On the existence of periodic solutions for a fractional Schrödinger equation
HTML articles powered by AMS MathViewer
- by Vincenzo Ambrosio
- Proc. Amer. Math. Soc. 146 (2018), 3767-3775
- DOI: https://doi.org/10.1090/proc/13630
- Published electronically: June 1, 2018
- PDF | Request permission
Abstract:
We present an elementary proof of the existence of a nontrivial weak periodic solution for a nonlinear fractional problem driven by a relativistic Schrödinger operator with periodic boundary conditions and involving a periodic continuous subcritical nonlinearity satisfying a more general Ambrosetti-Rabinowitz condition.References
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- Vincenzo Ambrosio, Periodic solutions for a pseudo-relativistic Schrödinger equation, Nonlinear Anal. 120 (2015), 262–284. MR 3348058, DOI 10.1016/j.na.2015.03.017
- Vincenzo Ambrosio, Periodic solutions for the non-local operator $(-\Delta +m^2)^s-m^{2s}$ with $m\geq 0$, Topol. Methods Nonlinear Anal. 49 (2017), no. 1, 75–104. MR 3635638, DOI 10.12775/tmna.2016.063
- Vincenzo Ambrosio, Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition, Discrete Contin. Dyn. Syst. 37 (2017), no. 5, 2265–2284. MR 3619062, DOI 10.3934/dcds.2017099
- Vincenzo Ambrosio and Giovanni Molica Bisci, Periodic solutions for nonlocal fractional equations, Commun. Pure Appl. Anal. 16 (2017), no. 1, 331–344. MR 3583529, DOI 10.3934/cpaa.2017016
- B. Barrios, E. Colorado, A. de Pablo, and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133–6162. MR 2911424, DOI 10.1016/j.jde.2012.02.023
- Krzysztof Bogdan, Tomasz Byczkowski, Tadeusz Kulczycki, Michal Ryznar, Renming Song, and Zoran Vondraček, Potential analysis of stable processes and its extensions, Lecture Notes in Mathematics, vol. 1980, Springer-Verlag, Berlin, 2009. Edited by Piotr Graczyk and Andrzej Stos. MR 2569321, DOI 10.1007/978-3-642-02141-1
- Xavier Cabré and Jinggang Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), no. 5, 2052–2093. MR 2646117, DOI 10.1016/j.aim.2010.01.025
- Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260. MR 2354493, DOI 10.1080/03605300600987306
- Antonio Capella, Juan Dávila, Louis Dupaigne, and Yannick Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36 (2011), no. 8, 1353–1384. MR 2825595, DOI 10.1080/03605302.2011.562954
- Antonio Córdoba and Diego Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249 (2004), no. 3, 511–528. MR 2084005, DOI 10.1007/s00220-004-1055-1
- Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation, Geom. Funct. Anal. 21 (2011), no. 1, 1–13. MR 2773101, DOI 10.1007/s00039-011-0108-9
- Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573. MR 2944369, DOI 10.1016/j.bulsci.2011.12.004
- Serena Dipierro, Giampiero Palatucci, and Enrico Valdinoci, Dislocation dynamics in crystals: a macroscopic theory in a fractional Laplace setting, Comm. Math. Phys. 333 (2015), no. 2, 1061–1105. MR 3296170, DOI 10.1007/s00220-014-2118-6
- Patricio Felmer, Alexander Quaas, and Jinggang Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237–1262. MR 3002595, DOI 10.1017/S0308210511000746
- Louis Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $\textbf {R}^N$, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 4, 787–809. MR 1718530, DOI 10.1017/S0308210500013147
- A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445–453. MR 2276260, DOI 10.1007/s00222-006-0020-3
- Elliott H. Lieb and Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. MR 1415616, DOI 10.1090/gsm/014
- Giovanni Molica Bisci, Vicentiu D. Radulescu, and Raffaella Servadei, Variational methods for nonlocal fractional problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016. With a foreword by Jean Mawhin. MR 3445279, DOI 10.1017/CBO9781316282397
- Patrizia Pucci, Mingqi Xiang, and Binlin Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\Bbb {R}^N$, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2785–2806. MR 3412392, DOI 10.1007/s00526-015-0883-5
- Patrick J. Rabier, Bounded Palais-Smale sequences for functionals with a mountain pass geometry, Arch. Math. (Basel) 88 (2007), no. 2, 143–152. MR 2299037, DOI 10.1007/s00013-006-1806-7
- Luz Roncal and Pablo Raúl Stinga, Fractional Laplacian on the torus, Commun. Contemp. Math. 18 (2016), no. 3, 1550033, 26. MR 3477397, DOI 10.1142/S0219199715500339
- Luz Roncal and Pablo Raúl Stinga, Transference of fractional Laplacian regularity, Special functions, partial differential equations, and harmonic analysis, Springer Proc. Math. Stat., vol. 108, Springer, Cham, 2014, pp. 203–212. MR 3297661, DOI 10.1007/978-3-319-10545-1_{1}4
- Raffaella Servadei and Enrico Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst. 33 (2013), no. 5, 2105–2137. MR 3002745, DOI 10.3934/dcds.2013.33.2105
- Raffaella Servadei and Enrico Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 831–855. MR 3233760, DOI 10.1017/S0308210512001783
- Pablo Raúl Stinga and José Luis Torrea, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 2092–2122. MR 2754080, DOI 10.1080/03605301003735680
- Michael Struwe, Variational methods, Springer-Verlag, Berlin, 1990. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1078018, DOI 10.1007/978-3-662-02624-3
Bibliographic Information
- Vincenzo Ambrosio
- Affiliation: Università degli Studi di Napoli Federico II, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, via Cinthia, 80126 Napoli, Italy
- MR Author ID: 1105343
- Email: vincenzo.ambrosio2@unina.it
- Received by editor(s): October 14, 2016
- Received by editor(s) in revised form: December 21, 2016
- Published electronically: June 1, 2018
- Communicated by: Joachim Krieger
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3767-3775
- MSC (2010): Primary 35R11; Secondary 35A15, 35B10
- DOI: https://doi.org/10.1090/proc/13630
- MathSciNet review: 3825832