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ON THE REGULARITY OF SOLUTIONS TO THE

k-GENERALIZED KORTEWEG-DE VRIES EQUATION

C. E. KENIG, F. LINARES, G. PONCE, AND L. VEGA

(Communicated by Catherine Sulem)

Abstract. This work is concerned with special regularity properties of solu-
tions to the k-generalized Korteweg-de Vries equation. In [Comm. Partial Dif-
ferential Equations 40 (2015), 1336–1364] it was established that if the initial
datum is u0 ∈ Hl((b,∞)) for some l ∈ Z+ and b ∈ R, then the corresponding
solution u(·, t) belongs to Hl((β,∞)) for any β ∈ R and any t ∈ (0, T ). Our
goal here is to extend this result to the case where l > 3/4.

1. Introduction

In this note we study the regularity of solutions to the initial value problem
(IVP) associated to the k-generalized Korteweg-de Vries equation

(1.1)

{
∂tu+ ∂3

xu+ uk∂xu = 0, x, t ∈ R, k ∈ Z+,

u(x, 0) = u0(x).

The starting point is a property found by Isaza, Linares, and Ponce [4] concerning
the propagation of smoothness in solutions of the IVP (1.1). To state it we first
recall the following well-posedness (WP) result for the IVP (1.1):

Theorem A1. If u0 ∈ H3/4+

(R), then there exist T = T (‖u0‖ 3
4
+

,2
; k) > 0 and a

unique solution u = u(x, t) of the IVP (1.1) such that

(i) u ∈ C([−T, T ] : H3/4+

(R)),

(ii) ∂xu ∈ L4([−T, T ] : L∞(R)) (Strichartz),

(iii) sup
x

∫ T

−T

|Jr∂xu(x, t)|2 dt < ∞ for r ∈ [0, 3/4+],

(iv)

∫ ∞

−∞
sup

−T≤t≤T
|u(x, t)|2 dx < ∞,

(1.2)

with J = (1 − ∂2
x)

1/2. Moreover, the map data-solution u0 → u(x, t) is locally

continuous (smooth) from H3/4+(R) into the class X
3/4+
T defined in (1.2).
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If k ≥ 2, then the result holds in H3/4(R). If k = 1, 2, 3, then T can be taken
arbitrarily large.

For the proof of Theorem A1 we refer to [6], [1], and [3]. The proof of our main
result, Theorem 1.1, is based on an energy estimate argument for which the estimate
(ii) in (1.2) (i.e., the time integrability of ‖∂xu(·, t)‖∞) is essential. However, we
remark that from the WP point of view it is not optimal. For a detailed discussion
on the WP of the IVP (1.1) we refer to [7, Chapters 7-8].

Now we enunciate the result obtained in [4] regarding propagation of regularities
which motivates our study here:

Theorem A2 ([4]). Let u0 ∈ H3/4+

(R). If for some l ∈ Z+ and for some x0 ∈ R,

(1.3) ‖ ∂l
xu0‖2L2((x0,∞)) =

∫ ∞

x0

|∂l
xu0(x)|2dx < ∞,

then the solution u = u(x, t) of the IVP (1.1) provided by Theorem A1 satisfies that
for any v > 0 and ε > 0,

(1.4) sup
0≤t≤T

∫ ∞

x0+ε−vt

(∂j
xu)

2(x, t) dx < c,

for j = 0, 1, . . . , l with c = c(l; ‖u0‖3/4+,2; ‖ ∂l
xu0‖L2((x0,∞)); v; ε;T ).

In particular, for all t ∈ (0, T ], the restriction of u(·, t) to any interval of the
form (a,∞) belongs to H l((a,∞)).

Moreover, for any v ≥ 0, ε > 0, and R > 0,

(1.5)

∫ T

0

∫ x0+R−vt

x0+ε−vt

(∂l+1
x u)2(x, t) dxdt < c,

with c = c(l; ‖u0‖3/4+,2
; ‖ ∂l

xu0‖L2((x0,∞)); v; ε;R;T ).

Theorem A2 tells us that the H l-regularity (l ∈ Z+) on the right hand side of
the data travels forward in time with infinite speed. Notice that since the equation
is reversible in time a gain of regularity in Hs(R) cannot occur at t > 0, so u(·, t)
fails to be in H l(R) due to its decay at −∞. In this regard, it was also shown in
[4] that for any δ > 0 and t ∈ (0, T ) and j = 1, . . . , l,∫ ∞

−∞

1

〈x−〉j+δ
(∂j

xu)
2(x, t) dx ≤ c

t
,

with c = c(‖u0‖3/4+,2; ‖∂j
xu0‖L2((x0,∞)); x0; δ), x− = max{0;−x}, and 〈x〉 =

(1 + x2)1/2.
The aim of this note is to extend Theorem A2 to the case where the local

regularity of the datum u0 in (1.3) is measure with a fractional exponent. Thus,
our main result is:

Theorem 1.1. Let u0 ∈ H3/4+

(R). If for some s ∈ R, s > 3/4, and for some
x0 ∈ R,

(1.6) ‖ Jsu0‖2L2((x0,∞)) =

∫ ∞

x0

|Jsu0(x)|2dx < ∞,
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then the solution u = u(x, t) of the IVP (1.1) provided by Theorem A1 satisfies
that for any v > 0, and ε > 0,

(1.7) sup
0≤t≤T

∫ ∞

x0+ε−vt

(Jru)2(x, t) dx < c,

for r ∈ (3/4, s] with c = c(l; ‖u0‖3/4+,2; ‖ Jru0‖L2((x0,∞)); v; ε;T ).
Moreover, for any v ≥ 0, ε > 0, and R > 0,

(1.8)

∫ T

0

∫ x0+R−vt

x0+ε−vt

(Js+1u)2(x, t) dxdt < c,

with c = c(l; ‖u0‖3/4+,2
; ‖ Jsu0‖L2((x0,∞)); v; ε;R;T ).

From the results in section 2 it will be clear that we need only consider the case
s ∈ (3/4,∞)− Z+.

The rest of this paper is organized as follows: section 2 contains some preliminary
estimates required for Theorem 1.1, whose proof will be given in section 3.

2. Preliminary estimates

Let Ta be a pseudo-differential operator with the symbol

(2.1) σ(Ta) = a(x, ξ) ∈ Sr, r ∈ R,

so that

(2.2) Taf(x) =

∫
Rn

a(x, ξ)f̂(ξ) e2πix·ξdξ.

The following result is the singular integral realization of a pseudo-differential
operator, whose proof can be found in [8, Chapter 4].

Theorem A3. Using the above notation (2.1)-(2.2) one has that

(2.3) Taf(x) =

∫
Rn

k(x, x− y)f(y)dy, if x /∈ supp(f),

where k ∈ C∞(Rn ×Rn − {0}) satisfies : ∀α, β ∈ (Z+)n ∀N ≥ 0,

(2.4) |∂α
x ∂

β
z k(x, z)| ≤ Aα,β,N,δ |z|−(n+m+|β|+N), |z| ≥ δ,

if n+m+ |β|+N > 0 uniformly in x ∈ Rn.

To simplify the exposition we restrict ourselves to the one-dimensional case x ∈
R, where in the next section these results will be applied.

As a direct consequence of Theorem A3 one has

Corollary 2.1. Let m ∈ Z+ and l ∈ R. If g ∈ L2(R) and f ∈ Lp(R), p ∈ [2,∞],
with

distance(supp(f); supp(g)) ≥ δ > 0,

then

(2.5) ‖f ∂m
x J lg‖2 ≤ c‖f‖p‖g‖2.

Next, let θj ∈ C∞(R)− {0} with θ′j ∈ C∞
0 (R) for j = 1, 2 and

(2.6) distance(supp(1− θ1); supp(θ2)) ≥ δ > 0.
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Lemma 2.2. Let f ∈ Hs(R), s < 0, and Ta be a pseudo-differential operator of
order zero (a ∈ S0). If θ1f ∈ L2(R), then

(2.7) θ2Taf ∈ L2(R).

Proof of Lemma 2.2. Since

θ2 Taf = θ2Ta(θ1f) + θ2Ta((1− θ1)f),

combining the hypothesis and the continuity of Ta in L2(R) it follows that θ2Ta(θ1f)
∈ L2(R). Also

(2.8)

θ2(x)Ta((1− θ1)f)(x)

=

∫ ∞

−∞
θ2(x)a(x, ξ) ̂((1− θ1)f)(ξ)e

2πixξdξ

=

∫
(

∫
θ2(x)a(x, ξ1 + ξ2) ̂(1− θ1)(ξ1)e

2πixξ1dξ1)︸ ︷︷ ︸
=:b(x,ξ)

f̂(ξ2)e
2πixξ2dξ2

= Tbf(x) =

∫
θ2(x)k(x, x− z)(1− θ1(z))f(z)dz

=

∫
θ2(x)k(x, x− z)(1− θ1(z))J

2mJ−2mf(z)dz

with −2m < s, m ∈ Z+, and k(·, ·) as in (2.4), so integration by parts and Theorem
A3 yield the desired result.

Proposition 2.3. Let f ∈ L2(R) and

Jsf = (1− ∂2
x)

s/2f ∈ L2({x > a}) s > 0.

Then for any ε > 0 and any r ∈ (0, s],

(2.9) Jrf ∈ L2({x > a+ ε}).

Proof of Proposition 2.3. Define

g = Jsf ∈ L2({x > a});
thus Jsf ∈ H−s(R). Let θj ∈ C∞(R), j = 1, 2, with θ1(x) = 1 for x ≥ a + ε/4,
supp θ1 ⊂ {x > a}, and θ2(x) = 1 for x ≥ a + ε and supp θ2 ⊂ {x > a + ε/2};
therefore θ1g ∈ L2(R). Let T = J iβ , β ∈ R. By Lemma 2.2

θ2Tg = θ2J
s+iβf ∈ L2(R),

and since f ∈ L2(R),

θ2J
iβf ∈ L2(R).

Hence, by the Three Lines Theorem it follows that

θ2J
zf ∈ L2(R), z = r + iβ, r ∈ [0, s], β ∈ R,

which completes the proof.

Remark 2.4. In a similar manner one has: for ε > 0 let ϕε ∈ C∞(R) with ϕε(x) =
1, x ≥ ε, supp ϕε ⊂ {x > ε/2}, and ϕ′

ε(x) ≥ 0. Then:

(I) If m ∈ Z+ and ϕεJ
mf ∈ L2(R), then ∀ ε′ > 2ε,

ϕε′∂
j
xf ∈ L2(R), j = 0, 1, . . . ,m.
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(II) If m ∈ Z+ and ϕε∂
j
xf ∈ L2(R), j = 0, 1, . . . ,m, then ∀ ε′ > 2ε,

ϕε′J
mf ∈ L2(R).

(III) If s > 0 and Js(ϕε f), f ∈ L2(R), then ∀ ε′ > 2ε,

ϕε′J
sf ∈ L2(R).

(IV) If s > 0 and ϕεJ
sf , f ∈ L2(R), then ∀ ε′ > 2ε,

Js(ϕε′f) ∈ L2(R).

The same results hold with θ1, θ2, as in (2.6), instead of χε, χε′ .

Next, we recall some inequalities obtained in [5].

Theorem A4 ([5]). If s > 0 and p ∈ (1,∞), then

(2.10) ‖ Js(fg)‖p ≤ c(‖f‖∞‖Jsg‖p + ‖Jsf‖p‖g‖∞)

and

(2.11)
‖ [Js; f ]g‖p = ‖Js(fg)− fJsg‖p

≤ c(‖∂f‖∞‖Js−1g‖p + ‖Jsf‖p‖g‖∞).

Also we shall use the following elementary estimate whose proof is similar to
that found in [2, Chapter 6].

Lemma 2.5. Let φ ∈ C∞(R) with φ′ ∈ C∞
0 (R). If s ∈ R, then for any l >

|s− 1|+ 1/2,

(2.12) ‖ [Js;φ]f‖2 + ‖ [Js−1;φ]∂xf‖2 ≤ c ‖J lφ′‖2 ‖Js−1f‖2.

3. Proof of Theorem 1.1

Without loss of generality x0 = 0. For ε > 0 and b ≥ 5ε define the families of
functions

χ
ε,b
, φε,b, φ̃ε,b, ψε ∈ C∞(R),

with χ′
ε,b

≥ 0, χ
ε,b
(x) = 0, x ≤ ε, χ

ε,b
(x) = 1, x ≥ b :

(3.1)

χ′
ε,b
(x) ≥ 1

10(b− ε)
1[2ε,b−2ε](x),

supp(φε,b), supp(φ̃ε,b) ⊂ [ε/4, b],

φε,b(x) = φ̃ε,b(x) = 1, x ∈ [ε/2, ε],

supp(ψε) ⊂ (−∞, ε/2],

χε,b(x) + φε,b(x) + ψε(x) = 1, x ∈ R,

χ2
ε,b(x) + φ̃ε,b

2
(x) + ψε(x) = 1, x ∈ R.

Hence,
distance(supp(χ

ε,b
); supp(ψε)) ≥ ε/2.
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Formally, we apply the operator Js to the equation in (1.1) and multiply by
Jsuχ2

ε(x+ vt) to obtain after integration by parts the identity

1

2

d

dt

∫
(Jsu)2(x, t)χ2(x+ vt) dx

− v

∫
(Jsu)2(x, t)χχ′(x+ vt) dx︸ ︷︷ ︸

A1

+
3

2

∫
(∂x J

su)2(x, t)χχ′(x+ vt) dx

− 1

2

∫
(Jsu)2(x, t)∂3

x(χ
2(x+ vt)) dx︸ ︷︷ ︸

A2

+

∫
Js(u∂xu) J

su(x, t)χ2(x+ vt) dx︸ ︷︷ ︸
A3

= 0,

(3.2)

where in χ the indexes ε, b were omitted. We shall do that from now on.

Case. s ∈ (3/4, 1).

First, we observe that combining (1.2) and the results in section 2 yields that
for any R > 0,

(3.3)

∫ T

0

∫ R

−R

|Jru(x, t)|2 dxdt < ∞ ∀ r ∈ [0, 7/4+].

Thus, after integration in time the terms A1 and A2 in (3.2) are bounded. So it
only remains to handle A3.

Thus,

(3.4)

Js(u∂xu)χ = Js(u∂xuχ)− [Js;χ](u∂xu)

= uχJs∂xu+ [Js;uχ]∂xu− [Js;χ](u∂xu)

= uχJs∂xu+ [Js;uχ]∂x(u(χ+ φ+ ψ))− [Js;χ](u∂xu)

= B1 + B2 +B3 +B4 +B5.

Inserting B1 in (3.2) one obtains a term which can be estimated by integration
by parts, Gronwall’s inequality, and (1.2). Using (2.11) it follows that

(3.5) ‖B2‖2 ≤ c‖∂x(uχ)‖∞‖Js(uχ)‖2
and

(3.6) ‖B3‖2 ≤ c(‖∂x(uχ)‖∞‖Js(uφ)‖2 + ‖∂x(uφ)‖∞‖Js(uχ)‖2).
To bound B4 and B5 we apply Corollary 2.1 and (2.12), respectively, to get

(3.7) ‖B4‖2 = ‖uχJs∂x(uψ)‖2 ≤ c‖u‖∞‖u‖2
and

(3.8) ‖B5‖2 ≤ c‖∂xu‖∞‖u‖2.
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Collecting the above information (3.4)-(3.8) in (3.2) we obtain (1.7) for any
r ∈ (3/4, 1), v > 0, and ε > 0, and that for any v > 0, ε > 0,∫ T

0

∫ R−vt

ε−vt

(Js∂xu)
2dxdt < ∞,

from which using the results and Remark 2.4, one obtains (1.8).

Case. s ∈ (m,m+ 1), m ∈ Z+.

We assume (1.7) and (1.8) with s ≤ m. Hence, from the results in section 2 it
follows that for any ε > 0, R > 0, and r ∈ [0,m],

(3.9)

∫ T

0

∫ R−vt

ε−vt

(Jr∂xu)
2dxdt < ∞.

Again the starting point is the energy estimate identity (3.2). After integrating
in time, the terms A1 and A2 can be easily bounded using (3.9). So it suffices to
consider A3. Thus, using the notation introduced in (3.1) we have

(3.10)

χJs(u∂xu) = Js(uχ∂xu)−
1

2
[Js;χ]∂x(u

2)

= uχJs∂xu+ [Js;uχ]∂xu− 1

2
[Js;χ]∂x(u

2)

= uχJs∂xu+ [Js;uχ]∂x(u(χ+ φ+ ψ))

− 1

2
[Js;χ]∂x((u

2)(χ2 + (φ̃)2 + ψ))

= E1 + E2 + E3 + E4 + E5 + E6 + E7.

Inserting E1 in (3.2) one obtains a term which can be estimated by integration
by parts, Gronwall’s inequality, and (1.2). From (2.11) we see that

(3.11) ‖E2‖2 ≤ c‖∂x(uχ)‖∞‖Js(uχ)‖2
and

(3.12) ‖E3‖2 ≤ c(‖∂x(uχ)‖∞‖Js(uφ)‖2 + ‖∂x(uφ)‖∞‖Js(uχ)‖2).
For E4 it follows from Corollary 2.1 that

(3.13) ‖E4‖2 = ‖uχJs∂x(uψ)‖2 ≤ c‖u‖∞‖u‖2.
For E5 and E6 a combination of (2.10) and (2.12) yields the estimates

(3.14)
‖E5‖2 ≤ ‖[Js;χ]∂x((uχ)

2)‖2
≤ c‖Js((uχ)2)‖2 ≤ c‖u‖∞‖Js(uχ)‖2

and

(3.15)
‖E6‖2 ≤ ‖[Js;χ]∂x((uφ̃)

2)‖2≤‖Js((uφ̃)2)‖2
≤ c‖u‖∞‖Js(uφ̃)‖2.

Finally, using Corollary 2.1 we write

(3.16) ‖E7‖2 ≤ ‖[Js;χ]∂x(u
2ψ)‖2 = ‖χJs∂x(u

2ψ)‖2 ≤ c‖u‖∞‖u‖2.
To complete the estimates in (3.11), (3.12), (3.14), and (3.15) we observe that

Js(uχ) = Jsuχ+ [Js;χ](u(χ+ φ+ ψ)) = G1 +G2,
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where G1 is the term whose L2-norm we are estimating and G2 is of lower order
(hence bounded by assumption), and ‖J2(uφ)‖2 is bounded by (1.8) (assumption).

Collecting the above information in (3.2) we obtain the desired result.
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