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BOUNDEDNESS, COMPACTNESS, AND INVARIANT NORMS

FOR BANACH COCYCLES OVER HYPERBOLIC SYSTEMS

BORIS KALININ AND VICTORIA SADOVSKAYA

(Communicated by Nimish Shah)

Abstract. We consider group-valued cocycles over dynamical systems with
hyperbolic behavior. The base system is either a hyperbolic diffeomorphism
or a mixing subshift of finite type. The cocycle A takes values in the group
of invertible bounded linear operators on a Banach space and is Hölder con-
tinuous. We consider the periodic data of A, i.e., the set of its return values
along the periodic orbits in the base. We show that if the periodic data of A is

uniformly quasiconformal or bounded or contained in a compact set, then so is
the cocycle. Moreover, in the latter case the cocycle is isometric with respect
to a Hölder continuous family of norms. We also obtain a general result on
existence of a measurable family of norms invariant under a cocycle.

1. Introduction and statement of the results

Group-valued cocycles appear naturally and play an important role in dynam-
ics. In particular, cocycles over hyperbolic systems have been extensively studied
starting with the work of A. Livšic [Liv71, Liv72]. One of the main problems in
this area is to obtain properties of the cocycle from its values at the periodic orbits
in the base, which are abundant for hyperbolic systems. The study encompassed
various types of groups, from abelian to compact non-abelian and more general non-
abelian; see [NT95,PaP97,Pa99,Sch99,PW01,dLW10,Kal11,KS10,S15,Gu,KS16]
and a survey in [KtN]. Cocycles with values in the group of invertible linear op-
erators on a vector space V are the prime examples in the last class. The case of
finite dimensional V has been well studied, with various applications including de-
rivative cocycles of smooth dynamical systems and random matrices. The infinite
dimensional case is more difficult and is less developed so far. The simplest exam-
ples are given by random and Markov sequences of operators. In our setting they
correspond to locally constant cocycles over subshifts of finite type. Similarly to
the finite dimensional case, the derivative of a smooth infinite dimensional system
gives a natural example of an operator-valued cocycle. We refer to the monograph
[LL] for an overview of results in this area and to [GKa,M12] for some of the recent
developments.

In this paper we consider cocycles of invertible bounded operators on a Banach
space V over dynamical systems with hyperbolic behavior. The space L(V ) of
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bounded linear operators on V is a Banach space equipped with the operator norm
‖A‖ = sup {‖Av‖ : v ∈ V, ‖v‖ ≤ 1}. The open set GL(V ) of invertible elements in
L(V ) is a topological group and a complete metric space with respect to the metric

d(A,B) = ‖A−B‖+ ‖A−1 −B−1‖.

Definition 1.1. Let f be a homeomorphism of a metric space X and let A be a
function from X to (GL(V ), d). The Banach cocycle over f generated by A is the
map A : X × Z → G defined by A(x, 0) = Id and for n ∈ N

A(x, n) = An
x = A(fn−1x) ◦ · · · ◦A(x) and A(x,−n) = A−n

x = (An
f−nx)

−1.

Clearly, A satisfies the cocycle equation An+k
x = An

fkx ◦Ak
x.

Cocycles can be considered in any regularity, but Hölder continuity is the most
natural in our setting. On the one hand continuity of the cocycle is not sufficient
for development of a meaningful theory even for scalar cocycles over hyperbolic
systems. On the other hand, symbolic systems have a natural Hölder structure but
lack a smooth one. Moreover, even for smooth hyperbolic systems higher regularity
is rare for many usual examples of cocycles, such as restrictions of the differential
to the stable and unstable subbundles. We say that a cocycle A is β-Hölder if its
generator A is Hölder continuous with exponent 0 < β ≤ 1, i.e., there exists c > 0
such that

d(A(x), A(y)) ≤ c dist(x, y)β for all x, y ∈ X.

For a cocycle A, we consider the periodic data set AP and the set of all values
AX ,

AP = {Ak
p : p = fkp, p ∈ X, k ∈ N} and AX = {An

x : x ∈ X, n ∈ Z}.

Our main result is that uniform quasiconformality, uniform boundedness, and pre-
compactness of the cocycle can be detected from its periodic data. Moreover,
pre-compactness implies that the cocycle is isometric with respect to a Hölder
continuous family of norms.

Definition 1.2. The quasiconformal distortion of a cocycle A is the function

QA(x, n) = ‖An
x‖ · ‖(An

x)
−1‖, x ∈ X and n ∈ Z.

Theorem 1.3. Let (X, f) be either a transitive Anosov diffeomorphism of a com-
pact connected manifold or a topologically mixing diffeomorphism of a locally maxi-
mal hyperbolic set or a mixing subshift of finite type (see Section 2 for definitions).
Let A be a Hölder continuous Banach cocycle over f .

(i) If there exists a constant Cper such that QA(p, k) ≤ Cper whenever fkp =
p, then A is uniformly quasiconformal, i.e., there exists a constant C such
that

QA(x, n) ≤ C for all x ∈ X and n ∈ Z.

(ii) If the set AP is bounded in (GL(V ), d), then so is the set AX .

(iii) If the set AP has compact closure in (GL(V ), d), then so does the set AX .

(iv) If the set AX has compact closure in (GL(V ), d), then there exists a Hölder
continuous family of norms ‖.‖x on V such that

Ax : (V, ‖.‖x) → (V, ‖.‖fx) is an isometry for each x ∈ X.
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We note that the closures in (iii) are not the same in general. For example,
if A is a coboundary, i.e., is generated by A(x) = C(fx) ◦ C(x)−1 for a function
C : X → GL(V ), then AP = {Id} while AX is usually not. The question whether
AP = {Id} characterizes coboundaries has been studied over several decades and
answered positively for various groups in [Liv72,NT95,PW01,Kal11,Gu].

Remark 1.4. We can view the cocycle A as an automorphism of the trivial vector
bundle V = X × V which covers f in the base and has fiber maps Ax : Vx → Vfx.
Theorem 1.3 holds in the more general setting where X×V is replaced by a Hölder
continuous vector bundle V over X with fiber V and the cocycle A is replaced by an
automorphism F : V → V covering f . This setting is described in detail in Section
2.2 of [KS13] and our proofs work without any significant modifications.

Theorem 1.3 extends results for finite dimensional V in [KS10, dLW10,Kal11].
The infinite dimensional case is substantially different. The initial step of obtaining
fiber-bunching of the cocycle from its periodic data relies on our new approxima-
tion results [KS16]. The finite dimensional boundedness result is extended in two
directions: boundedness and pre-compactness, as the latter does not follow au-
tomatically. Existence of a continuous family of norms requires a new approach.
Indeed, on a finite dimensional space the set of Euclidean norms has a structure of
a symmetric space of non-positive curvature which was used in the arguments, but
in the infinite dimensional case there is no analogous metric structure. We consider
a natural distance on the set of norms but the resulting space is not separable so we
work with a small subset. The following general result yields a measurable invariant
family of norms and then we show its continuity.

Proposition 1.5. Let f be a homeomorphism of a metric space X and let A be a
continuous Banach cocycle over f . If the set of values AX has compact closure in
GL(V ), then there exists a bounded Borel measurable family of norms ‖.‖x on V
such that Ax : (V, ‖.‖x) → (V, ‖.‖fx) is an isometry for each x ∈ X.

Theorem 1.3 yields cocycles with a “small” set of values AX , which are relatively
well understood. For example, a cocycle satisfying the conclusion (ii) of the theorem
has bounded distortion in the sense of [Sch99], i.e., there exists a constant c such
that

d(AB1, AB2) ≤ c d(B1, B2) and d(B1A,B2A) ≤ c d(B1, B2)

for all A ∈ AX and all B1, B2 ∈ GL(V ). Some definitive results on cohomology
of such cocycles were obtained by K. Schmidt in [Sch99]. These results can be
extended to cocycles satisfying the conclusion of (i) by considering the quotient by
the group of scalar operators.

2. Dynamical systems in the base

Transitive Anosov diffeomorphisms. Let X be a compact connected manifold.
A diffeomorphism f of X is called Anosov if there exist a splitting of the tangent
bundle TX into a direct sum of two Df -invariant continuous subbundles Es and
Eu, a Riemannian metric on X, and continuous functions ν and ν̂ such that

(2.1) ‖Dfx(v
s)‖ < ν(x) < 1 < ν̂(x) < ‖Dfx(v

u)‖
for any x ∈ X and unit vectors vs ∈ Es(x) and vu ∈ Eu(x). The subbundles Es

and Eu are called stable and unstable. They are tangent to the stable and unstable
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foliations W s and Wu, respectively (see, for example, [KtH]). Using (2.1) we choose
a small positive number ρ such that for every x ∈ M we have ‖Dfy‖ < ν(x) for all
y in the ball in W s(x) centered at x of radius ρ in the intrinsic metric of W s(x).
We refer to this ball as the local stable manifold of x and denote it by W s

loc(x).
Local unstable manifolds are defined similarly. It follows that for all n ∈ N and
x ∈ X,

dist(fnx, fny) < νnx · dist(x, y) for all y ∈ W s
loc(x),

dist(f−nx, f−ny) < ν̂−n
x · dist(x, y) for all y ∈ Wu

loc(x),

where νnx = ν(fn−1x) · · · ν(x) and ν̂−n
x = (ν̂(f−nx))−1 · · · (ν̂(f−1x))−1. We also

assume that ρ is sufficiently small so that W s
loc(x) ∩ Wu

loc(z) consists of a single
point for any sufficiently close x and z in X. This property is called local product
structure.

A diffeomorphism is said to be (topologically) transitive if there is a point x
in X with dense orbit. All known examples of Anosov diffeomorphisms have this
property.

Mixing diffeomorphisms of locally maximal hyperbolic sets. (See Section
6.4 in [KtH] for more details.) More generally, let f be a diffeomorphism of a
manifold M. A compact f -invariant set X ⊂ M is called hyperbolic if there exist
a continuous Df -invariant splitting TXM = Es ⊕ Eu, and a Riemannian metric
and continuous functions ν, ν̂ on an open set U ⊃ X such that (2.1) holds for all
x ∈ X. Local stable and unstable manifolds are defined similarly for any x ∈ X and
we denote their intersections with X by W s

loc(x) and W y
loc(y). The set X is called

locally maximal if X =
⋂

n∈Z
f−n(U) for some open set U ⊃ X. This property

ensures that W s
loc(x) ∩W y

loc(y) exists in X, so that X has local product structure.
The map f |X is called topologically mixing if for any two open non-empty subsets
U, V of X there is N ∈ N such that fn(U) ∩ V �= ∅ for all n ≥ N .

In the case ofX = M this gives an Anosov diffeomorphism. It is known that mix-
ing holds automatically for transitive Anosov diffeomorphisms of connected mani-
folds.

Mixing subshifts of finite type. Let M be a k × k matrix with entries from
{0, 1} such that all entries of MN are positive for some N . Let

X = {x = (xn)n∈Z : 1 ≤ xn ≤ k and Mxn,xn+1
= 1 for every n ∈ Z }.

The shift map f : X → X is defined by (fx)n = xn+1. The system (X, f) is called
a mixing subshift of finite type. We fix ν ∈ (0, 1) and consider the metric

dist(x, y) = dν(x, y) = νn(x,y), where n(x, y) = min { |i| : xi �= yi}.

The set X with this metric is compact. The metrics dν for different values of ν are
Hölder equivalent. The following sets play the role of the local stable and unstable
manifolds of x:

W s
loc(x) = { y : xi = yi, i ≥ 0 }, Wu

loc(x) = { y : xi = yi, i ≤ 0 }.

Indeed, for all x ∈ X and n ∈ N,

dist(fnx, fny) = νn dist(x, y) for all y ∈ W s
loc(x),

dist(f−nx, f−ny) = νn dist(x, y) for all y ∈ Wu
loc(x),
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and for any x, z ∈ X with dist(x, z) < 1 the intersection of W s
loc(x) and Wu

loc(z)
consists of a single point, y = (yn) such that yn = xn for n ≥ 0 and yn = zn for
n ≤ 0.

3. Proofs of Theorem 1.3 and Proposition 1.5

3.1. Fiber bunching and closing property. First we show that the cocycle A

is fiber bunched, i.e., Q(x, n) is dominated by the contraction and expansion in the
base in the following sense.

Definition 3.1. A β-Hölder cocycle A over a hyperbolic diffeomorphism f is fiber
bunched if there exist numbers θ < 1 and L such that for all x ∈ X and n ∈ N,

(3.1) QA(x, n) · (νnx )β < Lθn and QA(x,−n) · (ν̂−n
x )β < Lθn.

For a subshift of finite type, ν(x) = ν and ν̂(x) = 1/ν, and so the conditions become

QA(x, n) · νβ|n| < Lθ|n| for all n ∈ Z.

Fiber bunching plays an important role in the study of cocycles over hyperbolic
systems. In particular, it ensures certain closeness of the cocycle at the points on
the same stable/unstable manifold.

Proposition 3.2 ([KS13, Proposition 4.2(i)]). If A is fiber bunched, then there
exists c > 0 such that for any x ∈ X and y ∈ W s

loc(x),

‖(An
y )

−1 ◦An
x − Id ‖ ≤ c dist(x, y)β for every n ∈ N,

and similarly for any x ∈ X and y ∈ Wu
loc(x),

‖(A−n
y )−1 ◦A−n

x − Id ‖ ≤ c dist(x, y)β for every n ∈ N.

This proposition was proven in the finite dimensional case but the argument holds
for Banach cocycles without modifications.

The base systems that we are considering satisfy the following closing property.

Lemma 3.3 (Anosov Closing Lemma [KtH, 6.4.15-17]). Let (X, f) be a topologi-
cally mixing diffeomorphism of a locally maximal hyperbolic set. Then there exist
constants D, δ0 > 0 such that for any x ∈ X and k ∈ N with dist(x, fkx) < δ0 there
exists a periodic point p ∈ X with fkp = p such that the orbit segments x, fx, ..., fkx
and p, fp, ..., fkp remain close:

dist(f ix, f ip) ≤ D dist(x, fkx) for every i = 0, ..., k.

For subshifts of finite type this property can be observed directly. Moreover, for
the systems we consider there exist D′ > 0 and 0 < γ < 1 such that for the above
trajectories

(3.2) dist(f ix, f ip) ≤ D′ dist(x, fkx) γmin { i, k−i } for every i = 0, ..., k.

Indeed, the local product structure gives existence of a point y = W s
loc(p)∩Wu

loc(x).
Then the contraction/expansion along stable/unstable manifolds yields the expo-
nential closeness in (3.2).

We obtain fiber-bunching of the cocycleA from the following proposition. Clearly,
the assumption in part (i) of the theorem is weaker than the ones in (i)-(iv), and
so it suffices to deduce fiber-bunching from the assumption in (i).
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Proposition 3.4 ([KS16, Corollary 1.6(ii)]). Let f be a homeomorphism of a com-
pact metric space X satisfying the closing property (3.2) and let A be a Hölder
continuous Banach cocycle over f . If for some numbers C and s we have

Q(p, k) ≤ Cesk whenever p = fkp,

then for each ε > 0 there exists a number C ′
ε such that

Q(x, n) ≤ C ′
ε e

(s+ε)|n| for all x ∈ X and n ∈ Z.

We apply the proposition with s = 0 and take ε > 0 such that

eενβ < 1 and eε(ν̂−1)β < 1, where ν = max
x

ν(x) and ν̂−1 = max
x

ν̂(x)−1.

Then the fiber-bunching condition (3.1) is satisfied with

θ = max {eενβ, eε(ν̂−1)β} and L = C ′
ε.

3.2. Proof of (i). Now we show that quasiconformal distortion of A is bounded
along a dense orbit. Since f is transitive, there is a point z ∈ X such that its orbit

O(z) = {fnz : n ∈ Z} is dense in X.

We take δ0 sufficiently small to apply Anosov Closing Lemma 3.3 and so that

(1 + cδβ0 )/(1− cδβ0 ) ≤ 2, where c is as in Proposition 3.2.

Let fn1z and fn2z be two points of O(z) with δ := dist(fn1z, fn2z) < δ0. We
assume that n1 < n2 and denote

w = fk1z and k = n2 − n1, so that δ = dist(w, fkw) < δ0.

Then there exists p ∈ X with fkp = p such that dist(f iw, f ip) ≤ Dδ for i = 0, ..., k.
Let y be the point of intersection of W s

loc(p) and Wu
loc(w). We apply Proposition

3.2 to p and y and to fky and fkw and obtain

(3.3)
‖(Ak

y)
−1 ◦Ak

p − Id ‖ ≤ cδβ and

‖Ak
w ◦ (Ak

y)
−1 − Id‖ = ‖(A−k

fkw
)−1 ◦A−k

fky
− Id ‖ ≤ cδβ .

Lemma 3.5. Let A,B ∈ GL(V ). If either ‖A−1B − Id ‖ ≤ r or ‖AB−1 − Id ‖ ≤ r
for some r < 1, then

(1− r)/(1 + r) ≤ Q(A)/Q(B) ≤ (1 + r)/(1− r),

where Q(A) = ‖A‖ · ‖A−1‖ and Q(B) = ‖B‖ · ‖B−1‖.

Proof. Clearly, Q(A) = Q(A−1) and Q(A1A2) ≤ Q(A1)Q(A2).

Suppose that ‖A−1B − Id ‖ ≤ r. We denote Δ = A−1B − Id. Since for any unit
vector v, 1− r ≤ ‖(Id + Δ)v‖ ≤ 1 + r, we have Q(Id + Δ) ≤ (1 + r)/(1− r).

Since B = A (Id + Δ) we obtain

Q(B) ≤ Q(A) ·Q(Id + Δ) ≤ Q(A) · (1 + r)/(1− r).

Also, A−1 = (Id + Δ)B−1 and hence

Q(A) = Q(A−1) ≤ Q(Id + Δ) ·Q(B−1) ≤ (1 + r)/(1− r) ·Q(B),

and the estimate for Q(A)/Q(B) follows. The case of ‖AB−1 − Id ‖ ≤ r is similar.
�
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It follows from the Lemma 3.5 and the choice of δ0 that

Q(y, k)/Q(p, k) ≤ (1 + cδβ)/(1− cδβ) ≤ 2 and Q(w, k)/Q(y, k) ≤ 2,

and hence

Q(w, k) = Q(fn1z, n2 − n1) ≤ 4Q(p, k) ≤ 4Cper.

We take m ∈ N such that the set {f jz; |j| ≤ m} is δ0-dense in X. Let

Qm = max {Q(z, j) : |j| ≤ m}.
Then for any n > m there exists j, |j| ≤ m, such that dist(fnz, f jz) ≤ δ0 and
hence

Q(z, n) ≤ Q(z, j) ·Q(f jz, n− j) ≤ Qm · 4Cper.

The case of n < −m is similar. Thus Q(z, n) is uniformly bounded in n ∈ Z, and
hence Q(f �z, n) is uniformly bounded in 	, n ∈ Z since

Q(f �z, n) ≤ Q(f �z,−	) ·Q(z, n+ l) = Q(z, 	) ·Q(z, n+ l).

Since O(z) is dense in X and Q(x, n) is continuous on X for each n, this implies
that Q(x, n) is uniformly bounded in x ∈ X and n ∈ Z.

3.3. Proof of (ii). Since the set AP is bounded, there is a constant C ′
per such that

max {‖Ak
p‖, ‖(Ak

p)
−1‖} ≤ C ′

per whenever fkp = p.

We show that there exists a constant C ′ such that

max {‖An
x‖, ‖(An

x)
−1‖} ≤ C ′ for all x and n.

Let z, n1, n2, w = fn1z, k = n2 − n1, y and p be as in (i). Since

(Ak
y)

−1 =
(
Id + ((Ak

y)
−1 ◦Ak

p − Id)
)
◦ (Ak

p)
−1,

the first inequality in (3.3) implies

‖(Ak
y)

−1‖ ≤ (1 + cδβ) · ‖(Ak
p)

−1‖ ≤ (1 + cδβ0 )C
′
per ≤ 2C ′

per

by the choice of δ0. Interchanging p and y we obtain ‖(Ak
p)

−1 ◦Ak
y − Id ‖ ≤ cδβ and

it follows that ‖Ak
y‖ ≤ 2C ′

per. Similarly, the second inequality in (3.3) yields

‖Ak
w‖ ≤ (1 + cδβ) · ‖Ak

y‖ ≤ 2‖Ak
y‖ and ‖(Ak

w)
−1‖ ≤ 2‖(Ak

y)
−1‖,

and we conclude that ‖Ak
w‖ ≤ 4C ′

per and ‖(Ak
w)

−1‖ ≤ 4C ′
per. It follows similarly to

(i) that max {‖An
x‖, ‖(An

x)
−1‖} is uniformly bounded in x ∈ X and in n ∈ Z.

3.4. Proof of (iii). Now we show that if the set AP has compact closure, then so
does AX . It suffices to prove that AX is totally bounded, i.e., for any ε > 0 it has
a finite ε-net. Since AX is bounded by (iii), we can choose a constant M such that

‖A‖, ‖A−1‖ ≤ M for all A ∈ AX .

We fix δ0 > 0 sufficiently small to apply Anosov Closing Lemma 3.3 and so that

4M2c δβ0 < ε/2 and take ε′ such that 4M2c δβ0 + Mε′ < ε. We fix a finite ε′-net
Pε′ = {P1, ..., P�} in AP . As in (i), we take a point z with dense orbit and choose
m ∈ N such that the set {f jz : |j| ≤ m} is δ0-dense in X. We will show that the
set

P̃ε = {Pi ◦Aj
z : i = 0, 1, ..., 	, |j| ≤ m}, where P0 = Id,

is a finite ε-net for {An
z : n ∈ Z}. Clearly, An

z ∈ P̃ε for |n| ≤ m.
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Suppose n > m, the argument for n < −m is similar. Then there exists j with
|j| ≤ m such that δ = dist(f jz, fnz) ≤ δ0 and hence for x = f jz and k = n − j
there is p = fkp such that dist(f ix, f ip) ≤ Dδ for i = 0, ..., k. Then it follows from
the first inequality in (3.3) that for y = W s

loc(p) ∩Wu
loc(x),

‖Ak
p −Ak

y‖ = ‖Ak
y ◦ ((Ak

y)
−1 ◦Ak

p − Id) ‖ ≤ ‖Ak
y‖ · ‖(Ak

y)
−1 ◦Ak

p − Id ‖ ≤ Mcδβ ,

similarly,

‖(Ak
p)

−1 − (Ak
y)

−1‖ = ‖((Ak
y)

−1 ◦Ak
p − Id) ◦ (Ak

p)
−1‖ ≤ Mcδβ,

and so
d(Ak

p, A
k
y) = ‖Ak

p −Ak
y‖+ ‖(Ak

p)
−1 − (Ak

y)
−1‖ ≤ 2Mcδβ .

It follows similarly from the second inequality in (3.3) that d(Ak
y , A

k
x) ≤ 2Mcδβ .

Thus
d(Ak

p, A
k
fjz) = d(Ak

p, A
k
x) ≤ 4Mcδβ =: c′δβ .

Also, there exists an element Pi of the ε′-net Pε′ such that d(Ak
p, Pi) < ε′. So we

have d(Ak
fjz, Pi) < c′δβ + ε′. Then, as An

z = Ak
fjz ◦ Aj

z, by Lemma 3.6 below we

have
d(An

z , Pi ◦Aj
z) = d(Ak

fjz ◦Aj
z, Pi ◦Aj

z) ≤ M(c′δβ + ε′) ≤ ε.

Lemma 3.6. If for each of A, Ã, B, B̃ ∈ GL(V ) the norm and the norm of the

inverse are at most M , then d(A ◦B, Ã ◦ B̃) = M(d(A, Ã) + d(B, B̃)).

Proof. Adding and subtracting Ã ◦B we obtain

‖A ◦B − Ã ◦ B̃‖ ≤ ‖A− Ã‖ · ‖B‖+ ‖Ã‖ · ‖B − B̃‖ ≤ M(‖A− Ã‖+ ‖B − B̃‖).
Similarly, ‖A−1 ◦B−1 − Ã−1 ◦ B̃−1‖ ≤ M(‖A−1 − Ã−1‖+ ‖B−1 − B̃−1‖). �

We conclude that the set P̃ε is a finite ε-net for the set {An
z : n ∈ Z} and hence

this set is totally bounded. It follows that so is the set {An
fiz : i, n ∈ Z}. Indeed,

if {P̃1, ..., P̃N} is an ε-net for {An
z : n ∈ Z}; then

{ P̃i ◦ (P̃j)
−1 : 1 ≤ i, j ≤ N }

is a 2Mε-net for {An
fiz : i, n ∈ Z}. This follows from Lemma 3.6 since

d(A,B) = d(A−1, B−1) and Ak
fiz = Ak+i

z ◦ (Ai
z)

−1.

Since the orbit of z is dense in X, the set {An
fiz : i, n ∈ Z} is dense in the set

AX and hence this set is also totally bounded and its closure is compact.

3.5. Proof of Proposition 1.5. We denote by N the space of all norms ϕ on V
which are equivalent to the fixed background norm ϕ0 = ‖.‖, and by NK the subset
of the norms equivalent to ‖.‖ with a constant K > 0, i.e.,

(3.4) NK = {ϕ : K−1‖v‖ ≤ ϕ(v) ≤ K‖v‖ for all v ∈ V }.
We consider the following metric on N . Let B1 and B2 be the closed unit balls in
V with respect to norms ϕ1 and ϕ2 in N . We define

(3.5) dist(ϕ1, ϕ2) = log min { t ≥ 1 : B1 ⊆ tB2 and B2 ⊆ tB1},
where tB = {tv : v ∈ B}. It is easy to check that the minimum is attained and
that this is a distance on N . Moreover,
(3.6)

dist(ϕ1, ϕ2) = log min {t ≥ 1 : t−1ϕ2(v) ≤ ϕ1(v) ≤ tϕ2(v) for each v ∈ V },
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and hence diamNK = 2 logK as NK is the closed ball of radius logK centered at
ϕ0. We note that the space NK with this metric is not separable in general.

Lemma 3.7. For each K > 0, the distance on NK given by (3.5) is equivalent to

dist′(ϕ1, ϕ2) = sup { |ϕ1(v)− ϕ2(v)| : ‖v‖ ≤ 1 },

and hence the metric space (NK , dist) is complete.

Proof. Let a = dist(ϕ1, ϕ2). Then by (3.6) for any v with ‖v‖ ≤ 1 we have

ϕ2(v) ≤ eaϕ1(v) and hence ϕ2(v)− ϕ1(v) ≤ (ea − 1)ϕ1(v) ≤ (ea − 1)K,

and similarly, ϕ1(v)− ϕ2(v) ≤ (ea − 1)K. Using the mean value theorem and the
fact that a ≤ diamNK = 2 logK we obtain

dist′(ϕ1, ϕ2) ≤ K(ea − 1) ≤ Ke2 logKa = K3 dist(ϕ1, ϕ2).

Let b = dist′(ϕ1, ϕ2). Then |ϕ1(v)− ϕ2(v)| ≤ b for all v with ‖v‖ ≤ 1, and hence

|ϕ1(v)− ϕ2(v)| ≤ Kb for all v with ‖v‖ ≤ K.

Suppose that v ∈ B1. Then

ϕ1(v) ≤ 1 ⇒ ‖v‖ ≤ K ⇒ ϕ2(v) ≤ ϕ1(v) +Kb ≤ 1 +Kb

and hence B1 ⊆ (1 +Kb)B2. Similarly, B2 ⊆ (1 +Kb)B1 and so

(3.7) dist(ϕ1, ϕ2) ≤ log(1 +Kb) ≤ Kb = K dist′(ϕ1, ϕ2).

So the two metrics on NK are equivalent. It is easy to see that (NK , dist′) is
complete as a closed subset of the complete space of bounded continuous functions
on the unit ball, and hence (NK , dist) is also complete. �

Now we construct a Borel measurable family of norms ϕx = ‖.‖x in NK such
that Ax : (V, ‖.‖x) → (V, ‖.‖fx) is an isometry for each x ∈ X. For a norm ϕ ∈ N
and an operator A ∈ GL(V ) we denote the pull-back of ϕ by A∗ϕ(v) = ϕ(Av). The
convenience of the metric (3.5) is that, as A(B1) ⊆ tA(B2) if and only if B1 ⊆ tB2,
the pull-back action of GL(V ) on N is isometric, i.e.,

dist(A∗ϕ1, A
∗ϕ2) = dist(ϕ1, ϕ2) for any A ∈ GL(V ) and ϕ1, ϕ2 ∈ N.

Lemma 3.8. For any ϕ ∈ N and A, Ã ∈ GL(V ) such that ϕ,A∗ϕ, Ã∗ϕ ∈ NK , we

have dist(A∗ϕ, Ã∗ϕ) ≤ K4‖A− Ã‖ .

Proof. We denote ‖A‖ϕ = sup {ϕ(Av) : ϕ(v) ≤ 1}. It follows from (3.4) that

‖A‖ϕ ≤ sup {K‖Av‖ : ‖v‖ ≤ K} ≤ K2‖A‖.

For any v with ‖v‖ ≤ 1 we have

|ϕ(Av)−ϕ(Ãv)| ≤ ϕ(Av−Ãv) ≤ ‖A−Ã‖ϕ ϕ(v) ≤ K2‖A−Ã‖·K‖v‖ = K3‖A−Ã‖.

It follows that

dist′(A∗ϕ, Ã∗ϕ) = sup { |ϕ(Av)− ϕ(Ãv) | : ‖v‖ ≤ 1 } ≤ K3‖A− Ã‖,

and using (3.7) we conclude that

dist(A∗ϕ, Ã∗ϕ) ≤ K dist′(A∗ϕ, Ã∗ϕ) ≤ K4‖A− Ã‖. �
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We denote Ā = Cl(AX). We fix K such that K > ‖A‖, ‖A−1‖ for all A ∈ Ā and
consider the corresponding space of norms NK . Then A∗ϕ0 ∈ NK for each A ∈ Ā

as K−1‖v‖ ≤ ‖(A∗ϕ0)(v)‖ = ‖Av‖ ≤ K‖v‖. Lemma 3.8 implies that the function
A �→ A∗ϕ0 is continuous in A, and since the set Ā is compact in GL(V ), its image
under this function

NA = Cl { (An
x)

∗ϕ0 : x ∈ X, n ∈ Z } ⊆ NK is compact.

We also note that A∗ϕ ∈ NK2 for any A ∈ Ā and ϕ ∈ NK .
Since all norms in NA are equivalent, the intersection of the unit balls B1, ...,Bn

for finitely many of these norms ϕ1, ..., ϕn ∈ NA is the unit ball of an equivalent
norm ϕ̂ = max{ϕ1, ..., ϕn} in NK . We consider the set N̂A of all such norms ϕ̂,

N̂A = { ϕ̂ = max{ϕ1, ..., ϕn} : n ∈ N, ϕ1, ..., ϕn ∈ NA } ⊆ NK .

Lemma 3.9. The set N̄A = Cl (N̂A) is a compact subset of NK .

Proof. It suffices to show that N̂A is totally bounded. Let P = {ϕ1, ..., ϕN} be an

ε-net in NA and let P̂ be the set of all possible maxima of subsets of P . Then P̂ is
an ε-net in N̂A since
(3.8)

dist(max{ϕ1, ..., ϕn},max{ϕ̃1, ..., ϕ̃n}) ≤ max{dist(ϕ1, ϕ̃1), ..., dist(ϕn, ϕ̃n)}.

Indeed, if the right hand side equals log t, then for the corresponding unit balls we
have B1 ⊂ tB̃1, ..., Bn ⊂ tB̃n and it follows that

B1 ∩ ... ∩Bn ⊆ tB̃1 ∩ ... ∩ tB̃n = t(B̃1 ∩ ... ∩ B̃n).

Similarly, B̃1 ∩ ... ∩ B̃n ⊆ t(B1 ∩ ... ∩ Bn), and so the left hand side of (3.8) is at
most log t. �

For each x ∈ X we consider the pull-backs of the background norm by An
x and

let

ϕm
x = max { (An

x)
∗ϕ0 : |n| ≤ m } and ϕx = sup { (An

x)
∗ϕ0 : n ∈ Z }.

We note that ϕx is the norm whose unit ball is the intersection of the unit balls of
ϕm
x , m ∈ N, or equivalently the unit balls of (An

x)
∗ϕ0, n ∈ Z. We claim that

ϕx = lim
m→∞

ϕm
x in (N̄A, dist) for each x ∈ X.

Indeed, for each v ∈ V the sequence ϕm
x (v) increases and converges to ϕx(v). Since

the sequence ϕm
x lies in the compact set N̄A, any subsequence has a subsequence

converging in (N̄A, dist), whose limit must be ϕx. This implies, by contradiction,
that ϕm

x converges to ϕx in (N̄A, dist). Note that compactness of N̄A is crucial
here.

Since (An
x)

∗ϕ0 depends continuously on x for each n, the inequality (3.8) yields
that ϕm

x is a continuous function on X for each m. We conclude that the pointwise
limit ϕx is a Borel measurable function from X to NA ⊆ NK . By the construction,
ϕx = (An

x)
∗ϕfnx for all x ∈ X and n ∈ Z. In other words, ϕx is an invariant section

of the bundle N = X × N̄A over X.
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3.6. Proof of (iv). We keep the notation of the previous section. By Proposition
1.5, there exists a Borel measurable family ϕx of norms in NK invariant under the
cocycle. Let μ be the Bowen-Margulis measure of maximal entropy for (X, f). We
show that the family ϕx coincides μ almost everywhere with a Hölder continuous
invariant family of norms. First we consider x ∈ X and z ∈ W s

loc(x). We denote
xn = fnx and zn = fnz. Since the family of norms ϕx is invariant and the action
of GL(V ) on norms is isometric, we have

dist(ϕx, ϕz) = dist ((An
x)

∗ϕxn
, (An

z )
∗ϕzn)

≤ dist ((An
x)

∗ϕxn
, (An

x)
∗ϕzn) + dist ((An

x)
∗ϕzn , (A

n
z )

∗ϕzn)

≤ dist(ϕxn
, ϕzn) + dist

(
ϕzn , (A

n
z ◦ (An

x)
−1)∗ϕzn

)
.

By Proposition 3.2 for all n ∈ N we have ‖(An
x)

−1 ◦ An
z − Id ‖ ≤ c dist(x, y)β and

hence

‖An
z ◦ (An

x)
−1 − Id‖ ≤ ‖An

z ‖ · ‖(An
x)

−1 ◦An
z − Id ‖ · ‖(An

z )
−1‖ ≤ K2c dist(x, z)β

since ‖An
x‖, ‖(An

x)
−1‖ ≤ K for all x and n. Then by Lemma 3.8 we have

dist
(
ϕzn , (A

n
z ◦ (An

x)
−1)∗ϕzn

)
≤ K8‖An

z ◦ (An
x)

−1 − Id ‖ ≤ K10c dist(x, z)β

as ϕzn ∈ NK and hence (An
z ◦ (An

x)
−1)∗ϕzn ∈ NK2 .

Since the space (N̄A, dist) is compact and hence separable, we can apply Lusin’s
theorem to the function ϕ : x �→ ϕx from X to N̄A. So there exists a compact set
S ⊂ X with μ(S) > 1/2 on which ϕ is uniformly continuous. Let Y be the set
of points in X for which the frequency of visiting S equals μ(S) > 1/2. By the
Birkhoff ergodic theorem μ(Y ) = 1. If both x and z are in Y , then there exists a
sequence {ni} such that xni

∈ S and zni
∈ S. Since z ∈ W s

loc(x),

dist(xni
, zni

) → 0 and hence dist(ϕxni
, ϕzni

) → 0

by uniform continuity of ϕ on S. Thus we conclude that for x, z ∈ Y with z ∈
W s

loc(x)

dist(ϕx, ϕz) ≤ K10c dist(x, z)β =: c1 dist(x, z)
β.

Similarly, for x, y ∈ Y with y ∈ Wu
loc(x) we have dist(ϕx, ϕy) ≤ c1 dist(x, y)

β.
We consider a small open set in X with product structure, which for the shift

case is just a cylinder with a fixed 0-coordinate. For almost every local stable leaf,
the set of points of Y on the leaf has full conditional measure of μ. We consider
x, y ∈ Y which lie on two such local stable leaves and denote by Hx,y the holonomy
map along unstable leaves from W s

loc(x) to W s
loc(y):

for z ∈ W s
loc(x), Hx,y(z) = Wu

loc(z) ∩W s
loc(y) ∈ W s

loc(y).

It is known that the holonomy maps are absolutely continuous with respect to the
conditional measures of μ, which implies that there exists a point z ∈ W s

loc(x) ∩ Y
close to x such that z′ = Hx,y(z) is also in Y . By the argument above we have

dist(ϕx, ϕz) ≤ c1 dist(x, z)
β, dist(ϕz, ϕz′) ≤ c1 dist(z, z

′)β ,

dist(ϕz′ , ϕy) ≤ c1 dist(z
′, y)β .

Since the points x, y, and z are close, by the local product structure we have

dist(x, z)β + dist(z, z′)β + dist(z′, y)β ≤ c2 dist(x, y)β.

Hence, we obtain dist(ϕx, ϕy) ≤ c3 dist(x, y)β for all x and y in a set of full

measure Ỹ ⊂ Y . We can assume that Ỹ is invariant by taking
⋂∞

n=−∞ fn(Ỹ ).
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Since μ has full support, the set Ỹ is dense in X, and hence we can extend ϕ from
Ỹ and obtain an invariant Hölder continuous family of norms ‖.‖x on X. �
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