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SOME SUFFICIENT CONDITIONS

FOR NOVIKOV’S CRITERION

NGUYEN TIEN DUNG

(Communicated by David Levin)

Abstract. In this note, we employ the techniques of Malliavin calculus to
provide some sufficient conditions for a stochastic process to satisfy Novikov’s
criterion. In particular, we obtain an improvement for Buckdahn’s results
established in Probab. Theory Related Fields 89 (1991), 211-238 and a gener-
alization of Borell-TIS inequality.

1. Introduction

It is known that Girsanov’s theorem is one of the most fundamental tools in
stochastic analysis. There are several useful conditions for a stochastic process
to satisfy Girsanov’s theorem (we refer the reader to the monograph [5] for more
details and for applications in finance), but the most popular one was suggested
and proved by Novikov [7]. We recall that a stochastic {ut, t ∈ [0, T ]} is said to
satisfy Novikov’s criterion if

(1.1) E exp

(
1

2

∫ T

0

u2
sds

)
< ∞

(the constant 1/2 is the best possible). Obviously, (1.1) is fulfilled whenever u is
bounded. Otherwise, it should be noted that Novikov’s criterion is often difficult to
verify directly. Motivated by this note, the aim of the present paper is to introduce
some sufficient conditions which provide us a common method to verify Novikov’s
criterion. Our idea is pretty simple and based on the explicit expression

E exp

(
1

2

∫ T

0

u2
sds

)
= 1 +

∫ ∞

0

xe
1
2x

2

P (X > x)dx,

where X :=
(∫ T

0
u2
sds

) 1
2

. In order to be able to check (1.1) we use the techniques of

Malliavin calculus to establish an upper bound for the tail probability, P (X > x),
of the random variable X. Our main results are formulated in Theorem 2.1.

On the other hand, in recent years, stochastic differential equations involving
the maximum processes have been used in various fields. For example, the fol-
lowing equation has been investigated for applications in finance (see, e.g., [4] and
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references therein):

dXt = (r − δ(St, Yt))Xtdt+ σ(St, Yt)XtdBt, X0 = x,

where Bt is a standard Brownian motion, St = s ∨ max
0≤u≤t

Xu, and Yt = y ∨
max
0≤u≤t

(Su−Xu). It is known from Theorem 12.1.8 in [8] that the normalized market

{Xt} is arbitrage free if

E exp

(
1

2

∫ T

0

(r − δ(St, Yt))
2

σ2(St, Yt)
dt

)
< ∞.

Hence, it is necessary to check Novikov’s criterion for maximum functionals. In
Theorem 2.2, we prove an inequality for the Malliavin derivative of maximum pro-
cesses and apply Theorem 2.1 to obtain Novikov’s criterion of the form

(1.2) E exp

(
1

2

∫ T

0

h2( max
0≤s≤t

us, vt) dt

)
< ∞,

where h is a Lipschitz function and u, v are Malliavin differentiable stochastic pro-
cesses.

2. The main results

For the reader’s convenience, let us recall the definition of Malliavin derivatives
(for more details see [9]). We suppose that (Wt)t∈[0,T ] is defined on a complete
probability space (Ω,F ,F, P ), where F = (Ft)t∈[0,T ] is a natural filtration generated

by the Brownian motion W. For h ∈ L2[0, T ], we denote by W (h) the Wiener
integral

W (h) =

T∫
0

h(t)dWt.

Let S denote the dense subset of L2(Ω,F , P ) consisting of smooth random variables
of the form

(2.1) F = f(W (h1), . . . ,W (hn)),

where n ∈ N, f ∈ C∞
b (Rn), h1, . . . , hn ∈ L2[0, T ]. If F has the form (2.1), we define

its Malliavin derivative as the process DF := {DtF, t ∈ [0, T ]} given by

DtF =

n∑
k=1

∂f

∂xk
(W (h1), . . . ,W (hn))hk(t).

For any 1 ≤ p < ∞, we shall denote by D
1,p the closure of S with respect to the

norm

‖F‖p1,p := E|F |p + E

[ T∫
0

|DuF |pdu
]
.

A random variable F is said to be Malliavin differentiable if it belongs to D
1,2.

The main results of this paper are stated in the following theorem, where we
obtain two different conditions for Novikov’s criterion.
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Theorem 2.1. Let {ut, 0 ≤ t ≤ T} be a stochastic process in L1,2 :=L2([0, T ],D1,2).
Assume that one of the following two conditions holds:

(2.2)

∫ T

0

∫ T

0

|Drus|2drds ≤ c2 < 1 a.s.,

(2.3)

∫ T

0

∫ T

0

E[|Drus|2|Fr]drds ≤ c2 < 1 a.s.,

where c is a constant. Then, Novikov’s criterion (1.1) is satisfied.

Proof. We separate the proof into two parts.
Part 1. In this part, we show that the condition (2.2) implies Novikov’s criterion
(1.1). We put

X :=

(∫ T

0

u2
sds

) 1
2

.

Since u ∈ L1,2, this implies that X ∈ D
1,2, and its Malliavin derivative is given by

DrX =

∫ T

0
usDrusds(∫ T

0
u2
sds

) 1
2

.

By the Hölder inequality, we deduce that

(2.4) |DrX| ≤
(∫ T

0

|Drus|2ds
) 1

2

a.s.

As a consequence,

(2.5)

∫ T

0

|DrX|2dr ≤
∫ T

0

∫ T

0

|Drus|2drds ≤ c2 a.s.

This, combined with Theorem 9.1.1 in [11], yields

(2.6) P (X > x) ≤ 2e−
(x−μ)2

2c2 , ∀x > μ,

where μ = EX.
Obviously, we have

E exp

(
1

2

∫ T

0

u2
sds

)
= Ee

1
2X

2

= 1 +

∫ ∞

0

xe
1
2x

2

P (X > x)dx

= 1 +

∫ μ

0

xe
1
2x

2

P (X > x)dx+

∫ ∞

μ

xe
1
2x

2

P (X > x)dx

≤ 1 + μ2e
1
2μ

2

+ 2

∫ ∞

μ

xe
1
2x

2

e−
(x−μ)2

2c2 dx.(2.7)

The last addend in the right hand side of (2.7) is finite because c2 < 1. So we finish
the proof.
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Part 2. Let us now point out that (2.3) implies (1.1). It follows from (2.4) and
Hölder inequality that

E[|DrX||Fr] ≤ E

[(∫ T

0

|Drus|2ds
) 1

2 ∣∣Fr

]

≤
(∫ T

0

E[|Drus|2|Fr]ds

) 1
2

a.s.

Hence, ∫ T

0

(E[|DrX||Fr])
2dr ≤

∫ T

0

∫ T

0

E[|Drus|2|Fr]drds ≤ c2 a.s.

By the Clark-Ocone formula we have

X = EX +

∫ T

0

E[DrX|Fr]dWr.

Set Mt = E[X − EX|Ft]. Then Mt is a martingale with M0 = 0,MT = X − EX,
and

Mt =

∫ t

0

E[DrX|Fr]dWr, 0 ≤ t ≤ T.

The quadratic variation of Mt satisfies

〈M〉t =
∫ t

0

(E[DrX|Fr])
2dr ≤

∫ T

0

(E[|DrX||Fr])
2dr ≤ c2 a.s.

for all 0 ≤ t ≤ T. Consequently, by the exponential martingale inequality (see, e.g.,
the inequality (A.5) in [9])

P (|X − EX| > x) = P (|MT | > x) ≤ 2e−
x2

2c2 , ∀x > 0.

The above estimate implies (2.6) because

P (X > x) = P (X − EX > x− μ) ≤ P (|X − EX| > x− μ), ∀x > μ.

So we can finish the proof of Part 2. �

Remark 2.1. An interesting feature of Theorem 2.1 is that we do not require the
adaptness of the stochastic process {ut, 0 ≤ t ≤ T}. Hence, it can be applied to both
the classical Girsanov’s theorem and anticipative ones. In [2], Buckdahn introduced
an anticipative Girsanov theorem which is a fundamental and important result. He
provided the following set of sufficient conditions (see Theorem 4.9 in [2]):

(i) The condition (2.2) holds.
(ii) There exists a constant q > 1 such that

(2.8) E exp

(
q

2

∫ T

0

u2
sds

)
< ∞.

We notice that (i) and (ii) are also sufficient conditions for the anticipative Girsanov
theorem given by Enchev [3]. We observe from the proof of Theorem 2.1 that (i)
implies that (2.8) holds for any q < 1

c2 . Thus one can remove the condition (ii)
required by Buckdahn. In other words, if a stochastic process u satisfies the condi-
tion (2.2), then it satisfies the anticipative Girsanov theorems proved by Buckdahn
and Enchev.



SOME SUFFICIENT CONDITIONS FOR NOVIKOV’S CRITERION 3587

Remark 2.2. When u is a functional of diffusion processes, the condition (2.3)
seems to be easier to verify than (2.2). Let us give here an example. Consider
the stochastic process ut = h(Xt), where h is a Lipschitz function with Lipschitz
constant Lh and Xt is the solution to the delay stochastic differential equation

(2.9) Xt = ϕ(0) +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs−τ )dWs, t ∈ [0, T ],

Xt = ϕ(t), t ∈ [−τ, 0], where τ > 0 and ϕ is a continuous function on [−τ, 0]. For
the existence, uniqueness, and Malliavin differentiability of solutions, we assume
that the coefficients b, σ are Lipschitz functions with Lipschitz constant Lb, Lσ,
respectively. In addition, we assume that

‖σ‖∞ = sup
x∈R

|σ(x)| < ∞.

When 0 ≤ r ≤ t− τ, the Malliavin derivative of the solution satisfies

DrXt = σ(Xr−τ ) +

∫ t

r

b̄(s)DrXsds+

∫ t

r

σ̄(s)DrXs−τ�[r+τ,t](s)dWs,

where b̄(s), σ̄(s) are adapted stochastic processes bounded by Lb, Lσ, respectively.
Hence, we can get

(DrXt)
2 = σ2(Xr−τ ) +

∫ t

r

[2b̄(s)(DrXs)
2 + σ̄2(s)(DrXs−τ )

2�[r+τ,t](s)]ds

+

∫ t

r

2σ̄(s)DrXs−τDrXs�[r+τ,t](s)dWs

and

E[(DrXt)
2|Fr]

= σ2(Xr−τ ) + E

[∫ t

r

[2b̄(s)(DrXs)
2 + σ̄2(s)(DrXs−τ )

2�[r+τ,t](s)]ds
∣∣Fr

]

≤ σ2(Xr−τ ) + (2Lb + L2
σ)

∫ t

r

E[(DrXs)
2|Fr]ds.

By Gronwall’s lemma

E[(DrXt)
2|Fr] ≤ ‖σ‖2∞e(2Lb+L2

σ)(t−r) a.s.

When t− τ < r ≤ t, we have

DrXt = σ(Xr−τ ) +

∫ t

r

b̄(s)DrXsds,

which gives us

DrXt = σ(Xr−τ )e
∫ t
r
b̄(s)ds

and

E[(DrXt)
2|Fr] ≤ ‖σ‖2∞e2Lb(t−r).
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Hence, we can obtain the estimates∫ T

0

E[|Drut|2|Fr]dr =

∫ t

0

E[|Drut|2|Fr]dr ≤ L2
h

∫ t

0

E[|DrXt|2|Fr]dr

≤ L2
h

∫ t−τ

0

‖σ‖2∞e(2Lb+L2
σ)(t−r)dr + L2

h

∫ t

t−τ

‖σ‖2∞e2Lb(t−r)dr

= L2
h‖σ‖2∞

e(2Lb+L2
σ)t − e(2Lb+L2

σ)τ

2Lb + L2
σ

+ L2
h‖σ‖2∞

e2Lbτ − 1

2Lb

and ∫ T

0

∫ T

0

E[|Drut|2|Fr]drdt

≤ L2
h‖σ‖2∞

[(
e2Lbτ − 1

2Lb
− e(2Lb+L2

σ)τ

2Lb + L2
σ

)
T +

e(2Lb+L2
σ)T − 1

(2Lb + L2
σ)

2

]
.

Thus the stochastic process ut = h(Xt) satisfies Novikov’s criterion if

L2
h‖σ‖2∞

[(
e2Lbτ − 1

2Lb
− e(2Lb+L2

σ)τ

2Lb + L2
σ

)
T +

e(2Lb+L2
σ)T − 1

(2Lb + L2
σ)

2

]
< 1.

Theorem 2.2. Let {ut, 0 ≤ t ≤ T} and {vt, 0 ≤ t ≤ T} be stochastic processes in
L1,2. Suppose that u is of continuous paths and {max

0≤s≤t
us, 0 ≤ t ≤ T} ∈ L1,2. Let

h : R× R −→ R be a Lipschitz function, i.e.,

|h(x1, y1)− h(x2, y2)| ≤ h1|x1 − y1|+ h2|x2 − y2|, ∀ x1, y1, x2, y2 ∈ R,

where h1, h2 are positive constants. If u, v, and h satisfy the relation

(2.10) 2h2
1

∫ T

0

(
max
0≤s≤t

∫ T

0

|Drus|2dr
)
dt+ 2h2

2

∫ T

0

∫ T

0

|Drvt|2drdt ≤ c2 < 1 a.s.,

then it holds that

(2.11) E exp

(
1

2

∫ T

0

h2( max
0≤s≤t

us, vt) dt

)
< ∞.

Proof. We first establish an estimate for the Malliavin derivative of maximum pro-
cesses. We claim that, for 0 ≤ t ≤ T,

(2.12)

∫ T

0

(Dr max
0≤s≤t

us)
2dr ≤ max

0≤s≤t

∫ T

0

(Drus)
2dr a.s.

When t = 0, the claim is clear. We now fix t ∈ (0, T ] and define the sequence

u
(λ)
t :=

1

λ
log

(∫ t

0

eλusds

)
, λ > 0.

For each λ > 0, u
(λ)
t belongs to D

1,2, and its derivative is given by

Dru
(λ)
t =

∫ t

0
eλXsDrusds∫ t

0
eλusds

, 0 ≤ r ≤ T.

Moreover, by the continuity of u and Laplace’s principle (see, e.g., [10]), we have

lim
λ→∞

u
(λ)
t = max

0≤s≤t
us a.s.
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By considering a subsequence if necessary, the convergence also holds in D
1,2 be-

cause of the closability of Malliavin derivatives.
By the Hölder inequality

|Dru
(λ)
t |2 ≤

∫ t

0
eλXs |Drus|2ds∫ t

0
eλusds

a.s.

Hence, ∫ T

0

|Dru
(λ)
t |2dr ≤

∫ T

0

∫ t

0
eλus |Drus|2dsdr∫ t

0
eλusds

=

∫ t

0

(∫ T

0
|Drus|2dr

)
eλusds∫ t

0
eλusds

≤ max
0≤s≤t

∫ T

0

|Drus|2dr a.s.,

which implies the claim (2.12).
We now consider the stochastic process wt := h( max

0≤s≤t
us, vt). By Proposition

1.2.4 in [9] we have wt ∈ D
1,2 and, moreover,

|Drwt| ≤ h1|Dr max
0≤s≤t

us|+ h2|Drvt| a.s.

Hence,

|Drwt|2 ≤ 2h2
1|Dr max

0≤s≤t
us|2 + 2h2|Drvt|2 a.s.

This, together with (2.10) and (2.12), yields∫ T

0

∫ T

0

|Drws|2drds ≤ c2 < 1 a.s.

The above estimate points out that the process wt satisfies the condition (2.2) of
Theorem 2.1. So the proof is complete. �

Remark 2.3. For the Malliavin differentiability of maximum processes, we refer the
reader to Proposition 2.1.10 in [9]. The estimate (2.12) itself is of independent
interest. For example, we can obtain a generalization of Borell-TIS inequality as in
the following proposition, which follows directly from Theorem 9.1.1 in [11].

Proposition 2.1. Let {ut, 0 ≤ t ≤ T} be a centered stochastic process in D
1,2.

Suppose that max
0≤s≤t

us ∈ D
1,2 for each t ∈ [0, T ] and that there exists a deterministic

function σ2(t) such that almost surely∫ T

0

|Drut|2dr ≤ σ2(t).

Then, for σ2 := sup
t∈[0,T ]

σ2(t) and x > 0, it holds that

P

(
| sup
t∈[0,T ]

ut − E sup
t∈[0,T ]

ut| > x

)
≤ 2 exp

(
− x2

2σ2

)
.
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When u is a Gaussian process, we have
∫ T

0
|Drut|2dr = E|ut|2 := σ2(t), and

hence Proposition 2.1 reduces to the classical Borell-TIS inequality (see, e.g., Chap-
ter 2 in [1]).
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