Robustness of exponential attractors for damped Korteweg-de Vries equations
HTML articles powered by AMS MathViewer
- by Mo Chen
- Proc. Amer. Math. Soc. 146 (2018), 3439-3447
- DOI: https://doi.org/10.1090/proc/14037
- Published electronically: April 18, 2018
- PDF | Request permission
Abstract:
In this paper, we study the long-time behaviour of the solutions of the Korteweg-de Vries equations with localized dampings in a bounded domain. It is shown that, under appropriate assumptions on the dampings, these equations possess robust families of exponential attractors in the corresponding phase space.References
- Masashi Aida, Messoud Efendiev, and Atsushi Yagi, Quasilinear abstract parabolic evolution equations and exponential attractors, Osaka J. Math. 42 (2005), no. 1, 101–132. MR 2132006
- Jerry Bona and Ragnar Winther, The Korteweg-de Vries equation, posed in a quarter-plane, SIAM J. Math. Anal. 14 (1983), no. 6, 1056–1106. MR 718811, DOI 10.1137/0514085
- J. Boussinesq, Essai sur la théorie des eaux courantes, Mémoires présentés par divers savants à l’Acad. des Sci. Inst. Nat. France 23 (1877), 1-680.
- A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractors for dissipative evolution equations, RAM: Research in Applied Mathematics, vol. 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. MR 1335230
- Messoud Efendiev and Atsushi Yagi, Continuous dependence on a parameter of exponential attractors for chemotaxis-growth system, J. Math. Soc. Japan 57 (2005), no. 1, 167–181. MR 2114727
- Ciprian Foias, George R. Sell, and Roger Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), no. 2, 309–353. MR 943945, DOI 10.1016/0022-0396(88)90110-6
- Jean-Michel Ghidaglia, Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time, J. Differential Equations 74 (1988), no. 2, 369–390 (English, with French summary). MR 952903, DOI 10.1016/0022-0396(88)90010-1
- Jean-Michel Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Equations 110 (1994), no. 2, 356–359. MR 1278375, DOI 10.1006/jdeq.1994.1071
- Olivier Goubet, Asymptotic smoothing effect for weakly damped forced Korteweg-de Vries equations, Discrete Contin. Dynam. Systems 6 (2000), no. 3, 625–644. MR 1757391, DOI 10.3934/dcds.2000.6.625
- Olivier Goubet and Ricardo M. S. Rosa, Asymptotic smoothing and the global attractor of a weakly damped KdV equation on the real line, J. Differential Equations 185 (2002), no. 1, 25–53. MR 1935630, DOI 10.1006/jdeq.2001.4163
- D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5) 39 (1895), no. 240, 422–443. MR 3363408, DOI 10.1080/14786449508620739
- P. Laurençot, Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line, Czechoslovak Math. J. 48 (1998), 85-94.
- I. Moise and R. Rosa, On the regularity of the global attractor of a weakly damped, forced Korteweg-de Vries equation, Adv. Differential Equations 2 (1997), no. 2, 257–296. MR 1424770
- Ioana Moise, Ricardo Rosa, and Xiaoming Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity 11 (1998), no. 5, 1369–1393. MR 1644413, DOI 10.1088/0951-7715/11/5/012
- Ademir Fernando Pazoto, Unique continuation and decay for the Korteweg-de Vries equation with localized damping, ESAIM Control Optim. Calc. Var. 11 (2005), no. 3, 473–486. MR 2148854, DOI 10.1051/cocv:2005015
- Ricardo Rosa, The global attractor of a weakly damped, forced Korteweg-de Vries equation in $H^1(\Bbb R)$, Mat. Contemp. 19 (2000), 129–152 (English, with English and Portuguese summaries). VI Workshop on Partial Differential Equations, Part II (Rio de Janeiro, 1999). MR 1812879
- Lionel Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var. 2 (1997), 33–55. MR 1440078, DOI 10.1051/cocv:1997102
- Lionel Rosier and Bing-Yu Zhang, Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain, SIAM J. Control Optim. 45 (2006), no. 3, 927–956. MR 2247720, DOI 10.1137/050631409
- L. Tartar, Interpolation non linéaire et régularité, J. Functional Analysis 9 (1972), 469–489 (French). MR 0310619, DOI 10.1016/0022-1236(72)90022-5
- Ming Wang, Global attractor for weakly damped gKdV equations in higher Sobolev spaces, Discrete Contin. Dyn. Syst. 35 (2015), no. 8, 3799–3825. MR 3320146, DOI 10.3934/dcds.2015.35.3799
- Ming Wang, Dongfang Li, Chengjian Zhang, and Yanbin Tang, Long time behavior of solutions of gKdV equations, J. Math. Anal. Appl. 390 (2012), no. 1, 136–150. MR 2885761, DOI 10.1016/j.jmaa.2012.01.031
- Xingyu Yang, Global attractor for the weakly damped forced KdV equation in Sobolev spaces of low regularity, NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 273–285. MR 2811053, DOI 10.1007/s00030-010-0095-9
Bibliographic Information
- Mo Chen
- Affiliation: School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, People’s Republic of China
- Email: chenmochenmo.good@163.com
- Received by editor(s): August 21, 2017
- Received by editor(s) in revised form: November 21, 2017
- Published electronically: April 18, 2018
- Additional Notes: This work is supported by NSFC Grant (11701078), China Postdoctoral Science Foundation (2017M611292), the Fundamental Research Funds for the Central Universities(2412017QD002) and NSFC Grant (11601073).
- Communicated by: Wenxian Shen
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3439-3447
- MSC (2010): Primary 35Q53, 35B40
- DOI: https://doi.org/10.1090/proc/14037
- MathSciNet review: 3803668