Projected Gromov-Witten varieties in cominuscule spaces
HTML articles powered by AMS MathViewer
- by Anders S. Buch, Pierre–Emmanuel Chaput, Leonardo C. Mihalcea and Nicolas Perrin
- Proc. Amer. Math. Soc. 146 (2018), 3647-3660
- DOI: https://doi.org/10.1090/proc/13839
- Published electronically: May 15, 2018
- PDF | Request permission
Abstract:
A projected Gromov-Witten variety is the union of all rational curves of fixed degree that meet two opposite Schubert varieties in a homogeneous space $X = G/P$. When $X$ is cominuscule we prove that the map from a related Gromov-Witten variety is cohomologically trivial. This implies that all (3-point, genus zero) $K$-theoretic Gromov-Witten invariants of $X$ are determined by projected Gromov-Witten varieties, which extends an earlier result of Knutson, Lam, and Speyer, and provides an alternative version of the ‘quantum equals classical’ theorem. Our proof uses that any projected Gromov-Witten variety in a cominuscule space is also a projected Richardson variety.References
- Dave Anderson, Stephen Griffeth, and Ezra Miller, Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 1, 57–84. MR 2735076, DOI 10.4171/JEMS/244
- Sara Billey and Izzet Coskun, Singularities of generalized Richardson varieties, Comm. Algebra 40 (2012), no. 4, 1466–1495. MR 2912998, DOI 10.1080/00927872.2011.551903
- Alexander Braverman and Michael Finkelberg, Finite difference quantum Toda lattice via equivariant $K$-theory, Transform. Groups 10 (2005), no. 3-4, 363–386. MR 2183117, DOI 10.1007/s00031-005-0402-4
- Michel Brion, Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (2002), no. 1, 137–159. Special issue in celebration of Claudio Procesi’s 60th birthday. MR 1958901, DOI 10.1016/S0021-8693(02)00505-7
- Anders Skovsted Buch, A Littlewood-Richardson rule for the $K$-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37–78. MR 1946917, DOI 10.1007/BF02392644
- Anders Skovsted Buch, Quantum cohomology of Grassmannians, Compositio Math. 137 (2003), no. 2, 227–235. MR 1985005, DOI 10.1023/A:1023908007545
- Anders S. Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, and Nicolas Perrin, Finiteness of cominuscule quantum $K$-theory, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 3, 477–494 (2013) (English, with English and French summaries). MR 3099983, DOI 10.24033/asens.2194
- Anders S. Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, and Nicolas Perrin, Rational connectedness implies finiteness of quantum $K$-theory, Asian J. Math. 20 (2016), no. 1, 117–122. MR 3460760, DOI 10.4310/AJM.2016.v20.n1.a5
- Anders Skovsted Buch, Andrew Kresch, and Harry Tamvakis, Gromov-Witten invariants on Grassmannians, J. Amer. Math. Soc. 16 (2003), no. 4, 901–915. MR 1992829, DOI 10.1090/S0894-0347-03-00429-6
- Anders S. Buch and Leonardo C. Mihalcea, Quantum $K$-theory of Grassmannians, Duke Math. J. 156 (2011), no. 3, 501–538. MR 2772069, DOI 10.1215/00127094-2010-218
- Anders S. Buch and Leonardo C. Mihalcea, Curve neighborhoods of Schubert varieties, J. Differential Geom. 99 (2015), no. 2, 255–283. MR 3302040
- P. E. Chaput, L. Manivel, and N. Perrin, Quantum cohomology of minuscule homogeneous spaces, Transform. Groups 13 (2008), no. 1, 47–89. MR 2421317, DOI 10.1007/s00031-008-9001-5
- P.-E. Chaput and N. Perrin, Rationality of some Gromov-Witten varieties and application to quantum $K$-theory, Commun. Contemp. Math. 13 (2011), no. 1, 67–90. MR 2772579, DOI 10.1142/S0219199711004166
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI 10.1090/pspum/062.2/1492534
- Alexander Givental, On the WDVV equation in quantum $K$-theory, Michigan Math. J. 48 (2000), 295–304. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786492, DOI 10.1307/mmj/1030132720
- Alexander Givental and Yuan-Pin Lee, Quantum $K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Invent. Math. 151 (2003), no. 1, 193–219. MR 1943747, DOI 10.1007/s00222-002-0250-y
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI 10.1090/S0894-0347-02-00402-2
- Xuhua He and Thomas Lam, Projected Richardson varieties and affine Schubert varieties, Ann. Inst. Fourier (Grenoble) 65 (2015), no. 6, 2385–2412 (English, with English and French summaries). MR 3449584, DOI 10.5802/aif.2990
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- Allen Knutson, Thomas Lam, and David E. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013), no. 10, 1710–1752. MR 3123307, DOI 10.1112/S0010437X13007240
- Allen Knutson, Thomas Lam, and David E. Speyer, Projections of Richardson varieties, J. Reine Angew. Math. 687 (2014), 133–157. MR 3176610, DOI 10.1515/crelle-2012-0045
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI 10.2307/1971351
- Alain Lascoux and Marcel-Paul Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629–633 (French, with English summary). MR 686357
- G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR 1327548, DOI 10.1007/978-1-4612-0261-5_{2}0
- R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), no. 1, 69–77. MR 1157520, DOI 10.1016/0019-3577(92)90028-J
- K. Rietsch, Closure relations for totally nonnegative cells in $G/P$, Math. Res. Lett. 13 (2006), no. 5-6, 775–786. MR 2280774, DOI 10.4310/MRL.2006.v13.n5.a8
- Susan J. Sierra, A general homological Kleiman-Bertini theorem, Algebra Number Theory 3 (2009), no. 5, 597–609. MR 2578891, DOI 10.2140/ant.2009.3.597
- F. L. Zak, Tangents and secants of algebraic varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, 1993. Translated from the Russian manuscript by the author. MR 1234494, DOI 10.1090/mmono/127
Bibliographic Information
- Anders S. Buch
- Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854
- MR Author ID: 607314
- Email: asbuch@math.rutgers.edu
- Pierre–Emmanuel Chaput
- Affiliation: Domaine Scientifique Victor Grignard, 239, Boulevard des Aiguillettes, Université de Lorraine, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
- Email: pierre-emmanuel.chaput@univ-lorraine.fr
- Leonardo C. Mihalcea
- Affiliation: Department of Mathematics, Virginia Tech University, 460 McBryde Street, Blacksburg, Virginia 24060
- Email: lmihalce@math.vt.edu
- Nicolas Perrin
- Affiliation: Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035 Versailles, France
- MR Author ID: 661087
- Email: nicolas.perrin@uvsq.fr
- Received by editor(s): January 9, 2015
- Received by editor(s) in revised form: May 5, 2017
- Published electronically: May 15, 2018
- Additional Notes: The first author was supported in part by NSF grant DMS-1205351.
The third author was supported in part by NSA Awards H98230-13-1-0208 and H98320-16-1-0013 and a Simons Collaboration Grant.
The fourth author was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH. - Communicated by: Lev Borisov
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3647-3660
- MSC (2010): Primary 14N35; Secondary 19E08, 14N15, 14M15, 14M20, 14M22
- DOI: https://doi.org/10.1090/proc/13839
- MathSciNet review: 3825822