Limit of torsion semistable Galois representations with unbounded weights
HTML articles powered by AMS MathViewer
- by Hui Gao
- Proc. Amer. Math. Soc. 146 (2018), 3275-3283
- DOI: https://doi.org/10.1090/proc/14044
- Published electronically: March 30, 2018
- PDF | Request permission
Abstract:
Let $K$ be a complete discrete valuation field of characteristic $(0, p)$ with perfect residue field, and let $T$ be an integral $\mathbb {Z}_p$-representation of $\mathrm {Gal}(\overline {K}/K)$. A theorem of T. Liu says that if $T/p^n T$ is torsion semistable (resp., crystalline) of uniformly bounded Hodge-Tate weights for all $n \geq 1$, then $T$ is also semistable (resp., crystalline). In this paper, we show that we can relax the condition of âuniformly bounded Hodge-Tate weightsâ to an unbounded (log-)growth condition.References
- Xavier Caruso and Tong Liu, Some bounds for ramification of $p^n$-torsion semi-stable representations, J. Algebra 325 (2011), 70â96. MR 2745530, DOI 10.1016/j.jalgebra.2010.10.005
- Jean-Marc Fontaine, ReprĂ©sentations $p$-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, BirkhĂ€user Boston, Boston, MA, 1990, pp. 249â309 (French). MR 1106901
- Jean-Marc Fontaine, Deforming semistable Galois representations, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 21, 11138â11141. Elliptic curves and modular forms (Washington, DC, 1996). MR 1491974, DOI 10.1073/pnas.94.21.11138
- Hui Gao and Tong Liu, Loose crystalline lifts and overconvergence of Ă©tale $(\varphi , \tau )$-modules, to appear, Amer. J. Math.
- Toby Gee, Tong Liu, and David Savitt, The Buzzard-Diamond-Jarvis conjecture for unitary groups, J. Amer. Math. Soc. 27 (2014), no. 2, 389â435. MR 3164985, DOI 10.1090/S0894-0347-2013-00775-4
- Andrei Jorza, Crystalline representations for GL(2) over quadratic imaginary fields, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)âPrinceton University. MR 2753218
- Andrei Jorza, $p$-adic families and Galois representations for $\rm GS_p(4)$ and $\rm GL(2)$, Math. Res. Lett. 19 (2012), no. 5, 987â996. MR 3039824, DOI 10.4310/MRL.2012.v19.n5.a2
- Tong Liu, Torsion $p$-adic Galois representations and a conjecture of Fontaine, Ann. Sci. Ăcole Norm. Sup. (4) 40 (2007), no. 4, 633â674 (English, with English and French summaries). MR 2191528, DOI 10.1016/j.ansens.2007.05.002
- Tong Liu, A note on lattices in semi-stable representations, Math. Ann. 346 (2010), no. 1, 117â138. MR 2558890, DOI 10.1007/s00208-009-0392-y
- Yoshiyasu Ozeki, Full faithfulness theorem for torsion crystalline representations, New York J. Math. 20 (2014), 1043â1061. MR 3291611
Bibliographic Information
- Hui Gao
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, FI-00014, Finland
- MR Author ID: 1079735
- Email: hui.gao@helsinki.fi
- Received by editor(s): May 20, 2017
- Received by editor(s) in revised form: November 1, 2017
- Published electronically: March 30, 2018
- Communicated by: Romyar T. Sharifi
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3275-3283
- MSC (2010): Primary 11F80, 11F33
- DOI: https://doi.org/10.1090/proc/14044
- MathSciNet review: 3803654