∈ Ep(K). In case 2, we take T = (1, 1), let Y = R − T , and find
σ(Y ) = ω2Y yielding Z ∈ Ep2(K).

5. Nontorsion

To prove that the point R ∈ E1(K( 3
√
p)) in (4.4.1) is nontorsion, and accordingly

its twist Z ∈ Epi(K) (i = 1 or 2), we now consider its reduction modulo p.

5.1. Manipulation of η product. Recall Proposition 2.2.3 giving the modular
parametrization Φ : X0(243) → E9 : y2 + y = x3 − 1, where

(5.1.1) x(z) =
η(9z)η(27z)

η(3z)η(81z)
.
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In (3.2.1) we considered the points τ = M(ωp/9) for M =

(
2 −1
9 −4

)
,

(
1 0
−9 1

)
in

the two cases (Lemma 3.2.4). We now write the value of x(τ ) in the form f(pτ0)
where f is a modular function and τ0 does not depend on p.

The function

(5.1.2) f(z) :=
η(27z)

η(3z)

is a modular unit on Γ0(81) by Ligozat’s criterion.

Lemma 5.1.3. Let j ∈ Z satisfy jp ≡ 4, 1 (mod 27) in case 1 or case 2, respec-
tively. Then

(5.1.4) x(τ ) = eπi/6
√
3
f(p(ω − j)/27)f(pω/9)

f(p(ω − j)/9)
,

where f is defined in (5.1.2).

Proof. We show the calculation for case 2; case 1 is similar. With M =

(
1 0
−9 1

)
and all z ∈ H,

(5.1.5) 81M(z) =
9ωp

−ωp+ 1
=

9

−ωp+ 1
− 9 = (T−9S)((ωp− 1)/9),

where S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
. Similarly,

(5.1.6)

27M(z) = (T−3S)((ωp− 1)/3),

9M(z) = (STS)(ωp),

3M(z) = (ST 3S)(ωp/3).

By the transformation formulas for the Dedekind η-function

(5.1.7) η(T (z)) = η(z + 1) = eπi/12η(z), η(S(z)) = η(−1/z) =
√
−iz η(z),

we calculate:

(5.1.8)

η(81τ ) = eπi/4
√
−i(ωp− 1)/9 η((ωp− 1)/9),

η(27τ ) = e−πi/4
√
−i(ωp− 1)/3 η((ωp− 1)/3),

η(9τ ) = e−πi/6
√
−i(ωp− 1) η(ωp),

η(3τ ) =
√
−i(ωp− 1) η(ωp/3).

Plugging (5.1.8) into x(τ ) as in (5.1.1) and rewriting slightly gives

(5.1.9) x(τ ) = x(M(ωp/9)) = eπi/3
√
3 · η(ωp)

η(ωp− 1)/9)
· η((ωp− 1)/3)

η(3ωp)
· η(3ωp)

η(ωp/3)
.

With j = 7, 4 as p = 4, 7 (mod 9), let k := (1− jp)/9 ∈ 3Z, so that

(5.1.10)
ωp− 1

9
=

p(ω − j)

9
− k.

Using the transformation formula and (5.1.10) gives:

(5.1.11)
η(ωp)

η((ωp− 1)/9)
=

eπi(jp)/12 η(p(ω − j))

eπi(−k)/12 η(p(ω − j)/9)
= eπi/12f(p(ω − j)/27)
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since k + jp = 1− 8k ≡ 1 (mod 24). Similarly,

(5.1.12)
η((ωp− 1)/3)

η(3ωp)
= e−πi/4 1

f(p(ω − j)/9)
.

Plugging these into (5.1.9), we obtain (5.1.4). �

5.2. Reduction of R modulo p. We will use the tidy expression (5.1.4) to reduce
our mock Heegner points modulo p. The key result that allows this is the following
proposition.

Proposition 5.2.1. Let f(z) =
∑

n anq
n be a nonconstant modular function on

Γ0(N) with an ∈ Z such that f only has poles at cusps. Let K be a quadratic
imaginary field and let p be a prime that splits in K with p � N . Let τ ∈ H have
image in X0(Np) corresponding to a cyclic Np-isogeny ϕ : E1 → E2 of elliptic
curves with CM by orders in K. Suppose that the index [ZK : End(E1)] is not
divisible by p but that [ZK : End(E2)] is divisible by p.

Let H be the ring class field of K associated to End(ϕ) and let ZH,(p) denote the

ring of p-integral elements of H. Then f(τ ), f(pτ ) ∈ H× are integral at each prime
of H above p and satisfy the congruence

(5.2.2) f(τ ) ≡ f(pτ )p (mod pZH,(p)).

Proposition 5.2.1 is proved in the appendix. Using the proposition, we now finish
the proof of our main result (Theorem 1.2.1) by showing that R is not torsion when 3
is not a cube modulo p. We describe the case j = 7 (see Lemma 5.1.3), the argument
for the other cases only differing by constant factors (specifically, an explicit root
of unity only depending on j). We continue to use the model y2 + y = 3x3 − 1 for
the curve E1. Recall from (4.3.2) and Lemma 5.1.3 that for the point Q ∈ E1(H3p)
we have

x(Q) =
x(P )

3
√
3

=
x(τ )

3
√
3

= eπi/6
6
√
3
f(p(ω − 7)/27)f(pω/9)

f(p(ω − 7)/9)
.

The assumptions of Proposition 5.2.1 are satisfied by f and the points τ = ω/9, (ω−
7)/27, (ω − 7)/9. The proposition, therefore, implies that

(5.2.3) x(Q)p ≡ (eπi/6
6
√
3)p

f((ω − 7)/27)f(ω/9)

f((ω − 7)/9)
(mod pZ).

We can evaluate the constant on the right in (5.2.3) explicitly.

Lemma 5.2.4. We have

f((ω − 7)/27)f(ω/9)

f((ω − 7)/9)
= −eπi/6

1
6
√
3
.

Proof. The function h(z) := f(z/3)3 is Γ0(9)-invariant by Ligozat’s criterion. The
point on X0(9) associated to ω/3 ∈ H corresponds to the normalized isogeny
〈ω/3〉 → 〈3ω〉 of conductor 3. By the theory of modular units, h(ω/3) is a 3-
unit in the ring class field H3 = K, and hence is equal to a unit in Z×

K times a

power of
√
−3. Numerically, we find that h(ω/3) = 3

√
−3 to several hundred digits

of accuracy, so this must be an equality. We then calculate that

(5.2.5) f(ω/9) = e−πi/6/
√
3.

In a similar way, we compute

f((ω − 7)/9) = −ω2/
3
√
9, f((ω − 7)/27) = −ω/

3
√
3,
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and putting these together gives the result. �

Combining (5.2.3) and Lemma 5.2.4, we obtain

(5.2.6) x(Q)p ≡ (eπi/6
6
√
3)p

(
−eπi/6

6
√
3

)
= ω2 (−3)

(p−1)/6
(mod pZ).

Since p ≡ 1 (mod 3), we have pZL = (pp)3 where ZL is the ring of integers of
L = K( 3

√
p) and each of p, p have residue field Fp. We consider the pair

(5.2.7) (R mod p, R mod p) ∈ E1(Fp)
2.

Proposition 5.2.8. If 3 is not a cube modulo p, then the image of R ∈ E1(L) in
E1(Fp)

2 is not equal to the image of any torsion point in E1(L), and hence R is
nontorsion.

Before proving this proposition, we need one final lemma.

Lemma 5.2.9. In the coordinates y2 + y = 3x3 − 1 for E1, we have

E1(L)tors = E1(K)tors

= E1[3] = {∞, (0, ω), (0, ω2), (ωi, 1), (ωi,−2) : i = 0, 1, 2} � (Z/3Z)2.

Proof. The curve E1 has simplified Weierstrass model y2 = x3 − 432 with 432 =
2433; since 3

√
2 
∈ L, we have E1[2](L) = {∞}. The curve E1 has good (super-

singular) reduction at 2. The prime 2 is unramified in the S3-extension L ⊇ Q;
it is inert in ZK and splits into three primes in ZL with residue field of size 4,
and #E(F4) = 9. By the injection of torsion [15, (VII.3.2)], we conclude that
#E1(L) | 9. The 3-torsion points of E1 listed explicitly in the proposition are
clearly defined over K ⊂ L, completing the proof. �

Proof of Proposition 5.2.8. From (5.2.6) we have that

x(Q)p ≡ ω2 (−3)(p−1)/6 (mod pZH3p
).

Since −3 ∈ F×2
p , it follows that (−3)(p−1)/6 is a cube root of unity in F×

p ; further-
more, this root of unity is trivial if and only if 3 is a cube modulo p. Meanwhile,
the image of ω2 in

ZK/pZK � ZK/pK × ZK/pK � Fp × Fp

has the form (u, u2) where 1 ≤ u ≤ p − 1 is a primitive cube root of unity in
F×
p = (Z/pZ)×. Therefore, (5.2.6) implies that the image of x(Q)p in Fp × Fp has

the form

(5.2.10)

{
(u, u2) if 3 is a cube mod p;

(u, 1) or (1, u) if 3 is not a cube mod p.

Of course, the same is, therefore, true for x(Q). In particular, the image of Q in
each copy of E1(Fp) is a 3-torsion point (namely one of the points (ui, 1) or (ui,−2)
for i = 0, 1, 2). Now

(5.2.11) R = TrH3p/L Q ≡ p− 1

3
Q ≡ ±Q in E1(Fp)

2,

with the sign ± according to the cases p ≡ 4, 7 (mod 9). The first congruence in
(5.2.11) follows since p is totally ramified in the extension H3p/L. To prove the
proposition, it therefore suffices to prove that the image of Q in E1(Fp)

2 is not equal
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to the image of a torsion point in E1(L) if 3 is not a cube modulo p. However, this
is easily checked directly using Lemma 5.2.9 and (5.2.10). For the nonzero torsion
points T ∈ E1[3], the images of x(T ) in Fp × Fp have the shape (0, 0), (1, 1), or
(u, u2) with u a primitive cube root of unity in F×

p , never (u, 1) or (1, u). �

Of course, if R is nontorsion, then the points Y = R − T ∈ E1(L) and Z ∈
Epi(K) will be nontorsion as well. Finally, since E has CM by ZK we have
rkZ(E(Q)) = rkZK

(E(K)). Explicitly, if Z ∈ Epi(K) is nontorsion, then either

Z +Z or (
√
−3Z) + (

√
−3Z) will be a nontorsion point in Epi(Q). This concludes

the proof of Theorem 1.2.1.

5.3. Tables. In the following tables, we show the points constructed with our
method, suggesting they are nontorsion whenever the corresponding twisted L-
value is nonzero (see section 1.4). We define

Lalg(En, 1) := L(En, 1)
2π 3

√
n√

3Γ(1/3)3
,

the conjectural order of the Shafarevich–Tate group of En. We let m(P ) denote
the index of 〈P 〉 in the Mordell–Weil group E(Q).

p Lalg(E3p2 , 1) (3 | p)3 = 1? P ∈ Ep(Q) m(P )

7 1 no (2,−1) 1

13 4 no ( 2513
1005

,− 1388
1005

) 2

31 4 no ( 277028111
119531076

, 316425265
119531076

) 2

43 1 no ( 805
228

,− 229
228

) 2

61 0 yes ∞ −
67 9 yes (−3481613117857223908773469049678633

610868942776961094346380627914232
,

3859176073959095744240009217935657
610868942776961094346380627914232

) 3

79 1 no ( 26897
6783

, 17320
6783

) 2

97 4 no (− 2799894968113535105
200421477873478047

, 2832713504497390136
200421477873478047

) 4

103 9 yes ( 846452740978167916651651
2613111768231818449540464

, 12247739733626179769224061
2613111768231818449540464

) 3

139 4 no ( 54560
13317

, 54943
13317

) 2

151 9 yes (− 123623···7041
313952···2740 ,

1672043···5041
313952···2740 ),ht(P ) ≈ 140.03 6

157 4 no (− 149538978691379960828806099105
17911115779648062701697963576

,
161931070975357602816944210593
17911115779648062701697963576

) 2

193 0 yes ∞ −
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p Lalg(E3p, 1) (3 | p)3 = 1? P ∈ Ep2(Q) m(P )

7 1 no (− 2
3
, 11

3
) 1

13 1 no ( 1589
285

,− 464
285

) 2

31 1 no ( 12376607
1219092

,− 5368415
1219092

) 2

43 4 no ( 3884810234333940170434868735
316639715249572968055283052

,
413561995142793125324177473
316639715249572968055283052

) 2

61 0 yes ∞ −
67 0 yes ∞ −
79 1 no ( 416502767358398513

77680272383924217
, 1418322935604634846

77680272383924217
) 1

97 1 no ( 76769228526793
20893884519009

, 440320075625234
20893884519009

) 1

103 0 yes ∞ −
139 4 no ( 273171···7720

644917···4681 ,−
247724···7279
644917···4681 ),ht(P ) ≈ 232.48 4

151 0 yes ∞ −
157 1 no (− 338502049691004117840147474335

18567552055567917366723961524
,

581442015167638901460155379551
18567552055567917366723961524

) 2

193 0 yes ∞ −

Appendix A. Application of mod p geometry

In this appendix we prove Proposition 5.2.1. The proposition will be deduced
as a special case of a more general underlying geometric principle. Let X be a
proper flat curve over a discrete valuation ring R with mixed characteristic (0, p).
Let F = FracR denote the fraction field of R and let k be the residue field of R.
Suppose that XF is smooth and geometrically connected. Suppose further that
Xk is semistable with two irreducible components, each smooth and geometrically
connected. Let D be an R-finite flat closed subscheme of X whose special fiber lies
in the smooth locus of the special fiber of X.

Let f ∈ OXF
(UF ) for U := X�D. Let ∞ ∈ D(R) be such that the image of f in

the ∞F -adic completion Frac(ÔXF ,∞F
) of F (X) belongs to the polar localization

along ∞ of the ∞-adic completion of OX . More concretely, if q is a local generator
along ∞ of its ideal sheaf in OX , then we are supposing that the natural map

F (X) → F ((q)) = F [[q]][1/q]

carries f into R[[q]][1/q]. We claim that the following general congruence holds.

Proposition A.1. Suppose that g ∈ OXF
(UF ) is such that its image in

Frac(ÔXF ,∞F
) = F ((q))

belongs to R[[q]][1/q] and has reduction modulo pR coinciding with the image of
fp. Then for any u ∈ U(R) such that u and ∞ reduce into the same connected
component of the smooth locus of Xk, we have f(u), g(u) ∈ R and g(u) ≡ f(u)p

(mod pR).

We first show how this proposition implies Proposition 5.2.1.
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Proof of Proposition 5.2.1. We apply Proposition A.1 with X = X0(Np) over the
localization R = ZH,(p) with F = H and p a prime above p; we take D to be the
closed subscheme of cusps including the cusp ∞; and the modular function f as in
Proposition 5.2.1.

We let g(z) := f(pz) and u := Wp(τ ) for τ as in Proposition 5.2.1 with Wp the
Atkin–Lehner involution of X0(Np). Since the q-expansion of f has coefficients in
Z, the q-expansions of fp and g are congruent modulo p.

The point onX0(Np) associated to τ corresponds to a cyclicNp-isogeny ϕ : E1 →
E2, and we are assuming that m = [ZK : End(E1)] is relatively prime to p, but
that p | m2 where m2 := [ZK : End(E2)]. As we explain below, these conditions
ensure that τ has reduction in the connected component of the smooth locus of
Xk corresponding to étale p-level structure (i.e., the component distinct from the
one into which ∞ reduces). Therefore, u and ∞ have reduction into the same
component of the smooth locus of Xk. Granting that, since g(u) = f(τ ) and
f(u) = f(pτ ) by the Γ0(N)-invariance of f , we then get from Proposition A.1 that
f(τ ) and f(pτ ) belong to R and satisfy f(τ ) ≡ f(pτ )p (mod pR).

To see that τ has reduction with étale p-level structure, it is equivalent to show
that its reduction does not have multiplicative p-level structure. Suppose for the
sake of contradiction that this is the case (i.e., that the reduction of τ does have
multiplicative p-level structure). Extending F a finite amount if necessary, the F -
point τ of the coarse space Y0(Np) comes from a CM elliptic curve E over R, and
E[p] then has connected-étale sequence over R which (by canonicity) is stable by
the order ZK,m. Hence, passing to generic fibers, the subgroup J of order p in kerϕ
must be stable by ZK,m. But then E1/J would have endomorphisms by ZK,m, and
hence p would not divide m2 (since E2 is a quotient of E1/J by a subgroup of size
N , which is prime to p). This contradiction to our assumptions implies that τ has
reduction with étale p-level structure and concludes the proof. �

We conclude with a proof of Proposition A.1.

Proof of Proposition A.1. Pick an affine open V ⊂ U around the reduction uk of
u such that Vk is contained in the common irreducible component that contains
the reductions of ∞ and u, so V is R-smooth with geometrically connected (hence
geometrically integral) fibers and u ∈ V (R). Since an integrally closed noetherian
domain (such as R[V ]) is the intersection in its fraction field of its localizations at
all height 1 primes, the only obstacle to f |VK

∈ K[VK ] coming from R[V ] is that
the order of f at the generic point of Vk may be negative.

Assuming this order is negative, say −m, if π is a uniformizer of R, then πmf
comes from R[V ] and has nonzero reduction modulo π. To rule this out, we observe
(by some elementary unraveling of definitions) that the image in k[[q]][1/q] of the
reduction of πmf is the reduction of πm times the element of R[[q]][1/q] that is
assumed to be the image of f in K((q)) = K[[q][1/q], and the latter reduction is
clearly 0. This is a contradiction. The same reasoning applies to g, as well as to
(fp − g)/p, so it follows that

f, g,
fp − g

p
∈ R[V ].

Now evaluating at u ∈ V (R) gives the desired conclusions concerning f(u) and
g(u). �
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