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Dedicated to the memory of Rüdiger Göbel

Abstract. A charge (finitely additive measure) defined on a Boolean algebra
of sets taking values in a group G is called a strictly nonzero (SNZ) charge if it
takes the identity value in G only for the zero element of the Boolean algebra.
A study of such charges was initiated by Rüdiger Göbel and K. P. S. Bhaskara
Rao in 2002.

Our main result is a solution to one of the questions posed in that paper: we
show that for every cardinal ℵ, the Boolean algebra of clopen sets of {0, 1}ℵ has
a strictly nonzero integer-valued charge. The key lemma that we prove is that
there exists a strictly nonzero integer-valued permutation-invariant charge on
the Boolean algebra of clopen sets of {0, 1}ℵ0 . Our proof is based on linear-
algebraic arguments, as well as certain kinds of polynomial approximations of
binomial coefficients.

We also show that there is no integer-valued SNZ charge on P(N). Finally,
we raise some interesting problems on integer-valued SNZ charges.

1. Introduction

If G is a group and A is a Boolean algebra, when does there exist a strictly
nonzero G-valued charge (finitely additive measure) on A? This problem was posed
by Göbel and Bhaskara Rao in [4], and several results about this general question
were proved there.

Even the special cases of the above problem when the group G equals the group
of real numbers R, the group of rational numbers Q, or the group of integers Z,
are all interesting and suggest many challenging problems in the intersection of
combinatorics, group theory, and set theory.

Kelley [5] gave necessary and sufficient conditions for the existence of a bounded
strictly positive R-valued charge. As was observed in [3], this also provides a neces-
sary and sufficient condition for the existence of a bounded strictly nonzero R-valued
charge.

Regarding the existence of Z-valued SNZ charges, some necessary conditions
were derived in [4]. For example, it was shown that if a Boolean algebra B is
nonatomic and if there is a Z-valued SNZ charge on B, then B should satisfy the
countable chain condition (every collection of pairwise disjoint nonzero elements of
B is countable). It was also shown that if there is a Z-valued SNZ charge on a
Boolean algebra B, then every chain of distinct elements in B is countable.
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In [4], the question was raised as to whether the above two necessary conditions
guarantee the existence of a Z-valued SNZ charge.

The Boolean algebra of clopen sets of {0, 1}ℵ for an infinite cardinal ℵ (denoted
Cl(2ℵ)) is a nonatomic Boolean algebra and satisfies both the above necessary
conditions, namely, the countable chain condition and the condition that every
chain is countable. In this context the question was raised as to whether this
Boolean algebra admits a Z-valued SNZ charge.

Our main result is that Cl(2ℵ) has an SNZ Z-valued charge.

Theorem 1.1. For every infinite cardinal ℵ, Cl(2ℵ) has a strictly nonzero Z-valued
charge.

The above theorem for the case of ℵ = ℵ0 follows from Proposition 13 of [4],
which showed that every countable Boolean algebra has an SNZ Z-valued charge.
In [4], it was suggested that the answer to this question might depend on the axioms
of set theory (in particular, on large cardinal axioms). Our results show that they
do not.

The key ingredient of our proof of Theorem 1.1 is the existence of a permutation-
invariant Z-valued charge on Cl(2ℵ0). Propositions 12 and 15 of [4] together1 show
that the existence of such a charge on Cl(2ℵ0) implies the existence of a strictly
nonzero Z-valued charge on Cl(2ℵ) for every uncountable cardinal ℵ. Thus the
following theorem implies Theorem 1.1.

Theorem 1.2. Cl(2ℵ0) has a permutation-invariant strictly nonzero Z-valued
charge.

We prove Theorem 1.2 in Section 3. At its core, Theorem 1.2 is a statement
about the existence of integer solutions to a certain countable system of linear
inequations in countably many variables. The coefficients of these linear inequations
are related to binomial coefficients. We use linear algebraic arguments, as well as
some polynomial approximations to binomial coefficients, to show the existence of
an integer solution to the given system of inequations.

In Section 4, we show that there is no SNZ charge on P(N). We conclude with
some open problems.

2. Notation and preliminaries

All logs are to the base 2. We define
(
0
0

)
= 1, and if b < 0 or b > a, then

(
a
b

)
= 0.

We recall some notation from [4].
If A and B are finite disjoint subsets of an index set Y of cardinality ℵ, let

H(A,B) = {f ∈ {0, 1}Y : f(y) = 0 for y ∈ A and f(y) = 1 for y ∈ B}. Recall that
a subset of {0, 1}Y is clopen if it can be expressed as the union of finitely many sets
of the form H(A,B) with A, B both finite.

Let Y be an index set with cardinality ℵ. Let μ be a Z-valued charge on Cl(2Y ).
We say that μ is permutation-invariant if for all permutations π : Y → Y and all
clopen sets U , we have μ(π(U)) = μ(U) (where for a set U ⊆ {0, 1}Y , π(U) is
defined to equal {f ◦ π−1 | f ∈ U}).

It is easy to see that μ is permutation-invariant if and only if μ(H(A,B)) depends
only on the cardinalities of A and B.

1The terminology of [4] is different from ours. In [4], a strictly nonzero charge on Cl(2ℵ) is
referred to as a “good” charge, and a permutation-invariant strictly nonzero charge on Cl(2ℵ) is
referred to as, of course, a “very good” charge.
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Let μ be a permutation-invariant Z-valued charge on Cl(2Y ). Define h : N×N →
Z by:

h(m,n) = H(A,B)

for any disjoint A,B with |A| = k, |B| = k′. By finite additivity, we have

h(m,n) = h(m+ 1, n) + h(m,n+ 1).

Using this relation, and letting pn = h(n, 0), it follows by induction that the pn
determine the h(m,n) via the following simple formula:

h(m,n) =

n∑
i=0

(−1)i
(
n

i

)
pm+i.(1)

Conversely, given any sequence of integers p0, p1, . . ., if we define h(m,n) by the
above formula, we get a Z-valued charge μ defined by:

μ(A,B) = h(|A|, |B|).(2)

We now express the condition of strict nonzeroness of a permutation-invariant
measure in terms of the h(m,n). For every clopen set U in Cl(2Y ), there is a finite
set C ⊆ Y of size t such that U can be expressed as the disjoint union of sets of
the form H(A,B), with A ∪B = C and A ∩B = ∅. Thus μ(U) is of the form:

t∑
j=0

wjh(j, t− j),

where wj is an integer with 0 ≤ wj ≤
(
t
j

)
(here wj represents the number of A,B

pairs appearing in the above representation of U with |A| = j).
We thus get the following criterion for strict nonzeroness of a charge. Suppose we

define a permutation-invariant Z-valued charge μ on Cl(2Y ) by specifying integers
p0, p1, . . ., and then defining h and μ by (1) and (2). Then μ is strictly nonzero if for
all integers t ≥ 0, and for integers w0, w1, . . . , wt, not all zero, with 0 ≤ wj ≤

(
t
j

)
,

t∑
j=0

wjh(j, t− j) �= 0.

3. A permutation-invariant Z-valued SNZ charge on Cl(2Y )

The following theorem shows that if we pick the integers p0, p1, . . . , growing suf-
ficiently rapidly, then the permutation-invariant Z-valued charge defined on Cl(2ℵ)
through the process described in the previous section is strictly nonzero. This im-
plies both Theorem 1.1 and Theorem 1.2 (and in fact directly proves the existence
of a permutation-invariant Z-valued SNZ charge on CL(2ℵ) for all infinite cardinals
ℵ).

Theorem 3.1. Define f(k) = 2(100k)
10

.
Let p0, p1, . . . be a sequence of integers such that p0 �= 0, and for each k ≥ 1,

|pk| > f(k) · (
k−1∑
i=0

|pi|).

Define h(m,n) =
∑n

i=0(−1)i
(
n
i

)
pm+i.
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Then for every t ≥ 0, and for integers w0, w1, . . . , wt, not all zero, with 0 ≤ wj ≤(
t
j

)
, we have:

t∑
j=0

wjh(j, t− j) �= 0.

Proof. Suppose not. That is, there exists a t and integers w0, w1, . . . , wt, not all
zero, with 0 ≤ wj ≤

(
t
j

)
such that

t∑
j=0

wjh(j, t− j) = 0.

Expanding the h(m,n) in terms of the pi, we get:

t∑
j=0

wj

t−j∑
i=0

(−1)i
(
t− j

i

)
pj+i = 0,

which, after re-indexing in terms of k = j + i and simplifying, gives us:

t∑
j=0

t∑
k=0

(−1)k−j

(
t− j

t− k

)
wjpk = 0

(here we used the fact that
(
t−j
k−j

)
=

(
t−j
t−k

)
).

Let M be the matrix with rows and columns indexed by {0, 1, . . . , t}, whose (j, k)
entry is given by:

Mj,k = (−1)k−j

(
t− j

t− k

)
.

Let vk ∈ Zt+1 denote the kth column of this matrix. Let w denote the vector
(w0, w1, . . . , wt) ∈ Zt+1.

In this notation, we have:

t∑
k=0

〈w, vk〉pk = 0.

Observe that the vk form a basis for Rt+1 (since the vk are “upper triangular”). By
assumption, w is not the 0 vector, and so there exists some k such that 〈w, vk〉 �= 0.
Let s be the largest such k. Then:

s∑
k=0

〈w, vk〉pk = 0.

Observe that if s = 0, then we immediately have a contradiction to the above
equation. Thus we may assume that s ≥ 1.

Lemma 3.2. s ≤ 1
100 (log t)

1/5.

Proof. Suppose s > 1
100 (log t)

1/5.
By the formula above, we have:

ps =
−1

〈w, vs〉

s−1∑
k=0

〈w, vk〉pk.
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Using the bounds we know on the coordinates of w and the vk, we have

|〈w, vk〉| ≤
t∑

j=0

(
t

j

)
·
(
t− j

t− k

)
≤ (k + 1) · tk

for each k. Also |〈w, vs〉| ≥ 1, by integrality. Thus:

|ps| ≤ s · ts−1 · (
s−1∑
k=0

|pk|).

Now if s > 1
100 (log t)

1/5, then s · ts−1 < f(s) (since s · ts−1 ≤ ts, and f(s)1/s ≥
2(100s)

9

> t). Thus:

|ps| ≤ f(s) · (
s−1∑
k=0

|pk|).

This contradicts the hypothesis:

|ps| > f(s) · (
s−1∑
k=0

|pk|).

Thus s ≤ 1
100 (log(t))

1/5. �

For i ∈ {0, 1, . . . , t}, let ui ∈ Zt+1 be the vector given by:

ui = (

(
t− i

t

)
,

(
t− i

t− 1

)
, . . . ,

(
t− i

0

)
).

Note that the first i coordinates of this vector are 0.
The next lemma shows that the ui vectors are a dual basis to the vi vectors.

This fact is very old and classical, and we include a quick proof in the appendix for
completeness.

Lemma 3.3.

〈ui, vk〉 =
{
1, i = k,

0, i �= k.

By Lemma 3.3, we know that w is in the span of u0, u1, . . . , us, and that w is
not in the span of u0, . . . , us−1.

Let b0, . . . , bs ∈ R be such that w =
∑s

i=0 biui. Let b be the row vector
(b0, b1, . . . , bs). Observe that the i coordinate of ui equals 1, and for j < i, the j
coordinate of ui equals 0. Thus, the ui are “upper triangular”, and since w ∈ Zt+1,
we get that b0, b1, . . . , bs are all in Z. Furthermore, bs �= 0.

Using the equation
∑s

k=0〈w, vk〉pk = 0 along with Lemma 3.3, we get:

s∑
k=0

bkpk = 0.(3)

We will now show that the three facts:

• w =
∑s

i=0 biui,

• s ≤ 1
100 (log t)

1/5,

• 0 ≤ wj ≤
(
t
j

)
for each j,
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together imply that the bi are small, in the sense that
∑s

i=0 |bi| ≤ (20s)20s
2

. This,
combined with the fact that bs �= 0 and the equality

∑s
k=0 bkpk = 0, will contradict

the rapid growth of the pk.
Let P be the (s+1)×(t+1) matrix whose rows are u0, u1, . . . , us. Then b·P = w.
We know that 0 ≤ wj ≤

(
t
j

)
. We now use this to deduce some information about

the vector b.
Define P̃ to be the (s+ 1)× (t+ 1) matrix which is obtained from P as follows:

for each j ∈ {0, 1, . . . , t}, divide column j of P by
(
t
j

)
. Thus b · P̃ is a vector with

all its coordinates lying in [0, 1].

Let us study the matrix P̃ . The i, j entry of P̃ is given by:

P̃i,j =

(
t−i
t−j

)
(
t
j

)(4)

=

(
t−i
t−j

)
(

t
t−j

)(5)

=
(t− i)(t− i− 1) . . . (j − i+ 1)

t(t− 1) . . . (j + 1)
.(6)

If i < j and i < t− j, then we can cancel many common terms, and we get:

P̃i,j =
j(j − 1) . . . (j − i+ 1)

t(t− 1) . . . (t− i+ 1)
.

Thus we have:

(
j − i+ 1

t
)i ≤ P̃i,j ≤ (

j

t− i+ 1
)i.(7)

The rest of the argument is motivated by the following observation. If t is very
large relative to s (as we know it is), then the above expression implies that P̃i,j

is approximately ( jt )
i. Thus P̃ is approximately a Vandermonde matrix. This

will enable us to express what we know about b · P̃ in terms of evaluations of the
polynomial R(X) =

∑s
i=0 biX

i.

Lemma 3.4.
∑s

i=0 |bi| ≤ (20s)20s
2

.

Proof. Let C =
∑s

i=0 |bi|.
For � ∈ {1, 2, . . . , s+ 1}, define λ� ∈ {0, 1, . . . , t} by:

λ� = �
(

�

s+ 2

)
· t�,

and let y� ∈ Zt+1 be the (λ�)
th column of P̃ . We thus have 〈b, y�〉 ∈ [0, 1] for all

� ∈ {1, . . . , s+ 1}.
Define the polynomial R(X) =

∑s
i=0 biX

i.
The strategy is in two steps. We will first show that for each � ∈ {1, 2, . . . , s+1},

R(
�

s+ 2
) ≈ 〈b, y�〉.
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We will then show that if C is large, then R( �
s+2 ) must be � 1 for some �. This

will contradict the fact that 〈b, y�〉 ≤ 1.

Lemma 3.5. For each � ∈ {1, 2, . . . , s+ 1},

|〈b, y�〉 −R(
�

s+ 2
)| ≤ 1

t1/4
· C.(8)

Proof. We have:

〈b, y�〉 − R(
�

s+ 2
) =

s∑
i=0

biP̃i,λ�
−

s∑
i=0

bi

(
�

s+ 2

)i

(9)

=

s∑
i=0

bi

(
P̃i,λ�

−
(

�

s+ 2

)i
)

(10)

≤
(

s∑
i=0

|bi|
)

·max
i

∣∣∣∣∣P̃i,λ�
−
(

�

s+ 2

)i
∣∣∣∣∣ .(11)

We now estimate ∣∣∣∣∣P̃i,λ�
−
(

�

s+ 2

)i
∣∣∣∣∣ .

Since i ≤ s < t
s+2 − 1 ≤ λ� and i ≤ s < t

s+2 − 1 ≤ t− λ�, we may use equation (7)

to bound P̃i,λ�
. We thus get the upper bound:

P̃i,λ�
≤

(
λ�

t− i+ 1

)i

≤
(

�
s+2 · t+ 1

t− i+ 1

)i

≤
(

�
s+2 · t+ 1

t− s+ 1

)i

≤
(

�

s+ 2
+

s

t− s+ 1

)i

≤
(

�

s+ 2

)i (
1 +

s(s+ 2)

�(t− s+ 1)

)i

≤
(

�

s+ 2

)i (
1 +

s(s+ 2)

(t− s+ 1)

)s

≤
(

�

s+ 2

)i

e4s
3/t,
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where in the last step we used the elementary inequality (1 + x) ≤ ex for all x.
Similarly, we get the lower bound:

P̃i,λ�
≥

(
�

s+2 t− i

t

)i

≥
(

�

s+ 2
− i

t

)i

≥
(

�

s+ 2

)i (
1− i(s+ 2)

� · t

)i

≥
(

�

s+ 2

)i (
1− s(s+ 2)

t

)s

≥
(

�

s+ 2

)i

e−4s3/t,

where in the last step we used the elementary inequality 1 − x ≥ e−2x for all
x ∈ [0, 12 ]. Now since s ≤ 1

100 (log t)
1/5 < 1

100 t
1/4, we have 4s3/t < 1

106·t1/4 . Then
by the elementary inequality |ex − 1| ≤ 2|x| for all x ∈ [−1, 1], and so

|e4s3/t − 1|, |e−4s3/t − 1| ≤ 1

10 · t1/4 .

Putting these together, we get that

∣∣∣∣P̃i,λ�
−
(

�
s+2

)i
∣∣∣∣ ≤ 1

10·t1/4 for each �.

Putting this back into (11), we get inequality (8) . �

Lemma 3.6. Let c0, . . . , cs ∈ R.
There exists � ∈ {1, 2, . . . , s+ 1} s.t.∣∣∣∣∣

s∑
i=0

ci

(
�

s+ 2

)i
∣∣∣∣∣ ≥ 1

(10s)10s2
·
(

s∑
i=0

|ci|2
)1/2

.

Proof. Let Q : Rs+1 → R denote the quadratic form:

Q(c0, . . . , cs) =
s+1∑
�=1

(
s∑

i=0

ci

(
�

s+ 2

)i
)2

.

We also use Q to denote the matrix associated with this quadratic form.
Note that Q is positive definite (positive semi-definiteness is clear; to get positive

definiteness, one needs to use the fact that a nonzero polynomial of degree at most
s cannot vanish at s+ 1 points).

We now show that the smallest eigenvalue of Q is at least 1
(10s)20s2

. Using

the Cauchy-Schwarz inequality, it is easy to see that Q(c0, . . . , cs) ≤ (s + 1)2 ·
(
∑

i c
2
i ), and thus the top eigenvalue λ1 of Q is at most (s + 1)2. Furthermore,

the determinant of Q is a nonzero rational number with denominator at most
(s+2)2s(s+1). Thus the determinant of Q is at least 1

(s+2)2s(s+1) . Since the product

of the eigenvalues equals the determinant, we conclude that the smallest eigenvalue

of Q is at least det(Q)

λs−1
1

≥ 1
(s+2)2s(s+1)+2(s−1) ≥ 1

(10s)10s2
.
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If the conclusion of the lemma does not hold, then

Q(c0, . . . , cs) ≤
s

(10s)20s2

(
s∑

i=0

|ci|2
)
.

This contradicts the above bound on the smallest eigenvalue of Q. �

By the Cauchy-Schwarz inequality, we have (
∑s

i=0 |bi|2)1/2 ≥ C√
s
.

By Lemma 3.6, there exists � ∈ {1, 2, . . . , s+ 1} such that

|R(
�

s+ 2
)| ≥ 1

(10s)10s2
· C√

s
.

Combining this with Lemma 3.5, we get:

|〈b, y�〉| ≥
1

(10s)10s2
· C√

s
− C

t1/4

≥ C ·
(

1

(10s)11s2
− 1

t1/4

)
.

Since s ≤ 1
100 (log t)

1/5, we have that (10s)11s
2

< 1
2 t

1/4, and so(
1

(10s)11s2
− 1

t1/4

)
≥ 1

(20s)20s2
.

Thus

|〈b, y�〉| ≥
C

(20s)20s2
.

But we know that |〈b, y�〉| ≤ 1.

This implies C ≤ (20s)20s
2

, as desired. �

We now complete the proof of Theorem 3.1. By equation (3),

ps =
−1

bs
·
(

s−1∑
i=0

pibi

)
.

By Lemma 3.4, we have that |bi| ≤ (20s)20s
2

for each i ≤ s − 1. Since bs �= 0, we
have |bs| ≥ 1. Thus:

|ps| ≤ (20s)20s
2 · (

s−1∑
i=0

|pi|).

On the other hand, the hypothesis tells us that |ps| > f(s) · (
∑s−1

i=0 |pi|) (since

s ≥ 1). But (20s)20s
2

< f(s); this gives the desired contradiction.
This completes the proof of the theorem. �

Note that our main result also implies that for every torsion free group G and
any infinite cardinal ℵ, there is a G-valued SNZ charge on the Boolean algebra of
clopen sets of {0, 1}ℵ.

Proposition 14 of [4] shows that it does not suffice to take f(k) = ck (for any
constant c) in Theorem 3.1 (i.e., simple exponential growth of the pk does not suffice
to guarantee SNZness of the corresponding measure). In contrast, the theorem

shows that slightly faster than exponential growth, f(k) = ck
O(1)

, is sufficient. It
would be interesting to know how small we may take f(k) in this theorem.
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4. Z-valued SNZ charges on P(N)

We shall now consider the problem of existence of Z-valued SNZ charges on
P(N). Proposition 12 of [4] implies that there is a ZP(N)-valued SNZ charge on
P(N). Below we show that there is no Z-valued SNZ charge on P(N).

Theorem 4.1. There is no Z-valued SNZ charge on any Boolean algebra containing
an uncountable chain. On such a Boolean algebra there is no Q-valued SNZ charge
also. In particular, there are no Z-valued SNZ charges and Q-valued SNZ charges
on P(N).

Proof. The first two statements are clear. Let us now see that in P(N) there is a
chain of cardinality of the continuum c. This is a folklore result. We give a simple
argument for completeness. Enumerate the rationals in R as q1, q2, · · · , . . ..For
every real number r, let Ar be the set {i : qi < r}. Then {Ar : r is a real number}
is a chain of distinct sets of the cardinality of the contiunuum c. �

This raises an interesting problem. If μ is a Z-valued SNZ charge on a Boolean
algebra A and if B ⊃ A is another Boolean algebra, then under what conditions
does there exist an extension of μ to a Z-valued SNZ charge on B? In the next
theorem we shall see some necessary conditions.

Theorem 4.2. Let μ be a Z-valued SNZ charge on a Boolean algebra A. Suppose
that {Ai : i ∈ N} is an infinite family of pairwise disjoint nonempty sets in A such
that μ(Ai) = a for all i. Then there is a Boolean algebra B ⊃ A such that μ cannot
be extended as a Z-valued SNZ charge on the Boolean algebra B.
Proof. Since μ is SNZ, a is a nonzero integer. a may be positive or negative. Let
b = |a|. Take a strictly decreasing sequence of infinite subsets D1, D2, · · · , Db+1

of N so that N − D1 = D0 (say) is infinite and Di − Di+1 are also infinite for
all i ≥ 1. For 1 ≤ k ≤ b + 1, let Ek =

⋃
i∈Dk

Ai. Then E1, E2, · · · , Eb+1 is a
strictly decreasing sequence of sets. Let B be the Boolean algebra generated by
A and E1, E2, · · · , Eb+1. If there is an SNZ extension of μ to B let us also call
the extension μ. Then {μ(E1), μ(E2), · · · , μ(Eb+1)} is a set of b+ 1 many distinct
nonzero integers. Hence there exist integers � and m, with � < m, such that b
divides μ(Em) − μ(E�). Hence Em − E�, call it F , is a nonempty set such that
μ(F ) = pb for some integer p.

We now take cases on whether a > 0 or a < 0.
Suppose a > 0. If μ(F ) > 0, then μ(F ) = ka for some k > 0. Since F is an

infinite union of A′
is, if we take the union of k many A′

is where Ai ⊂ F and call it
G, then G ⊂ F , G,F ∈ B, F �= G and μ(G) = ka = μ(F ). Hence, μ(F ) > 0 is not
possible. If μ(F ) < 0, then μ(F ) = −ka for some k > 0. Since F c is an infinite
union of A′

is, if we take the union of k many A′
is where Ai ∩ F = ∅ and call it G,

then G ∩ F = ∅, G,F ∈ B and μ(G ∪ F ) = μ(G) + μ(F ) = ka − ka = 0. Hence,
μ(F ) < 0 is not possible.

Suppose a < 0. If μ(F ) > 0, then μ(F ) = −ka for some k > 0. Hence,
μ(F ) > 0 is not possible. Since F c is an infinite union of A′

is, if we take the union
of k many A′

is where Ai ∩ F = ∅ and call it G, then G ∩ F = ∅, G,F ∈ B and
μ(G ∪ F ) = μ(G) + μ(F ) = ka − ka = 0. If μ(F ) < 0, then μ(F ) = ka for some
k > 0. Since F is an infinite union of A′

is, if we take the union of k many A′
is

where Ai ⊂ F and call it G, then G ⊂ F , G,F ∈ B, F �= G and μ(G) = ka = μ(F ).
Hence, μ(F ) < 0 is not possible.
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Thus μ cannot be extended as a Z-valued SNZ charge on the Boolean algebra
generated by A and E1, E2, · · · , Ea+1. �

Let us consider the Z-valued SNZ charge μ on the finite cofinite Boolean algebra
A on N defined by μ(A) = #(A) if A is finite and = −1−#(Ac) if A is cofinite. By
Theorem 4.1 this charge cannot be extended to P(N) as a Z-valued SNZ charge.
By the proof of Theorem 4.2 there is a Boolean algebra B which is generated by A
and finitely many sets so that μ cannot be extended as a Z-valued SNZ charge.

In fact more is true for this charge. μ cannot be extended as a Z-valued SNZ
charge on the Boolean algebra generated by A and the set E of even numbers.
The proof is left as an exercise. This gives a constructive negative answer to the
following question: If μ is a Z-valued SNZ charge on a Boolean algebra A and if
B is the Boolean algebra generated by A and a set C, should there exist an SNZ
extension of μ to B? A nonconstructive negative answer to this question can be
deduced from Theorem 4.1 and Zorn’s lemma.

5. Problems

The problem of finding a combinatorial necessary and sufficient condition for the
existence of a Z-valued SNZ charge seems to be quite interesting.

Let ccc denote the countable chain condition: every collection of pairwise disjoint
sets is countable. Let ecc denote the condition: every chain is countable. By
a result of [4], every nonatomic Boolean algebra which admits an SNZ Z-valued
charge satisfies ccc and ecc. If B is a nonatomic Boolean algebra that satisfies both
ccc and ecc, then should B admit an SNZ Z-valued charge?

The referee showed us the following argument, which gives a negative answer to
the above question under CH. If μ is an SNZ Z-valued charge on a Boolean algebra
A, then by writing An = {A : μ(A) = n}, we get that A =

⋃
An where An is a

family of pairwise incomparable elements (also called a pie). It follows that if A
is uncountable, then A contains an uncountable family of pairwise incomparable
elements. Shelah proved that under CH there is an uncountable nonatomic Boolean
algebra which satisfies ecc, and in which every family of incomparable elements
is countable (see the comment at the end of [1]). Thus this Boolean algebra is
nonatomic, satisfies ccc and ecc, and does not admit a Z-valued SNZ charge. Is it
possible to construct a nonatomic Boolean algebra in ZFC which satisfies ccc and
ecc that cannot be decomposed into countably many pies?

We would like to conclude with another observation about the families An

(closely related to Theorem 4.2), as well as a related question.

Theorem 5.1. If μ is an SNZ Z-valued charge on a nonatomic Boolean algebra
A and An is as defined above, then for every n, every family of pairwise disjoint
elements in An is finite.

Proof. Suppose that for an integer n, An has an infinite family of nonempty pairwise
disjoint sets {B1, B2, · · · } such that μ(Bi) = n for all i.

We use the following simple observation: if μ is an SNZ Z-valued charge on A,
and μ(B) > 0, then there exists a nonempty C ⊆ B with μ(C) > μ(B) (if not, then
for every C ⊆ B, μ(C) < k and μ(B − C) < k, and so μ(C) ∈ {1, 2, . . . , k − 1} for
all C – contradicting SNZness and nonatomicity).

If n > 0, inside B1 find a sequence of sets C1 ⊃ C2 ⊃ · · ·Cn+1 that are all
subsets of B1 such that μ(B1) < μ(C1) < μ(C2) < · · ·μ(Cn+1). By the pigeonhole
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principle, there exist � > m such that μ(C�)−μ(Cm) = pn for some positive integer
p. Now, if we take the sets Bj : 2 ≤ j ≤ p+ 1, then

μ

⎛
⎝(Cm − C�) ∪

⎛
⎝ ⋃

2≤j≤p+1

Bj

⎞
⎠
⎞
⎠=μ (Cm−C�)+μ

⎛
⎝ ⋃

2≤j≤p+1

Bj

⎞
⎠=−pn+pn = 0.

Hence, n > 0 is not possible.
Applying the above argument to −μ, we get that n < 0 is not possible. �

This suggests the following refinement of the above problem. If μ is a Z-valued
SNZ charge on a nonatomic Boolean algebra, then the Boolean algebra satisfies ccc
and ecc and can be written as a countable disjoint union of pies, such that every
family of pairwise disjoint sets in each of these pies is finite. Is the converse true?

Appendix A. Proof of Lemma 3.3

Proof. By definition,

〈ui, vk〉 =
t∑

j=0

(−1)k−j

(
t− i

t− j

)(
t− j

t− k

)
.

The i = k case follows by observing that the only nonzero term in the above sum
comes from j = i = k.

Now we deal with the case i �= k. Let A(X) be the polynomial given by:

A(X) = (1−X)t−i =

t∑
j=i

(−1)t−j

(
t− i

t− j

)
Xt−j =

t∑
j=0

(−1)t−j

(
t− i

t− j

)
Xt−j .

Note that the p′th derivative A(p)(1) equals zero in the following two cases:

• p < t− i: Then A(p)(X) is divisible by (1−X), and so A(p)(1) = 0.
• p > t − i: Then A(p)(X) is the 0 polynomial, since A has degree t − i. In
particular, A(p)(1) = 0.

Finally, by differentiating term-by-term, we see that

1

p!
A(p)(X) =

t∑
j=0

(−1)t−j

(
t− i

t− j

)(
t− j

p

)
Xt−j−p.

Substituting p = t − k, X = 1, and using the above observations on A(p)(1), the
lemma follows. �
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