Sylvester’s problem and mock Heegner points
HTML articles powered by AMS MathViewer
- by Samit Dasgupta and John Voight
- Proc. Amer. Math. Soc. 146 (2018), 3257-3273
- DOI: https://doi.org/10.1090/proc/14008
- Published electronically: March 20, 2018
- PDF | Request permission
Abstract:
We prove that if $p \equiv 4,7 \pmod {9}$ is prime and $3$ is not a cube modulo $p$, then both of the equations $x^3+y^3=p$ and $x^3+y^3=p^2$ have a solution with $x,y \in \mathbb {Q}$.References
- Li Cai, Jie Shu, and Ye Tian, Cube sum problem and an explicit Gross-Zagier formula, Amer. J. Math. 139 (2017), no. 3, 785–816. MR 3650233, DOI 10.1353/ajm.2017.0021
- Henri Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathematics, vol. 101, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020572
- Samit Dasgupta and John Voight, Heegner points and Sylvester’s conjecture, Arithmetic geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, RI, 2009, pp. 91–102. MR 2498056
- Noam D. Elkies, Heegner point computations, Algorithmic number theory (Ithaca, NY, 1994) Lecture Notes in Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 122–133. MR 1322717, DOI 10.1007/3-540-58691-1_{4}9
- Noam Elkies, Tables of fundamental integer solutions $(x,y,z)$ of $x^3+y^3=pz^3$ with $p$ a prime congruent to $4$ mod $9$ and less than $5000$ or congruent to $7$ mod $9$ and less than $1000$, available at http://www.math.harvard.edu/˜elkies/sel_p.html.
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- L. J. P. Kilford, Generating spaces of modular forms with $\eta$-quotients, JP J. Algebra Number Theory Appl. 8 (2007), no. 2, 213–226. MR 2406859
- Paul Monsky, Mock Heegner points and congruent numbers, Math. Z. 204 (1990), no. 1, 45–67. MR 1048066, DOI 10.1007/BF02570859
- A. P. Ogg, Modular functions, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 521–532. MR 604631
- Fernando Rodríguez Villegas and Don Zagier, Which primes are sums of two cubes?, Number theory (Halifax, NS, 1994) CMS Conf. Proc., vol. 15, Amer. Math. Soc., Providence, RI, 1995, pp. 295–306. MR 1353940
- Philippe Satgé, Groupes de Selmer et corps cubiques, J. Number Theory 23 (1986), no. 3, 294–317 (French). MR 846960, DOI 10.1016/0022-314X(86)90075-2
- Philippe Satgé, Un analogue du calcul de Heegner, Invent. Math. 87 (1987), no. 2, 425–439 (French). MR 870738, DOI 10.1007/BF01389425
- Ernst S. Selmer, The Diophantine equation $ax^3+by^3+cz^3=0$, Acta Math. 85 (1951), 203–362 (1 plate). MR 41871, DOI 10.1007/BF02395746
- Jie Shu and Hongbo Yin, An explicit Gross-Zagier formula related to the Sylvester conjecture, preprint, 2017, arxiv.org/pdf/1708.05266.pdf.
- Joseph H. Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094, DOI 10.1007/978-0-387-09494-6
- J. J. Sylvester, On Certain Ternary Cubic-Form Equations, Amer. J. Math. 2 (1879), no. 4, 357–393. MR 1505237, DOI 10.2307/2369490
Bibliographic Information
- John Voight
- Affiliation: Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, New Hampshire 03755
- Address at time of publication: Department of Mathematics, University of California Santa Cruz, 1156 High St, Santa Cruz, California 95064
- MR Author ID: 727424
- ORCID: 0000-0001-7494-8732
- Received by editor(s): July 18, 2017
- Received by editor(s) in revised form: October 31, 2017
- Published electronically: March 20, 2018
- Communicated by: Romyar T. Sharifi
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3257-3273
- MSC (2010): Primary 11D25, 11G05, 11G40, 11G15
- DOI: https://doi.org/10.1090/proc/14008
- MathSciNet review: 3803653