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LIMIT OF TORSION SEMISTABLE GALOIS
REPRESENTATIONS WITH UNBOUNDED WEIGHTS

HUI GAO

(Communicated by Romyar T. Sharifi)

ABSTRACT. Let K be a complete discrete valuation field of characteristic
(0,p) with perfect residue field, and let T be an integral Z,-representation
of Gal(K/K). A theorem of T. Liu says that if T//p™T is torsion semistable
(resp., crystalline) of uniformly bounded Hodge-Tate weights for all n > 1,
then T is also semistable (resp., crystalline). In this paper, we show that
we can relax the condition of “uniformly bounded Hodge-Tate weights” to an
unbounded (log-)growth condition.

1. INTRODUCTION

We first introduce some notation. Let p be a prime, let k be a perfect field of
characteristic p, let W (k) be the ring of Witt vectors, let Ky = W(k‘)[%} be the
fraction field, let K be a finite totally ramified extension of Ky, let e = e(K/Kj)
be the ramification index, and let Gx = Gal(K/K) be the absolute Galois group
for a fixed algebraic closure K of K.

We use Repy” (Gx) (resp., Repgp (Gk)) to denote the category of finite p-power
torsion (resp., Z,-finite free) representations of Gx. Let r be an integer in the range
[0,00] (including infinity). We use Reprr:t’[_r’O](GK) (resp., Repfzrfris’[_r’ol (Gk))
to denote the category of finite free Z,-lattices in semistable (resp., crystalline)
representations of Gx with Hodge-Tate weights in the range [—r, 0].

Definition 1.1. Let r be an integer in the range [0, 0c] (including infinity). To €
Reptz(;r(G k) is called torsion semistable (resp., crystalline) of weight r if there exist

two objects L and L’ in RepZSt’[fr’O] (Gk) (resp., Repgfﬂs’[ir’o] (Gk)) such that
T =L/L.

The following result was first conjectured by Fontaine ([Fon97]) and was fully
proved in [Liu07] (some partial results were known by work of Ramakrishna, Berger
and Breuil; see [Liu07, §1] for a historical account).

Theorem 1.2 ([Liu07)). Let T € ReprrP(GK). Suppose that there exists an r €
[0,00) such that T /p™T is torsion semistable (resp., crystalline) of weight r for all

n > 1. Then T ®z, Q, is semistable (resp., crystalline) with Hodge-Tate weights in
[—r,0].
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It is mecessary to have r < oo in the above theorem because of the following
result.

Theorem 1.3 ([GL| Thm. 3.3.2]). Suppose K is a finite extension of Q. For any
Te € Reptz(;r(GK), it is torsion semistable (in fact, torsion crystalline).

In fact, suppose T is in Reprrp (Gk) of rank d (with K/Q, finite extension).
Then it is shown in [GLL Rem. 3.3.5] that T/p™T is torsion crystalline of weight
h(n) < n(pf?+p —2) (where f is the inertia degree of K). Namely, the growth of
the (crystalline) weight of T'/p"T is linear.

During a conversation with Ruochuan Liu, he proposed the following question.

Question 1.4. Let T € ReprTP(GK). For each n > 1, suppose T'/p"T is torsion
semistable (resp., crystalline) of weight h(n). Is it still possible to show that T'®z,
Q,, is semistable (resp., crystalline) if we allow h(n) to go to infinity?

By the paragraph above the question, it is necessary that h(n) cannot grow as
fast as n(p/? + p — 2) (in the case when K/Q,, is a finite extension). So, one would
expect that h(n) has to grow more slowly than linear-growth. The first natural
guess is the log-growth, and this is precisely what we obtained.

Theorem 1.5. Let T € ReprrP(GK) of rank d. For each n > 1, suppose T /p"T is
torsion semistable (resp., crystalline) of weight h(n). If

1
h(n) < 2 logg 1, Vn >> 0,

then T ®z, Q, is semistable (resp., crystalline).

One of the motivations of our work is the study of local-global compatibility
problems in the construction of Galois representations (associated to automorphic
representations). Indeed, many such Galois representations are constructed via con-
gruence methods. A good motivational explanation of the situation can be found
in the introduction in Jorza’s thesis [Jorl(]. Namely, certain p"-torsion semistable
(or crystalline) representations will be constructed via congruence methods. How-
ever, the weights of these p"-torsion representations grow (quite rapidly) to infinity,
and so Theorem is no longer applicable. Unfortunately, our Theorem also
seems useless in this respect. To name one example, in the case [Jorl2, Thm. 2.1,
Thm. 3.1], the weights of these torsion representations grow exponentially. We
do hope some of the techniques in our paper can be useful for future studies in
local-global compatibility problems, perhaps combined with methods from analytic
continuation of semistable periods.

Notation. Let O be the ring of integers of K. Let R := @1 O%/pO%, and let
r—xP

W(R) be the ring of Witt vectors of R. Let Ais be the usual period ring.

We fix a uniformizer 7 € Ok and let E(u) € W(k)[u] be the Eisenstein poly-
nomial of 7. Define m, € K inductively such that 79 = 7 and (7,41)? = mp.
Then {m,}n>0 defines an element = € R, and let [x] € W(R) be the Techmiiller
representative of 7.

Define p,, € K inductively such that p; is a primitive pth root of unit}i and
(n41)? = pn. Set Koo = U,y K(mn), Kpe = Upoy K(pn), and K :=
U, K (T, fin)- Let Goo := Gal(K /Ko), Hoo := Gal(K/K), H := Gal(K/KL.),
and G := Gal(K/K).
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When V is a semistable representation of G, we let D (V) := (Byt ®q, VV)Gx
where V'V is the dual representation of V' (and Bg; is the usual period ring). The
Hodge-Tate weights of V are defined to be i € Z such that gr'(K ®x, Dst(V)) # 0.
For example, for the cyclotomic character ¢,, its Hodge-Tate weight is {1}

2. INTEGRAL AND TORSION p-ADIC HODGE THEORY

In this section, we recall some tools in integral and torsion p-adic Hodge theory.

2.1. Etale ¢-modules and étale (¢, 7)-modules. Recall that & = W (k)[u]
with the Frobenius endomorphism ¢ : & — & which acts on W (k) via arithmetic
Frobenius and sends u to u”. Via the map u +— [x], there is an embedding & —
W (R) which is compatible with Frobenious endomorphisms. Denote &,, := &/p"&.

Recall that Og¢ is the p-adic completion of &[1/u]. Our fixed embedding & —
W(R) determined by 7 uniquely extends to a p-equivariant embedding ¢: Og —
W (FrR) (here FrR denotes the fractional field of R), and we identify Og with its
image in W(FrR). Denote Og,, = Og/p"Og. We note that Og is a complete
discrete valuation ring with uniformizer p and residue field k((z)) as a subfield of
Fr R. Let £ denote the fractional field of Og, £" the maximal unramified extension
of £ inside W(FIR)[%], and Ogu the ring of integers of £. Set Og,, the p-adic

completion of Ogur.

Definition 2.1. Let ' Modég denote the category of finite type Og-modules M
equipped with a ¢, -semilinear endomorphism ¢p;: M — M such that 1 ® ¢:
@*M — M is an isomorphism. Morphisms in this category are just Og-linear maps
compatible with ¢’s. We call objects in ’Modés étale p-modules.

Let 'Repy (Go) (resp., 'Repy (Gk)) denote the category of finite type Z,-

modules V' with a continuous Z,-linear G (resp., G )-action. For M in ' Mod“ég7
define

V(M) := Oz, ®0 M)?=".
For V' in 'Rep;, (Go), define
M(V) = (0Og, ®z, V)=
Theorem 2.2 ([Fon90, Prop. A 1.2.6]). The functors V and M induce an exact

tensor equivalence between the categories 'Modg, and 'Repy, (Goo).-

Recall that H,, = Gal(K/K). Let F, := (FrR)”~. As a subring of W (FrR),
W (F,) is stable on Gi-action and the action factors through G.

Definition 2.3. An étale (g, 7)-module is a triple (M, ¢, G), where
(M ) is an étale p-module;
e G is a continuous W (F;)-semilinear G-action on M := W (F,) ®p, M, and

G commutes with @y on M, i.e., for any g € G, 99w = P9
e regarding M as an Og- submodule in M, then M C M¥x.

Given an étale (p, 7)-module M = (M, par, G), we define

T = O 0,2 = (KT v 5

which is a representation of G .
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Proposition 2.4 (|[GL, Prop. 2.1.7]). Notation as the above. Then
(1) T*(M)la,. ~V(M).
(2) The functor T* induces an equivalence between the category of étale (v, T)-
modules and the category 'Repy, (Gr).

2.2. Kisin modules and (p, G)-modules.

Definition 2.5. For a nonnegative integer 7, we write 'Modg&" for the category of
finite-type &-modules 9 equipped with a pg-semilinear endomorphism gy : 9T —
M satisfying

o the cokernel of the linearization 1 ® @: *M — M is killed by E(u)";

e the natural map MM — O ®g M is injective.

Morphisms in "‘ModZ" are @-compatible &-module homomorphisms.

We call objects in 'Mod®&" Kisin modules of E(u)-height r. The category of
finite free Kisin modules of E(u)-height r, denoted ModZ", is the full subcategory
of 'Mod&" consisting of those objects which are finite free over &. We call an object
M € 'Mod&" a torsion Kisin module of E(u)-height r if M is killed by p” for some
n. Since E(u) is always fixed in this paper, we often drop E(u) from the above
notions.

Let M € 'ModZ" be a Kisin module of height 7; we define

TE(M) == (M @ W(FrR))¥~".
Since & C W (R)%>, we see that Go, acts on T (90). Note that this is the covariant
version of the more usual (contra-variant) functor (see [GLL §2.3]).

Now let us review the theory of (go,é)—modules. We denote by S the p-adic
completion of the divided power envelope of W (k)[u] with respect to the ideal
generated by F(u). There is a unique map (Frobenius) ¢g: S — S which extends
the Frobenius on &. One can show that the embedding W(k)[u} — W(R) via
u — [x] extends to the embedding S — A.is. Inside ch = Acm[ ], define a
subring,

R, = {x—Zfzt{z} fi € S[- ]andfi—>0asi—>+oo},

=0

where t11 = m and G(i) satisfies : = g(¢)(p — 1) + () with 0 < r(i) <p — 1.

Define R := W(R) N Rg,. One can show that R, and R are stable under the
G k-action and that the G g-action factors through G (see [Liul0) §2.2]). Let I, R
be the maximal ideal of R and let I, R = W (I, R) N R. By |[Liui0l Lem. 2.2.1],
one has R/I,R ~ & /u& = W (k).

Definition 2.6. Following [Liul0], a finite free (resp., torsion), (¢, G)-module of
height r is a triple (9, p, G) where

(1) (M, pon) € 'ModZ" is a finite free (resp., torsion) Kisin module of height
-

(2) G is a continuous R-semilinear G-action on Mt := R R, M;
(3) G commutes with gy ON M, i.e., for any g € G, 9P = Pond;
(4) regard 9 as a ¢(&)-submodule i in EDT then M C DJ?HK
(5) G
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Morphlsms between (gp, G) modules are morphisms of Kisin modules that commute
with the G-action on 9U’s.

Given O = (M, pon, G’) a (¢, G)-module, either finite free or torsion, we define
T* (M) := (W(FrR) @, M),
and it is a Z,[Gk]-module.
Theorem 2.7 ([GL, Thm 2.3.2]).

(1) T* induces an equivalence between the category of finite free (¢, G') -modules
of height v and the category of Gk -stable Zy-lattices in semistable repre-
sentations of G with Hodge-Tate weights in [—r,0].

(2) For M a (go,é)-module either finite free or torsion, there exists a natural
isomorphism T (9) 5 T*(9M) of Z,[Goo]-modules.

We record a useful lemma which can identify crystalline representations from
(¢, G)-modules.

Lemma 2.8. Suppose Ko, N Ko = K (which is always true when p > 2), and

let 9 be a finite free (¢, G)-module. Then T*(9M) is a crystalline representation if
and only if

(F = 1)(M) € MN (WPp(t) W (R) @p,6 M).
Here T is a topological generator of Gpe such that p, = ;(ﬂ") for all n, and
t € W(R) \ pW(R) such that p(t) = pE((“ t (note that t is umque up to units of
Zyp).
Proof. This is a combination of [GLS14, Prop. 5.9] and [Ozeld, Thm. 21]. Note
that the running assumption p > 2 in both papers is to guarantee Koo N Kpeo = K

(see the footnote in [GLS14] Prop. 4.7]). When p = 2 and Ko, N Ky = K, all the
proofs still work. O

Definition 2.9.
(1) Given an étale p-module M in 'Modg_, if M € 'Modg" is a Kisin module
so that M = Og ®g M, then M is called a Kisin model of M, or simply a
model of M.
(2) Given M := (M, pp, Gar) a torsion (resp finite free) (¢, 7)-module, a
torsion (resp., finite free) (¢, G) module M := (O, o, G) is called a model
of M if M is a model of M and the isomorphism

W(F;) ®z% M~ W(F,) QW (F,) M
induced by Og ®¢ M ~ M is compatible with G-actions on both sides.

Suppose T is a G-stable Z,-lattice in a semistable representation of Gx with
Hodge-Tate weights in [—r,0]. Let M be the (@, 7)-module associated to T' via
Proposition 24 and let 90 be the (o, G) module associated to T via Theorem 2.7]
Then M is a model of M (JGI Lem. 2.4.3]).

Now suppose that T, is a p-power torsion representation of G and M, is
the associated étale (¢, 7)-module. Suppose there exists a surjective map of G-
representations f: L — T),, where L is a semistable finite free Z,-representation
with Hodge-Tate weights in [—r, 0] (we call such f a loose semistable lift). The loose
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semistable lift induces a surjective map (which we still denote by f) f: L — M,,
where £ is the étale (¢, 7)-module associated to L. Suppose £ is the ((p, G)-module
associated to L. Then it is easy to see that f(£) is a (¢, G)-model of M,.

2.3. Torsion Kisin modules. Let M € 'ModZ" be a torsion Kisin module such
that M := 9M[L] is a finite free &,[1]-module (1.e.7 the torsion G..-representation
associated to M is finite free over Z/p"Z). For each 0 < i < j < n, we define

M-I = Ker(p' M LN POM).
Following the discussion above [Liu07, Lem. 4.2.4], we have 9" € 'ModZ". We
also have M"I[1] = pn=ITiMf, and so it is finite free over Og ;_;.
Define the function ¢(r) := 4 - 47¢?r®. This is (bigger than) the ¢ in [Liu07, p
653].
The following three lemmas are extracted from [Liu07] and played important
roles there.

Lemma 2.10. Let 9 be a torsion (g, G’) module, and suppose 1t is torsion semi-
stable in the sense that it is the quotient of two ﬁmte free (o, G) modules (with height

r). Let 0 <1i < j;i then M = Ker(p' M LN pji)'ﬁ) is also torsion semistable. In
fact, zfim S/S’ then there exist finite free N and N such that M-I = ‘ﬁ/‘ﬂ’
which furthermore satisfy:

R TP TP PO |
O =T =T =T" ()]
Proof. The lemma is extracted from the proof of [Liu07, Lem. 4.4.1].

Let 0N := Ker(p& — p/M) and let N := Ker(p'L — p'M). Both N and N
are finite free (¢, G)-modules by [Liu07, Cor. 2.3.8] (also note that the functor
M = R @,.6 M is exact, by [CLIT, Lem. 3.1.2]). There is a commutative diagram
of (¢, G)-modules:

0 N pig pion 0
0 N pl g I m 0

where all the vertical arrows are the xp? % map. By the snake lemma, we have

0 — O — 9N — M — 0.

(|
Lemma 2.11. Suppose M, N € 'Mod&", both finite free over &, and M[1/u] =
N[1/u]. Suppose n > ¢(r); then p*IM = p<IN.
Proof. This is [Liu07, Cor. 4.2.5]. O

Lemma 2.12. Suppose M € ’Modw " such that M @e Og is finite free over Og ,,.
Suppose n > 2¢(r); then M) m=<() s finite free over &,,_ 2¢(r)-

Proof. This is extracted from [Liu07, Lem 4.3.1]. O
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3. LIMIT OF TORSION REPRESENTATIONS
In this section, we prove our main theorem.

Theorem 3.1. Let T € Rep%p(GK) of rank d. For each m > 1, suppose T /p™T is
torsion semistable (resp., crystalline) of weight h(n). If
1
h(n) < 2d logign, Yn >0,
then T ®z, Q, is semistable (resp., crystalline).

Proof. Suppose M is the étale (¢, 7)-module associated to T. For each n > 1,
since T'/p™T is torsion semistable (resp., crystalline), let M, be a (g, G)—model of
M /p™ M associated to a loose semistable (resp., crystalline) lift of T/p"T.
Denote y, = n? — 2c(h(n?)). It is easy to check that there exists some ngy such
that when n > ng, we have:
e ¢(h(n)) < y/n, which implies that v, > 0 and y,,+1 — yn > 0,
e and y, —n > ¢([logg(n + 1)]), where [-] is the ceiling function.

Now, for any n > ng, let

2 2 n2
Ay = RO, P —elhln®))

By Lemma 2.T2] (note that A,, is a Kisin model of M /p¥~ M), A, is a Kisin module
finite free over &,,, (of rank d) of height bounded by h(n?). Let 9, := p¥»~"A,;
then it is finite free over &,, of height bounded by h(n?). Now we claim that
pM;, 1 =M, Vn > ng.

To show the claim, consider A, and p¥»+'~¥» A, ., where both are finite free
over G, (and both are models of M/p¥» M), with heights bounded by log;s(n+1)
(because max{h(n?),h((n +1)?)} <log;(n +1)). So by Lemma 2IT] we have

(M08 (A1) 4 — pe(Tloig (D) punsa—vn 4\

Multiply both sides with p¥»~n=<([10816(+ DD we get pM7, , | = MY,
Now, define 90 := @nzno 9. Then it is a finite free G-module of rank d and
there is a natural p-action on it. We claim that
e M is a Kisin module, i.e., it is of finite F(u)-height.

To prove the claim, pick any &-basis of M and consider the matrix A of @ with
respect to the basis. It is sufficient to show that there exists b € & such that
(det A) - b = E(u)® for some s. Note that for each n > ng, there exists some

B, € Maty(&) such that AB, = E(u)"™)1d (mod p") (where Id is the identity
matrix), and so
det A -det B, = E(u)dh(”z) (mod p").
We then conclude by Lemma below. )
Next we show that we can upgrade 9 to a (¢, G)-module. The strategy is quite

similar to what is done in [Liu07, §85, 6, 7, 8]. However, because of the work [Liul0]
(which substantially used the results in [Liu07, §§5, 6, 7, 8]), it is much easier now.

As we have shown that 9t is a Kisin module, it is obvious that T (9) = T'|¢..,
and so 9 is a Kisin model of M. Consider the G-action on

W(F‘r) ®L,0,W(F7—) M = W(FT) ®<,0,6 ﬁ
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By Lemma 2.10] all the modules

. — Ker(pe ) vngiy , 2y pr =<y )
are also torsion semistable, and so the G-actions on W (F;) ®yp,e M, descend to G-
actions on 7A€®%6 9’ . By taking the inverse limit, the G-action on W (F}) Ry, M

descends to a G-action on R @, ¢ M, and so (M, ¢, G) is a (p, G)-module. Now it

is obvious that T*(ﬁ) =T, and so T is semistable.

Now we only need to deal with the crystalline case. When the conditions in
Lemma 28 are satisfied (that is, when p > 2, or when p = 2 and Ko N Kpe = K),
then the G-actions on R @, ¢ M, satisfy the (torsion version of the) conclusion in

loc. cit., and so the G-action on M satisfies the conclusion in loc. cit. as well (note

that uPp(t)W (R) is p-adically closed in W(R)), and so 9 is crystalline.

When p = 2 and Ko N Kpe # K, then we can argue similarly as in the very
final paragraph of [LiulQ] (which is the errata for [Liu07]). Namely, we can show
that T is crystalline over both K(m) and K(u4), and so T is crystalline over
K(m) N K (i) = K. O

Lemma 3.2. Let a € G and suppose there exists some ng such that for any n > ny,
there exists B, € G such that

0fy = B(u)™) (mod p"®),
where d and h(n?) are as in Theorem Bl Then there exist some s € Z=° and

v € & such that ary = E(u)®.

Before we prove the lemma, we recall a useful lemma. Note that E(u) is not a
zero divisor in &,, ¥n > 0, so it is OK to do “division by E(u)” in &,,.

Lemma 3.3 ([Liu07, Lem. 4.2.2]). Suppose f,g € &, with n > 2 and suppose
E(u)|fg (mod p™). Then we have

E(u)|f (modp)#) or E(u)lg (mod pl#]),
where || is the floor function.
The following easy corollary is convenient for our use.

Corollary 3.4. Suppose f,g € Gan. Suppose E(u)*|fg (mod p*") where k < n.
Then we will have

E(u)’|f (mod p*" ") and E(u)’lg (mod p*" )
for some a,b > 0 such that a +b =k.

Proof of Lemma [32] First we have u 1 a. This is because when n is big enough,
folaBn) = fo(E(u)® ™) 4 png,) for some 6, € &, and the right-hand side is # 0,
because dh(n?) < n. Here fq is the W (k)-linear map & — W (k) with fo(u) = 0.

Next, suppose E(u)*|a in &,. Then we claim that there exists s such that
xn < s V¥n > ng. To prove the claim, write o = E(u)*"6; , + p"f2, for some
01,02, € & Vn > ng. Since fo(a) # 0 and p|fo(E(u)), it is easy to see that the
sequence {z,} has to be bounded.

Finally, we claim that for all n > 0, there exists 7y, € &,, such that a~y,, = E(u)®
(mod p™) (note that such +, is unique). We only need to show the existence of
such =, for a sequence {n,,} going to infinity.
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For all m > max{s,ng}, consider n = 16%™, so h(n?) < m. We can and do
assume that a8, = F(u)™™ (mod plﬁdm) (when h(n?) < m, we can simply multiply
some E(u)-power to fB,, and it does not affect our result). We want to show that

there exists 7, € &,, such that ay, = E(u)® (mod plﬁdm).
Take any m’ > 2m and let n’ = 16%™ | so we have a8, = E(u)¥™ (mod plo™” ).
Apply Corollary B4 then we will have
E(u)*a (mod p24dm - ) and E(u)?|3, (mod p24dm o ),
where a + b = dm’. However, we always have a < s, and so b > dm’ — s (and

dm’ — s > 0 because m > s). That is, we now have (note that 244m'—dm’ > 1gdm )

afy = E(w)™  (mod p'") and E(u)™ = | 8, (mod p'®").

So we can simply let v, = E(u?#
Now simply let v := @n>>0 Yn, and we are done. O
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