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LIMIT OF TORSION SEMISTABLE GALOIS

REPRESENTATIONS WITH UNBOUNDED WEIGHTS

HUI GAO

(Communicated by Romyar T. Sharifi)

Abstract. Let K be a complete discrete valuation field of characteristic

(0, p) with perfect residue field, and let T be an integral Zp-representation

of Gal(K/K). A theorem of T. Liu says that if T/pnT is torsion semistable
(resp., crystalline) of uniformly bounded Hodge-Tate weights for all n ≥ 1,
then T is also semistable (resp., crystalline). In this paper, we show that
we can relax the condition of “uniformly bounded Hodge-Tate weights” to an
unbounded (log-)growth condition.

1. Introduction

We first introduce some notation. Let p be a prime, let k be a perfect field of
characteristic p, let W (k) be the ring of Witt vectors, let K0 = W (k)[ 1p ] be the

fraction field, let K be a finite totally ramified extension of K0, let e = e(K/K0)
be the ramification index, and let GK = Gal(K/K) be the absolute Galois group
for a fixed algebraic closure K of K.

We use ReptorZp
(GK) (resp., RepfrZp

(GK)) to denote the category of finite p-power

torsion (resp., Zp-finite free) representations of GK . Let r be an integer in the range

[0,∞] (including infinity). We use Rep
fr,st,[−r,0]
Zp

(GK) (resp., Rep
fr,cris,[−r,0]
Zp

(GK))

to denote the category of finite free Zp-lattices in semistable (resp., crystalline)
representations of GK with Hodge-Tate weights in the range [−r, 0].

Definition 1.1. Let r be an integer in the range [0,∞] (including infinity). T∞ ∈
ReptorZp

(GK) is called torsion semistable (resp., crystalline) of weight r if there exist

two objects L and L′ in Rep
fr,st,[−r,0]
Zp

(GK) (resp., Rep
fr,cris,[−r,0]
Zp

(GK)) such that

T∞ = L/L′.

The following result was first conjectured by Fontaine ([Fon97]) and was fully
proved in [Liu07] (some partial results were known by work of Ramakrishna, Berger
and Breuil; see [Liu07, §1] for a historical account).

Theorem 1.2 ([Liu07]). Let T ∈ RepfrZp
(GK). Suppose that there exists an r ∈

[0,∞) such that T/pnT is torsion semistable (resp., crystalline) of weight r for all
n ≥ 1. Then T ⊗Zp

Qp is semistable (resp., crystalline) with Hodge-Tate weights in
[−r, 0].
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It is necessary to have r < ∞ in the above theorem because of the following
result.

Theorem 1.3 ([GL, Thm. 3.3.2]). Suppose K is a finite extension of Qp. For any

T∞ ∈ ReptorZp
(GK), it is torsion semistable (in fact, torsion crystalline).

In fact, suppose T is in RepfrZp
(GK) of rank d (with K/Qp finite extension).

Then it is shown in [GL, Rem. 3.3.5] that T/pnT is torsion crystalline of weight
h(n) ≤ n(pfd + p− 2) (where f is the inertia degree of K). Namely, the growth of
the (crystalline) weight of T/pnT is linear.

During a conversation with Ruochuan Liu, he proposed the following question.

Question 1.4. Let T ∈ RepfrZp
(GK). For each n ≥ 1, suppose T/pnT is torsion

semistable (resp., crystalline) of weight h(n). Is it still possible to show that T ⊗Zp

Qp is semistable (resp., crystalline) if we allow h(n) to go to infinity?

By the paragraph above the question, it is necessary that h(n) cannot grow as
fast as n(pfd + p− 2) (in the case when K/Qp is a finite extension). So, one would
expect that h(n) has to grow more slowly than linear-growth. The first natural
guess is the log-growth, and this is precisely what we obtained.

Theorem 1.5. Let T ∈ RepfrZp
(GK) of rank d. For each n ≥ 1, suppose T/pnT is

torsion semistable (resp., crystalline) of weight h(n). If

h(n) <
1

2d
log16 n, ∀n >> 0,

then T ⊗Zp
Qp is semistable (resp., crystalline).

One of the motivations of our work is the study of local-global compatibility
problems in the construction of Galois representations (associated to automorphic
representations). Indeed, many such Galois representations are constructed via con-
gruence methods. A good motivational explanation of the situation can be found
in the introduction in Jorza’s thesis [Jor10]. Namely, certain pn-torsion semistable
(or crystalline) representations will be constructed via congruence methods. How-
ever, the weights of these pn-torsion representations grow (quite rapidly) to infinity,
and so Theorem 1.2 is no longer applicable. Unfortunately, our Theorem 1.5 also
seems useless in this respect. To name one example, in the case [Jor12, Thm. 2.1,
Thm. 3.1], the weights of these torsion representations grow exponentially. We
do hope some of the techniques in our paper can be useful for future studies in
local-global compatibility problems, perhaps combined with methods from analytic
continuation of semistable periods.

Notation. Let OK be the ring of integers of K. Let R := lim←−
x→xp

OK/pOK , and let

W (R) be the ring of Witt vectors of R. Let Acris be the usual period ring.
We fix a uniformizer π ∈ OK and let E(u) ∈ W (k)[u] be the Eisenstein poly-

nomial of π. Define πn ∈ K inductively such that π0 = π and (πn+1)
p = πn.

Then {πn}n≥0 defines an element π ∈ R, and let [π] ∈ W (R) be the Techmüller
representative of π.

Define μn ∈ K inductively such that μ1 is a primitive pth root of unity and
(μn+1)

p = μn. Set K∞ :=
⋃∞

n=1 K(πn), Kp∞ =
⋃∞

n=1 K(μn), and K̂ :=⋃∞
n=1 K(πn, μn). Let G∞ := Gal(K/K∞), H∞ := Gal(K/K̂), HK := Gal(K̂/K∞),

and Ĝ := Gal(K̂/K).
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When V is a semistable representation of GK , we let Dst(V ) := (Bst⊗Qp
V ∨)GK ,

where V ∨ is the dual representation of V (and Bst is the usual period ring). The
Hodge-Tate weights of V are defined to be i ∈ Z such that gri(K ⊗K0

Dst(V )) 	= 0.
For example, for the cyclotomic character εp, its Hodge-Tate weight is {1}.

2. Integral and torsion p-adic Hodge theory

In this section, we recall some tools in integral and torsion p-adic Hodge theory.

2.1. Étale ϕ-modules and étale (ϕ, τ )-modules. Recall that S = W (k)[[u]]
with the Frobenius endomorphism ϕS : S → S which acts on W (k) via arithmetic
Frobenius and sends u to up. Via the map u �→ [π], there is an embedding S ↪→
W (R) which is compatible with Frobenious endomorphisms. DenoteSn := S/pnS.

Recall that OE is the p-adic completion of S[1/u]. Our fixed embedding S ↪→
W (R) determined by π uniquely extends to a ϕ-equivariant embedding ι : OE ↪→
W (FrR) (here FrR denotes the fractional field of R), and we identify OE with its
image in W (FrR). Denote OE,n := OE/p

nOE . We note that OE is a complete
discrete valuation ring with uniformizer p and residue field k((π)) as a subfield of
FrR. Let E denote the fractional field of OE , Eur the maximal unramified extension
of E inside W (FrR)[ 1p ], and OEur the ring of integers of Eur. Set O

̂Eur the p-adic

completion of OEur .

Definition 2.1. Let ′ModϕOE
denote the category of finite type OE -modules M

equipped with a ϕOE -semilinear endomorphism ϕM : M → M such that 1 ⊗ ϕ :
ϕ∗M → M is an isomorphism. Morphisms in this category are just OE -linear maps
compatible with ϕ’s. We call objects in ′ModϕOE

étale ϕ-modules.

Let ′RepZp
(G∞) (resp., ′RepZp

(GK)) denote the category of finite type Zp-

modules V with a continuous Zp-linear G∞ (resp., GK)-action. For M in ′ModϕOE
,

define

V (M) := (O
̂Eur ⊗OE M)ϕ=1.

For V in ′RepZp
(G∞), define

M(V ) := (O
̂Eur ⊗Zp

V )G∞ .

Theorem 2.2 ([Fon90, Prop. A 1.2.6]). The functors V and M induce an exact
tensor equivalence between the categories ′ModϕOE

and ′RepZp
(G∞).

Recall that H∞ = Gal(K/K̂). Let Fτ := (FrR)H∞ . As a subring of W (FrR),

W (Fτ ) is stable on GK-action and the action factors through Ĝ.

Definition 2.3. An étale (ϕ, τ )-module is a triple (M,ϕM , Ĝ), where

• (M,ϕM ) is an étale ϕ-module;

• Ĝ is a continuous W (Fτ )-semilinear Ĝ-action on M̂ := W (Fτ )⊗OE M , and

Ĝ commutes with ϕM̂ on M̂ , i.e., for any g ∈ Ĝ, gϕM̂ = ϕM̂g;

• regarding M as an OE -submodule in M̂ , then M ⊂ M̂HK .

Given an étale (ϕ, τ )-module M̂ = (M,ϕM , Ĝ), we define

T ∗(M̂) := (W (FrR)⊗OE M)ϕ=1 =
(
W (FrR)⊗W (Fτ ) M̂

)ϕ=1

,

which is a representation of GK .
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Proposition 2.4 ([GL, Prop. 2.1.7]). Notation as the above. Then

(1) T ∗(M̂)|G∞  V (M).
(2) The functor T ∗ induces an equivalence between the category of étale (ϕ, τ )-

modules and the category ′RepZp
(GK).

2.2. Kisin modules and (ϕ, Ĝ)-modules.

Definition 2.5. For a nonnegative integer r, we write ′Modϕ,r
S

for the category of
finite-type S-modules M equipped with a ϕS-semilinear endomorphism ϕM : M →
M satisfying

• the cokernel of the linearization 1⊗ ϕ : ϕ∗M → M is killed by E(u)r;
• the natural map M → OE ⊗S M is injective.

Morphisms in ′Modϕ,r
S

are ϕ-compatible S-module homomorphisms.

We call objects in ′Modϕ,r
S

Kisin modules of E(u)-height r. The category of
finite free Kisin modules of E(u)-height r, denoted Modϕ,r

S
, is the full subcategory

of ′Modϕ,r
S

consisting of those objects which are finite free over S. We call an object
M ∈ ′Modϕ,r

S
a torsion Kisin module of E(u)-height r if M is killed by pn for some

n. Since E(u) is always fixed in this paper, we often drop E(u) from the above
notions.

Let M ∈ ′Modϕ,r
S

be a Kisin module of height r; we define

T ∗
S(M) := (M⊗S W (FrR))ϕ=1 .

SinceS ⊂ W (R)G∞ , we see that G∞ acts on T ∗
S(M). Note that this is the covariant

version of the more usual (contra-variant) functor (see [GL, §2.3]).
Now let us review the theory of (ϕ, Ĝ)-modules. We denote by S the p-adic

completion of the divided power envelope of W (k)[u] with respect to the ideal
generated by E(u). There is a unique map (Frobenius) ϕS : S → S which extends
the Frobenius on S. One can show that the embedding W (k)[u] → W (R) via
u �→ [π] extends to the embedding S ↪→ Acris. Inside B+

cris = Acris[
1
p ], define a

subring,

RK0
:=

{
x =

∞∑
i=0

fit
{i}, fi ∈ S[

1

p
] and fi → 0 as i → +∞

}
,

where t{i} = ti

pq̃(i) q̃(i)!
and q̃(i) satisfies i = q̃(i)(p− 1) + r(i) with 0 ≤ r(i) < p− 1.

Define R̂ := W (R) ∩ RK0
. One can show that RK0

and R̂ are stable under the

GK-action and that the GK-action factors through Ĝ (see [Liu10, §2.2]). Let I+R
be the maximal ideal of R and let I+R̂ = W (I+R) ∩ R̂. By [Liu10, Lem. 2.2.1],

one has R̂/I+R̂  S/uS = W (k).

Definition 2.6. Following [Liu10], a finite free (resp., torsion), (ϕ, Ĝ)-module of

height r is a triple (M, ϕ, Ĝ) where

(1) (M, ϕM) ∈ ′Modϕ,r
S

is a finite free (resp., torsion) Kisin module of height
r;

(2) Ĝ is a continuous R̂-semilinear Ĝ-action on M̂ := R̂ ⊗ϕ,S M;

(3) Ĝ commutes with ϕ
M̂

on M̂, i.e., for any g ∈ Ĝ, gϕ
M̂

= ϕ
M̂
g;

(4) regard M as a ϕ(S)-submodule in M̂; then M ⊂ M̂HK ;

(5) Ĝ acts on W (k)-module M := M̂/I+R̂M̂  M/uM trivially.
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Morphisms between (ϕ, Ĝ)-modules are morphisms of Kisin modules that commute

with the Ĝ-action on M̂’s.

Given M̂ = (M, ϕM, Ĝ) a (ϕ, Ĝ)-module, either finite free or torsion, we define

T̂ ∗(M̂) := (W (FrR)⊗ϕ,S M)ϕ=1,

and it is a Zp[GK ]-module.

Theorem 2.7 ([GL, Thm 2.3.2]).

(1) T̂ ∗ induces an equivalence between the category of finite free (ϕ, Ĝ)-modules
of height r and the category of GK-stable Zp-lattices in semistable repre-
sentations of GK with Hodge-Tate weights in [−r, 0].

(2) For M̂ a (ϕ, Ĝ)-module, either finite free or torsion, there exists a natural

isomorphism T ∗
S(M)

∼→ T̂ ∗(M̂) of Zp[G∞]-modules.

We record a useful lemma which can identify crystalline representations from
(ϕ, Ĝ)-modules.

Lemma 2.8. Suppose K∞ ∩ Kp∞ = K (which is always true when p > 2), and

let M̂ be a finite free (ϕ, Ĝ)-module. Then T̂ ∗(M̂) is a crystalline representation if
and only if

(τ̃ − 1)(M) ∈ M̂ ∩ (upϕ(t)W (R)⊗ϕ,S M).

Here τ̃ is a topological generator of Gp∞ such that μn = τ̃(πn)
πn

for all n, and

t ∈ W (R) \ pW (R) such that ϕ(t) = pE(u)
E(0) t (note that t is unique up to units of

Zp).

Proof. This is a combination of [GLS14, Prop. 5.9] and [Oze14, Thm. 21]. Note
that the running assumption p > 2 in both papers is to guarantee K∞ ∩Kp∞ = K
(see the footnote in [GLS14, Prop. 4.7]). When p = 2 and K∞ ∩Kp∞ = K, all the
proofs still work. �

Definition 2.9.

(1) Given an étale ϕ-module M in ′ModϕOE
, if M ∈ ′Modϕ,r

S
is a Kisin module

so that M = OE ⊗S M, then M is called a Kisin model of M , or simply a
model of M .

(2) Given M̂ := (M,ϕM , ĜM ) a torsion (resp., finite free) (ϕ, τ )-module, a

torsion (resp., finite free) (ϕ, Ĝ)-module M̂ := (M, ϕM, Ĝ) is called a model

of M̂ if M is a model of M and the isomorphism

W (Fτ )⊗ ̂R M̂  W (Fτ )⊗ϕ,W (Fτ ) M̂

induced by OE ⊗S M  M is compatible with Ĝ-actions on both sides.

Suppose T is a GK-stable Zp-lattice in a semistable representation of GK with

Hodge-Tate weights in [−r, 0]. Let M̂ be the (ϕ, τ )-module associated to T via

Proposition 2.4, and let M̂ be the (ϕ, Ĝ)-module associated to T via Theorem 2.7.

Then M̂ is a model of M̂ ([GL, Lem. 2.4.3]).

Now suppose that Tn is a p-power torsion representation of GK and M̂n is
the associated étale (ϕ, τ )-module. Suppose there exists a surjective map of GK-
representations f : L � Tn, where L is a semistable finite free Zp-representation
with Hodge-Tate weights in [−r, 0] (we call such f a loose semistable lift). The loose
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semistable lift induces a surjective map (which we still denote by f) f : L̂ � M̂n,

where L̂ is the étale (ϕ, τ )-module associated to L. Suppose L̂ is the (ϕ, Ĝ)-module

associated to L. Then it is easy to see that f(L̂) is a (ϕ, Ĝ)-model of M̂n.

2.3. Torsion Kisin modules. Let M ∈ ′Modϕ,r
S

be a torsion Kisin module such
that M := M[ 1u ] is a finite free Sn[

1
u ]-module (i.e., the torsion G∞-representation

associated to M is finite free over Z/pnZ). For each 0 ≤ i < j ≤ n, we define

M
i,j := Ker(piM

pj−i

−→ pjM).

Following the discussion above [Liu07, Lem. 4.2.4], we have Mi,j ∈ ′Modϕ,r
S

. We
also have Mi,j [ 1u ] = pn−j+iM , and so it is finite free over OE,j−i.

Define the function c(r) := 4 · 4re2r3. This is (bigger than) the c in [Liu07, p.
653].

The following three lemmas are extracted from [Liu07] and played important
roles there.

Lemma 2.10. Let M̂ be a torsion (ϕ, Ĝ)-module, and suppose it is torsion semi-

stable in the sense that it is the quotient of two finite free (ϕ, Ĝ)-modules (with height

r). Let 0 ≤ i < j; then M̂i,j := Ker(piM̂
pj−i

−→ pjM̂) is also torsion semistable. In

fact, if M̂ = L̂/L̂′, then there exist finite free N̂ and N̂′ such that M̂i,j = N̂/N̂′,
which furthermore satisfy:

T̂ ∗(L̂)[
1

p
] = T̂ ∗(L̂′)[

1

p
] = T̂ ∗(N̂)[

1

p
] = T̂ ∗(N̂′)[

1

p
].

Proof. The lemma is extracted from the proof of [Liu07, Lem. 4.4.1].

Let N̂ := Ker(pjL̂ → pjM̂) and let N̂′ := Ker(piL̂ → piM̂). Both N̂ and N̂′

are finite free (ϕ, Ĝ)-modules by [Liu07, Cor. 2.3.8] (also note that the functor

M �→ R̂⊗ϕ,S M is exact, by [CL11, Lem. 3.1.2]). There is a commutative diagram

of (ϕ, Ĝ)-modules:

0 �� N̂′

��

�� piL̂

	
��

�� piM̂

��

�� 0

0 �� N̂ �� pjL̂ �� pjM̂ �� 0

where all the vertical arrows are the ×pj−i map. By the snake lemma, we have

0 → N̂′ → N̂ → M̂i,j → 0.

�

Lemma 2.11. Suppose M,N ∈ ′Modϕ,r
S

, both finite free over Sn, and M[1/u] =

N[1/u]. Suppose n ≥ c(r); then pc(r)M = pc(r)N.

Proof. This is [Liu07, Cor. 4.2.5]. �

Lemma 2.12. Suppose M ∈ ′Modϕ,r
S

such that M⊗S OE is finite free over OE,n.

Suppose n > 2c(r); then Mc(r),n−c(r) is finite free over Sn−2c(r).

Proof. This is extracted from [Liu07, Lem 4.3.1]. �
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3. Limit of torsion representations

In this section, we prove our main theorem.

Theorem 3.1. Let T ∈ RepfrZp
(GK) of rank d. For each n ≥ 1, suppose T/pnT is

torsion semistable (resp., crystalline) of weight h(n). If

h(n) <
1

2d
log16 n, ∀n � 0,

then T ⊗Zp
Qp is semistable (resp., crystalline).

Proof. Suppose M̂ is the étale (ϕ, τ )-module associated to T . For each n ≥ 1,

since T/pnT is torsion semistable (resp., crystalline), let M̂n be a (ϕ, Ĝ)-model of

M̂/pnM̂ associated to a loose semistable (resp., crystalline) lift of T/pnT .
Denote yn = n2 − 2c(h(n2)). It is easy to check that there exists some n0 such

that when n ≥ n0, we have:

• c(h(n)) <
√
n, which implies that yn > 0 and yn+1 − yn > 0,

• and yn − n > c(�log16(n+ 1)�), where �·� is the ceiling function.

Now, for any n ≥ n0, let

An := M
c(h(n2)), n2−c(h(n2))
n2 .

By Lemma 2.12 (note that An is a Kisin model of M/pynM), An is a Kisin module
finite free over Syn

(of rank d) of height bounded by h(n2). Let M′
n := pyn−nAn;

then it is finite free over Sn of height bounded by h(n2). Now we claim that
pM′

n+1 = M′
n ∀n ≥ n0.

To show the claim, consider An and pyn+1−ynAn+1, where both are finite free
over Syn

(and both are models of M/pynM), with heights bounded by log16(n+1)
(because max{h(n2), h((n+ 1)2)} < log16(n+ 1)). So by Lemma 2.11, we have

pc(
log16(n+1)�)An = pc(
log16(n+1)�)pyn+1−ynAn+1.

Multiply both sides with pyn−n−c(
log16(n+1)�); we get pM′
n+1 = M′

n.

Now, define M̃ := lim←−n≥n0
M′

n. Then it is a finite free S-module of rank d and

there is a natural ϕ-action on it. We claim that

• M̃ is a Kisin module, i.e., it is of finite E(u)-height.

To prove the claim, pick any S-basis of M̃ and consider the matrix A of ϕ with
respect to the basis. It is sufficient to show that there exists b ∈ S such that
(detA) · b = E(u)s for some s. Note that for each n ≥ n0, there exists some

Bn ∈ Matd(S) such that ABn = E(u)h(n
2)Id (mod pn) (where Id is the identity

matrix), and so

detA · detBn = E(u)dh(n
2) (mod pn).

We then conclude by Lemma 3.2 below.

Next we show that we can upgrade M̃ to a (ϕ, Ĝ)-module. The strategy is quite
similar to what is done in [Liu07, §§5, 6, 7, 8]. However, because of the work [Liu10]
(which substantially used the results in [Liu07, §§5, 6, 7, 8]), it is much easier now.

As we have shown that M̃ is a Kisin module, it is obvious that T ∗
S(M̃) = T |G∞ ,

and so M̃ is a Kisin model of M . Consider the Ĝ-action on

W (Fτ )⊗ϕ,W (Fτ ) M̂ = W (Fτ )⊗ϕ,S M̃.
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By Lemma 2.10, all the modules

M̂′
n = Ker(pc(h(n

2))+yn−nM̂n2
pn

−→ pn
2−c(h(n2))M̂n2)

are also torsion semistable, and so the Ĝ-actions on W (Fτ )⊗ϕ,SM′
n descend to Ĝ-

actions on R̂⊗ϕ,SM′
n. By taking the inverse limit, the Ĝ-action on W (Fτ )⊗ϕ,S M̃

descends to a Ĝ-action on R̂ ⊗ϕ,S M̃, and so (M̃, ϕ, Ĝ) is a (ϕ, Ĝ)-module. Now it

is obvious that T̂ ∗(
ˆ̃
M) = T , and so T is semistable.

Now we only need to deal with the crystalline case. When the conditions in
Lemma 2.8 are satisfied (that is, when p > 2, or when p = 2 and K∞ ∩Kp∞ = K),

then the Ĝ-actions on R̂ ⊗ϕ,S M′
n satisfy the (torsion version of the) conclusion in

loc. cit., and so the Ĝ-action on
ˆ̃
M satisfies the conclusion in loc. cit. as well (note

that upϕ(t)W (R) is p-adically closed in W (R)), and so
ˆ̃
M is crystalline.

When p = 2 and K∞ ∩ Kp∞ 	= K, then we can argue similarly as in the very
final paragraph of [Liu10] (which is the errata for [Liu07]). Namely, we can show
that T is crystalline over both K(π1) and K(μ4), and so T is crystalline over
K(π1) ∩K(μ4) = K. �
Lemma 3.2. Let α ∈ S and suppose there exists some n0 such that for any n ≥ n0,
there exists βn ∈ S such that

αβn = E(u)dh(n
2) (mod pnS),

where d and h(n2) are as in Theorem 3.1. Then there exist some s ∈ Z≥0 and
γ ∈ S such that αγ = E(u)s.

Before we prove the lemma, we recall a useful lemma. Note that E(u) is not a
zero divisor in Sn ∀n ≥ 0, so it is OK to do “division by E(u)” in Sn.

Lemma 3.3 ([Liu07, Lem. 4.2.2]). Suppose f, g ∈ Sn with n ≥ 2 and suppose
E(u)|fg (mod pn). Then we have

E(u)|f (mod p)�
n
2  or E(u)|g (mod p�

n
2 ),

where �·� is the floor function.

The following easy corollary is convenient for our use.

Corollary 3.4. Suppose f, g ∈ S2n . Suppose E(u)k|fg (mod p2
n

) where k < n.
Then we will have

E(u)a|f (mod p2
n−k

) and E(u)b|g (mod p2
n−k

)

for some a, b ≥ 0 such that a+ b = k.

Proof of Lemma 3.2. First we have u � α. This is because when n is big enough,

f0(αβn) = f0(E(u)dh(n
2) + pnθn) for some θn ∈ S, and the right-hand side is 	= 0,

because dh(n2) < n. Here f0 is the W (k)-linear map S → W (k) with f0(u) = 0.
Next, suppose E(u)xn |α in Sn. Then we claim that there exists s such that

xn ≤ s ∀n ≥ n0. To prove the claim, write α = E(u)xnθ1,n + pnθ2,n for some
θ1,n, θ2,n ∈ S ∀n ≥ n0. Since f0(α) 	= 0 and p|f0(E(u)), it is easy to see that the
sequence {xn} has to be bounded.

Finally, we claim that for all n � 0, there exists γn ∈ Sn such that αγn = E(u)s

(mod pn) (note that such γn is unique). We only need to show the existence of
such γn for a sequence {nm} going to infinity.
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For all m > max{s, n0}, consider n = 16dm, so h(n2) ≤ m. We can and do

assume that αβn = E(u)dm (mod p16
dm

) (when h(n2) < m, we can simply multiply
some E(u)-power to βn, and it does not affect our result). We want to show that

there exists γn ∈ Sn such that αγn = E(u)s (mod p16
dm

).

Take any m′ > 2m and let n′ = 16dm
′
, so we have αβn′ = E(u)dm

′
(mod p16

dm′
).

Apply Corollary 3.4; then we will have

E(u)a|α (mod p2
4dm′−dm′

) and E(u)b|βn′ (mod p2
4dm′−dm′

),

where a + b = dm′. However, we always have a ≤ s, and so b ≥ dm′ − s (and

dm′ − s > 0 because m > s). That is, we now have (note that 24dm
′−dm′

> 16dm )

αβn′ = E(u)dm
′

(mod p16
dm

) and E(u)dm
′−s | βn′ (mod p16

dm

).

So we can simply let γn = βn′
E(u)dm′−s .

Now simply let γ := lim←−n>>0
γn, and we are done. �
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