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LOCAL CHARACTERIZATIONS FOR THE MATRIX

MONOTONICITY AND CONVEXITY OF FIXED ORDER
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(Communicated by Stephan Ramon Garcia)

Abstract. We establish local characterizations of matrix monotonicity and
convexity of fixed order by giving integral representations connecting the Loew-
ner and Kraus matrices, previously known to characterize these properties, to
respective Hankel matrices. Our results are new already in the general case of
matrix convexity, and our approach significantly simplifies the corresponding
work on matrix monotonicity. We also obtain an extension of the original

characterization for matrix convexity by Kraus and tighten the relationship
between monotonicity and convexity.

1. Introduction

For an open interval (a, b), we say that f : (a, b) → R is matrix monotone
(increasing) of order n (or n-monotone) if for any n × n Hermitian matrices A,B
with spectra in (a, b) and A ≤ B we have f(A) ≤ f(B).1 Analogously, f : (a, b) → R

is matrix convex of order n (or n-convex) if for any n× n Hermitian matrices A,B
with spectra in (a, b) and λ ∈ [0, 1] we have f(λA+(1−λ)B) ≤ λf(A)+(1−λ)f(B).

Ever since Charles Loewner (then known as Karl Löwner) introduced matrix
monotone functions in 1934 [12], this class has been characterized in various ways.
See for example [2, 8] for a survey and recent progress. The famous theorem es-
tablished in Loewner’s paper states that a function that is matrix monotone of all
orders on an interval extends to an upper half-plane as a Pick-Nevanlinna func-
tion: an analytic function with non-negative imaginary part. Loewner’s proof of
this jewel is based on an important characterization in terms of divided differences,
here denoted by [·, ·, . . . , ·]f . Recall that divided differences are defined recursively
by [λ]f = f(λ) and for distinct λ1, λ2, . . . , λn ∈ (a, b),

[λ1, λ2, . . . , λn]f =
[λ1, λ2, . . . , λn−1]f − [λ2, λ3, . . . , λn]f

λ1 − λn
.

If f ∈ Cn−1(a, b), the divided difference has continuous extension to all tuples of
not necessarily distinct n numbers on the interval [4].

Theorem 1 (Loewner). A function f : (a, b) → R is n-monotone (for n ≥ 2) if
and only if f ∈ C1(a, b) and the Loewner matrix

L = ([λi, λj ]f )1≤i,j≤n(2)
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is positive2 for any tuple of numbers (λi)
n
i=1 on the same interval.

Similarly Kraus, a student of Loewner, introduced the matrix convexity in [11]
and established a similar characterization:

Theorem 3 (Kraus). A function f : (a, b) → R is n-convex (for n ≥ 2) if and
only if f ∈ C2(a, b) and the Kraus matrix

Kr = ([λi, λj , λ0]f )1≤i,j≤n(4)

is positive for any tuple of numbers (λi)
n
i=1 ∈ (a, b)n and λ0 ∈ (λi)

n
i=1.

A different, local characterization for monotonicity was given by another student
of Loewner, Dobsch, in [5]:

Theorem 5 (Dobsch, Donoghue). A C2n−1 function f : (a, b) → R is n-monotone
if and only if the Hankel matrix

M(t) =

(
f (i+j−1)(t)

(i+ j − 1)!

)
1≤i,j≤n

(6)

is positive for any t ∈ (a, b).

By employing standard regularization techniques, one could further extend this
to merely C2n−3 functions with convex derivative of order (2n − 3), a class of
functions for which the property makes sense for almost every t, to obtain the
complete local characterization of the matrix monotonicity of fixed order. The
result has a striking consequence: n-monotonicity is a local property, meaning that
if function has it in two overlapping intervals, then it has it for their union. This
property is actually used in the proof, and although it was noted by Loewner to be
easy ([12, p. 212, Theorem 5.6]), no rigorous proof was given until 40 years later
in the monograph of Donoghue [6], and the proof is rather long when n > 2.

The main results of this paper establish novel integral representations connecting
Hankel matrices to the Loewner and Kraus matrices. These identities give rise to a
new simple proof for Theorem 5 and, more importantly, settle the conjecture in [9]
(see also [10]) by establishing similar local characterization for the matrix convex
functions.

Theorem 7. A C2n function f : (a, b) → R is n-convex if and only if the Hankel
matrix

K(t) =

(
f (i+j)(t)

(i+ j)!

)
1≤i,j≤n

(8)

is positive for any t ∈ (a, b).

Again, with regularizations we may extend this to give a complete local descrip-
tion of matrix convexity of fixed order, which as an immediate corollary gives the
expected local property theorem for convexity.

Corollary 9. For any positive integer n, n-convexity is a local property.

As another byproduct, we obtain a slight improvement to Theorem 3, where λ0

may now vary freely. This also implies through divided differences a rather direct
connection between matrix monotonicity and convexity.

2Here and in the following, positivity of matrix means that it is positive semi-definite.
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2. Matrix monotone functions

2.1. Integral representation. In this section we construct the integral represen-
tations for the Loewner matrices alluded to in the introduction.

Let n ≥ 2, let (a, b) be an interval, and let Λ = (λi)
n
i=1 ∈ (a, b)n be an arbitrary

sequence of distinct points in (a, b).
In the following the Loewner and respective Hankel matrices, introduced in the

introduction in (2) and (6), for sufficiently smooth f : (a, b) → R and λ0 ∈ (a, b)
are denoted by L(Λ, f) and Mn(t, f) respectively.

Recall that as one easily verifies with Cauchy’s integral formula and induction,
the divided differences can be written as

[λ1, λ2, . . . , λn]f =
1

2πi

∫
γ

f(z)

(z − λ1) · · · (z − λn)
dz,(10)

for analytic f and suitable closed curve γ.3

Divided differences also admit a natural generalization for the mean value theo-
rem [4]. Namely, for an open interval (a, b), f ∈ Cn−1(a, b), and any tuple of (not
necessarily distinct) real numbers Λ = (λi)

n
i=1 ∈ (a, b)n we have

[λ1, λ2, . . . , λn]f =
f (n−1)(ξ)

(n− 1)!
(11)

for some ξ ∈ [min(Λ),max(Λ)].
We shall also need the very basic properties of regularizations. Namely, for even,

non-negative, and smooth function φ supported on [−1, 1] and with integral 1 and
integrable f : (a, b) → R, regularization (or ε-regularization, to be precise) of f ,
denoted by fε : (a+ ε, b− ε) → R, is the convolution

fε(x) =

∫ ∞

−∞
f(x− εy)φ(y)dy.

This is a smooth function, and for any continuity point x ∈ (a, b) of f we clearly
have limε→0 fε(x) = f(x). Note that regularizations of matrix monotone (convex)
functions are obviously matrix monotone (convex) functions on a slightly smaller
interval.

Define the functions gj for 1 ≤ j ≤ n by

gj,Λ(t, y) =
∏
k �=j

(1 + y(t− λk)).(12)

Define also the matrix C(t) := C(t,Λ) by setting Ci,j to be the coefficient of yi−1

in the polynomial gj(t, y); i.e., we have

gj(t, y) = C1,j(t) + C2,j(t)y + · · ·+ Cn,j(t)y
n−1.(13)

Define polynomial pΛ with pΛ(t) :=
∏n

i=1(t − λi). Also for any z ∈ C define
function hz by setting hz(x) = (z − x)−1.

Lemma 14. For Λ = (λi)
n
i=1 as before, t ∈ R, and z ∈ C distinct from t, we have

CT (t,Λ)Mn (t, hz)C (t,Λ) = L(Λ, hz)
pΛ(z)

2

(z − t)2n
.

3For our purposes, it is enough to consider f analytic in an open half-plane and γ a circle in
this half-plane enclosing the points λ1, λ2, . . . , λn.
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Proof. Write D = CT (t,Λ)Mn(t, hz)C(t,Λ). Note that as we have h
(k)
z (t)/k! =

(z − t)−k−1, we may write Mn(t, hz) = 1
(z−t)2 vv

T with v = (1, 1
z−t ,

1
(z−t)2 , . . . ,

1
(z−t)n−1 )

T . Thus

D =
1

(z − t)2
(C(t,Λ)T v)(C(t,Λ)T v)T .

One also easily sees that (C(t,Λ)T v)i = gi(t,
1

z−t ) so that finally

Di,j =
gi(t,

1
z−t )gj(t,

1
z−t )

(z − t)2
=

1

(z − t)2

∏
k �=i

(
1 +

t− λk

z − t

)∏
k �=j

(
1 +

t− λk

z − t

)

= [λi, λj ]hz

pΛ(z)
2

(z − t)2n
. �

Consider now the function

S(z, t) := SΛ(z, t) := − (z − t)2n−2

pΛ(z)2
.

As S(z, t) decays as z−2, with the residue theorem we see that for suitable closed
curve γ we have

0 =
1

2πi

∫
γ

S(z, t)dz =
n∑

i=1

Res
z=λi

S(z, t).

Defining now the weight functions Ii := Ii,Λ for 1 ≤ i ≤ n by

Ii(t) = Res
z=λi

S(z, t)

and

I(t) := IΛ(t) :=
∑

1≤i≤n
λi<t

Ii(t),

we see by simple computation that the Iis are polynomials such that Ii(λi) = 0
and I is hence a piecewise polynomial, continuous function supported on [min(Λ),
max(Λ)].

Note that with Cauchy’s integral formula we can also write I in the form

I(t) =
1

2πi

∫ t+i∞

t−i∞
S(z, t)dz

whenever t /∈ Λ.

Remark 15. The weight function I and the analogous weight J to be introduced in
the convex setting are examples of weights called Peano kernels or B-splines. The
properties of these kernels are discussed for example in [3]. To stay self-contained,
we give proofs of the crucial properties used in our discussion.

Lemma 16. For Λ = (λi)
n
i=1 as before and for z ∈ C outside the interval

[min(Λ),max(Λ)], we have

(2n− 1)

∫ ∞

−∞

I(t)

(z − t)2n
dt =

1

pΛ(z)2
.
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Proof. We simply compute that

(2n− 1)

∫ ∞

−∞

I(t)

(z − t)2n
dt = (2n− 1)

n∑
i=1

∫ ∞

λi

Ii(t)

(z − t)2n
dt

= −(2n− 1)

n∑
i=1

Res
w=λi

∫ ∞

λi

(w − t)2n−2

pΛ(w)2(z − t)2n
dt

=

n∑
i=1

Res
w=λi

(1− z−w
z−λi

)2n−1 − 1

(w − z)pΛ(w)2

= −
n∑

i=1

Res
w=λi

1

(w − z)pΛ(w)2

= Res
w=z

1

(w − z)pΛ(w)2
− 1

2πi

∫
γ

dw

(w − z)pΛ(w)2

=
1

pΛ(z)2
,

where we used the residue theorem for the function (w �→ (w − z)−1pΛ(w)
−2). �

We are then ready to formulate and prove the integral representation of the
Loewner matrix.

Theorem 17. For f ∈ C2n−1(a, b) and Λ as before, we have

L(Λ, f) = (2n− 1)

∫ ∞

−∞
CT (t,Λ)Mn(t, f)C(t,Λ)IΛ(t)dt.

Proof. For entire f , by Lemmas 14, 16, Fubini, and (10) we have

(2n− 1)

∫ ∞

−∞
CT (t)Mn(t, f)C(t)I(t)dt

=
1

2πi

∫
γ

(
(2n− 1)

∫ ∞

−∞
CT (t)Mn(t, hz)C(t)I(t)dt

)
f(z)dz

=
1

2πi

∫
γ

L(Λ, hz)

(
(2n− 1)

∫ ∞

−∞

pΛ(z)
2

(z − t)2n
I(t)dt

)
f(z)dz

=
1

2πi

∫
γ

L(Λ, hz)f(z)dz

= L(Λ, f).

The general case now follows by uniformly approximating f and its derivatives up
to order (2n−1) by entire functions on [min(Λ),max(Λ)], say, by polynomials with
a suitable application of the Weierstrass approximation theorem. �

2.2. Positivity of the weight. In this section we prove the non-negativity of
the weight function I introduced in the previous section. We begin with a simple
lemma.

Lemma 18. Let n be a positive integer and let the numbers Z = (ζi)
n
i=1 be non-

negative. Now if f(t) =
∏n

i=1(ζi − t)−1, then for any non-negative integer k and
t < 0 we have

f (k)(t) ≥ 0.



3796 OTTE HEINÄVAARA

Proof. The case of n = 1 is trivial; the general case now follows immediately from
the product rule. �

Lemma 19. For Λ as before, IΛ is non-negative.

Proof. We may clearly assume that Λ is strictly increasing. When checking the
non-negativity at a point t, we may without loss of generality assume that t = 0 ∈
[λ1, λn]. Also by continuity we may further assume that all the λis are non-zero.
We are left to investigate

1

2πi

∫ i∞

−i∞
S(z, 0)dz = − 1

2πi

∫ i∞

−i∞

z2n−2dz

pΛ(z)2
.

Making the change of variable w = 1
z , we check that

1

2πi

∫ i∞

−i∞

dw

pZ(w)2
≥ 0,

where Z = 1
Λ ; that is, ζi =

1
λi
.

Let k (< n) be the number of the negative ζis and denote Z− = (ζi)
k
i=1. Note

that if we further write f(t) =
(∏

i>k(t− ζi)
)−2

, we have by suitable variant of
(10)

1

2πi

∫ i∞

−i∞

dw

pZ(w)2
=

1

2πi

∫ i∞

−i∞

f(w)dw

pZ−(w)
2
= [ζ1, ζ1, ζ2, ζ2, . . . , ζk, ζk]f ,

which is positive in view of (11) and Lemma 18. �
2.3. Characterizations for the matrix monotonicity.

Proof of Theorem 5. The necessity of the condition can be found in [5]. For suffi-
ciency note that by Theorem 17 we can write

L(Λ) = (2n− 1)

∫ ∞

−∞
CT (t)M(t)C(t)I(t)dt.

Now if M(t) ≥ 0 for any t ∈ (a, b), also CT (t)M(t)C(t) ≥ 0 for any t ∈ (a, b).
It follows from Lemma 19 that the integrand is a positive matrix, so indeed, L is
positive as an integral of positive matrices. But now f is n-monotone by Theorem
1. �

Putting everything together we obtain complete characterizations of the class of
n-monotone functions.

Theorem 20 (Loewner, Dobsch, Donoghue). Let n ≥ 2, and let (a, b) be an open
interval. Now for f : (a, b) → R the following are equivalent:

(i) f is n-monotone.
(ii) f ∈ C1(a, b) and the Loewner matrix L(Λ, f) is positive for any tuple Λ ∈

(a, b)n.
(iii) f ∈ C2n−3(a, b), f (2n−3) is convex, and the Hankel matrix Mn(t, f), which

makes sense almost everywhere, is positive for almost every t ∈ (a, b).

Proof. As noted before, (i) ⇔ (ii) was proven in the original paper of Loewner [12].
For C2n−1 functions, (i) ⇔ (iii) is Theorem 5, and for merely C2n−3 functions the
claim follows from standard regularization procedure, details of which can be found
in [6]. For an alternate approach to the latter equivalence, see again [6]. �
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Corollary 21. For any positive integer n, n-monotonicity is a local property.

3. Matrix convex functions

3.1. Integral representation. In this section we construct the integral represen-
tations for the Kraus matrices alluded to in the introduction.

Again, let n ≥ 2, let (a, b) be an interval, and let Λ = (λi)
n
i=1 ∈ (a, b)n be an

arbitrary sequence of distinct points in (a, b).
In the following the Kraus and the respective Hankel matrices, introduced in the

introduction, for sufficiently smooth f : (a, b) → R and λ0 ∈ (a, b) are denoted by
Kr(λ0,Λ, f) and Kn(t, f), respectively.

The integral representation for the Kraus matrix is similar to that of the Loewner
matrix. Fix again n ≥ 2, open interval (a, b), and Λ = (λi)

n
i=1 ∈ (a, b)n an arbitrary

sequence of distinct points on (a, b). For fixed λ0 ∈ (a, b) the weights Ji,λ0
:= Ji,λ0,Λ,

now for 0 ≤ i ≤ n, are defined analogously as the residues at λis of

Tλ0
(z, t) := Tλ0,Λ(z, t) := − (z − t)2n−1

(z − λ0)pΛ(z)2

and

Jλ0
(t) := Jλ0,Λ(t) :=

∑
0≤i≤n
λi<t

Ji,λ0
(t).

Lemma 22. For Λ = (λi)
n
i=1, as before, λ0 ∈ (a, b) and z ∈ C outside the interval

[min(Λ),max(Λ)], we have

2n

∫ ∞

−∞

Jλ0
(t)

(z − t)2n+1
dt =

1

(z − λ0)pΛ(z)2
.

Proof. The proof is almost identical to that of Lemma 16; we just perform the
residue trick with the map (w �→ (w − z)−1(w − λ0)

−1pΛ(w)
−2) instead. �

Theorem 23. For f ∈ C2n(a, b), Λ as before, and λ0 ∈ (a, b), we have

Kr(λ0,Λ, f) = 2n

∫ ∞

−∞
CT (t,Λ)Kn(t, f)C(t,Λ)Jλ0,Λ(t)dt.

Proof. After noting that Kn(t, hz) = 1
z−tMn(t, hz), the calculation is carried out

as in the proof of Theorem 17, using Lemma 22 instead of Lemma 16. �
3.2. Positivity of the weight.

Lemma 24. For Λ = (λi)
n
i=1 as before and λ0 ∈ (a, b), Jλ0,Λ is non-negative.

Proof. As in the proof of Lemma 19, we can assume that t = 0 is our point of
inspection and that Λ is strictly increasing. We also make the same change of
variables Z = 1

Λ . Note that we may well assume that ζ0 > 0, since the other case
would follow by reflecting the variables, that is, considering the sequence −Z and
−λ0, instead. Now the inequality is reduced to an equivalent form

1

2πi

∫ i∞

−i∞

dw

(ζ0 − w)pZ(w)2
≥ 0.

But as in the proof of Lemma 19, the left hand side can again be written as

[ζ1, ζ1, ζ2, ζ2, . . . , ζk, ζk]f ,

where f(t) = (ζ0 − t)−1
(∏

i>k(t− ζi)
)−2

and k is the number of negative ζis. �
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3.3. Characterizations for the matrix convexity.

Proof of Theorem 7. The necessity of the condition was proven in [9]. For the other
direction, by Theorem 23 we can write

Kr(λ,Λ) = 2n

∫ ∞

−∞
CT (t)K(t)C(t)Jλ0

(t)dt.

But as in the proof of Theorem 5, we now see that the Kraus matrix is an integral
of positive matrices, hence positive, and Theorem 3 finishes the claim. �

The next theorem finally completes the characterization of n-convex functions.
The original characterization of Kraus is also improved.

Theorem 25. Let n ≥ 2, and let (a, b) be an open interval. Now for f : (a, b) → R

the following are equivalent:

(i) f is n-convex.
(ii) f ∈ C2(a, b) and the Kraus matrix Kr(λ0,Λ, f) is positive for any tuple

Λ ∈ (a, b)n and λ0 ∈ Λ.
(iii) f ∈ C2(a, b) and the Kraus matrix Kr(λ0,Λ, f) is positive for any tuple

Λ ∈ (a, b)n and λ0 ∈ (a, b).
(iv) f ∈ C2n−2(a, b), f (2n−2) is convex, and the Hankel matrix Kn(t, f), which

makes sense almost everywhere, is positive for almost every t ∈ (a, b).

Proof. (i) ⇔ (ii) was proven in [11]. For C2n functions (i) ⇔ (iv) is Theorem
7; the proof of Theorem 7 also gives (iv) ⇒ (iii) in this case. For merely C2n−2

functions these claims follow from regularization techniques as in the monotone
case. (iii) ⇒ (ii) is trivial. �

We also get an interesting corollary connecting the monotonicity to convexity,
extending a result in [1].

Corollary 26. Let n ≥ 2, and let (a, b) be an open interval. If f : (a, b) → R is
n-convex, then for any λ0 ∈ (a, b) the function g = (x �→ [x, λ0]f ) is n-monotone.

Proof. Simply note that L(Λ, g) = Kr(λ0,Λ, f). �

Remark 27. The ideas introduced in the paper can be generalized to characterize
a more general class of functions called matrix k-tone functions, introduced in [7].
A paper discussing related questions in this more general setting is in preparation.
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