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Abstract. Let S ⊆ N be finite. Is there a positive definite quadratic form
that fails to represent only those elements in S? For S = ∅, this was solved (for
classically integral forms) by the 15-Theorem of Conway-Schneeberger in the
early 1990s and (for all integral forms) by the 290-Theorem of Bhargava-Hanke
in the mid-2000s. In 1938 Halmos attempted to list all weighted sums of four
squares that failed to represent S = {m}; of his 88 candidates, he could provide
complete justifications for all but one. In the same spirit, we ask, “For which
S = {m,n} does there exist a quadratic form excepting only the elements
of S?” Extending the techniques of Bhargava and Hanke, we answer this
question for quaternary forms. In the process, we provide a new proof of the
original outstanding conjecture of Halmos, namely, that x2+2y2+7z2+13w2

represents all positive integers except 5. We develop new strategies to handle
forms of higher dimensions, yielding an enumeration of and proofs for the 73
possible pairs that a classically integral positive definite quadratic form may
except.

1. Introduction and statement of results

Determining which integers are represented by a positive definite quadratic form
has been of long-standing mathematical interest. One particular phrasing of the
question is as follows: given a finite subset S ⊆ N, do there exist quadratic forms
(and if so, how many) that represent n ∈ N if and only if n �∈ S?

When S = ∅, the answer is known; this is the case of classifying universal
positive definite quadratic forms. In 1916, Ramanujan [14] proved the existence of
55 universal quaternary diagonal positive definite quadratic forms. While it was
later discovered that one of those forms fails to represent n = 15, the remaining
54 do give the complete list. Ramanujan’s idea for generating candidate forms
was similar to that of escalation, a crucial tool in later universality results. For
classically integral forms, there is the Conway-Schneeberger 15-Theorem. First
announced in 1993, it states that a classically integral positive definite quadratic
form is universal if and only if it represents all positive integers up to 15; moreover,
provided was a list of the 204 quaternary forms with this property. For the more
general case, there is the 2005 result of Bhargava-Hanke: the 290-Theorem. This
states that an integral positive definite quadratic form is universal if and only if it
represents all positive integers up to 290; again, provided was a list of 6, 436 such
forms in four variables [3].
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A natural next question is to classify those positive definite quadratic forms
representing all positive integers with a single exception (i.e., the case when S =
{m}). Using Ramanujan’s idea of escalation, in [9] Halmos provided a list of 135
diagonal quaternary candidate forms that could fail to represent at most one integer.
Using known results about representation by ternary subforms, Halmos was able
to narrow that list down to 88 candidate forms. He provided proofs that 87 of
those did indeed fail to represent exactly one integer, though like Ramanujan there
is some overcounting (two of Halmos’s 88 except exactly two integers). Halmos
suspected the remaining form x2 +2y2 +7z2 +13w2 only failed to represent 5, but
he could not provide a proof. Pall [13] did supply a proof in 1940, using genus
theory and basic modular arithmetic. Continuing the study of forms representing
all but finitely many integers, in 2009 Bochnak and Oh [4] provided necessary and
sufficient local conditions for when a classically integral positive definite quadratic
form excepts finitely many values.

In this paper we consider quadratic forms which except precisely two values (see
Theorem 1, stated below and proved in section 5). Previous results in this area
concentrate on fixing a particular quadratic form and verifying that it fails to repre-
sent only two values, as opposed to our result of listing with verification all possible
pairs of excepted values. As a recent example of former results, in [10] Hanke solved
an outstanding conjecture of Kneser by showing that x2 + 3y2 + 5z2 + 7w2 repre-
sents precisely those m ∈ N − {2, 22}. Additionally, we offer (as our Corollary 2)
a different set of conditions, analogous to those of Bhargava-Hanke, for the case
where a quadratic form excepts precisely one value.

We now state our main results.

Theorem 1. There are exactly 73 sets S = {m,n} (with 1 ≤ m < n) for which
there exists a classically integral positive definite quadratic form representing pre-
cisely N− S.

Remark. A more precise version of Theorem 1 explicitly listing those 73 sets will
be given in section 5.

Both the 15- and 290-Theorems supply more specific lists of critical integers
whose representability by a form Q is necessary and sufficient for universality. The
criticality of such an integer m is proven by explicitly constructing an almost uni-
versal quadratic form excepting only {m}.

Remark. With the knowledge that m ≤ 15, our escalation process independently
verifies each of the 9 critical integers {1, 2, 3, 5, 6, 7, 10, 14, 15} given by the 15-
Theorem. Furthermore, for all excepted pairs {m,n}, note that m must be a
critical integer.

The following corollary gives criteria for proving that a given form excepts pre-
cisely one critical integer.

Corollary 2. Given any m ∈ {1, 2, 3, 5, 6, 7, 10, 14, 15}, let nmax denote the largest
n such that {m,n} is one of the 73 pairs from Theorem 1. If a form Q excepts m
but represents all other k ≤ nmax, then m is the only exception for Q.
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We are also able to provide the proof that Halmos could not, using a method
different from that of Pall:

Corollary 3. The only positive integer m that is not represented by x2 + 2y2 +
7z2 + 13w2 is m = 5.

We further note the following errors in Halmos’s original results:

Corollary 4. The forms x2+ y2+2z2+22w2 and x2+2y2+4z2+22w2 represent
precisely N− {14, 78}, in contradiction to Halmos’s conjecture of N− {14}.

The paper is organized as follows. Section 2 provides general background on
the relevant theory of quadratic forms and modular forms needed for our proof
(specifically in the quaternary case). The next section describes the computational
methods that were used (again, in the quaternary case). Section 4 explains how the
theoretical and computational techniques of the previous two sections generalize to
higher-dimensional forms, with section 5 providing the proofs of the main results.
Lastly, we include an example in section 6.2 of a detailed proof of Corollary 3.

The source code and log files used in the proofs of our results are located at
https://github.com/almostuniversals/two-vals. We provide the full suite of
Magma files that carried out the almost universality computations, a sample Sage-
Math worksheet for generating candidate forms, and one log file (from running
the Magma suite) per possible exception pair verifying that a form excepting only
the pair exists. Our GitHub directory also contains a .zip file holding logs for all
candidate forms.

2. Background

Let n ∈ N. An n-ary integral quadratic form is a homogeneous integral
polynomial of degree two of the form

Q(�x) = Q(x1, . . . , xn) =
∑

1≤i≤j≤n

aijxixj ∈ Z [x1, . . . , xn] .

An equivalent way to represent quadratic forms is by symmetric matrices in
Mn

(
1
2Z
)
; that is, for each n-ary integral quadratic form there exists a unique

symmetric matrix AQ ∈ Mn

(
1
2Z
)
such that

Q(�x) = �x tAQ�x.

When AQ ∈ Mn (Z) (equivalently, when all cross-terms of Q are even) we say that
Q is classically integral. We say that an integral n-ary quadratic form is positive
definite if Q (�x) ≥ 0, with equality if and only if �x = �0. Note that det(AQ) > 0
for any positive definite quadratic form Q. For the remainder of this paper, assume
that any “form” is a “classically integral positive definite quadratic form”.

Given two n-ary forms Q1 and Q2 with respective matrices AQ1
and AQ2

, we
say that Q1 and Q2 are equivalent (over Z) if and only if there exists a matrix
M ∈ GLn(Z) such that AQ1

= MAQ2
M t.

Let m ∈ N and let Q be an n-ary form. We say that m is represented by Q if
there exists �x ∈ Zn so that

Q (�x) = m.

Let

rQ(m) := # {�x ∈ Zn | Q(�x) = m}

https://github.com/almostuniversals/two-vals
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denote the representation number of m by Q. As mentioned earlier, a form Q
is said to be universal if rQ(m) > 0 for all m ∈ N. In [9], Halmos used the term
almost universal to denote a form Q which failed to represent a single m ∈ N.
In the same spirit, we take almost universal to denote a form representing all
m ∈ N− S, where S ⊆ N is finite.

2.1. Escalation. Let Q be an n-ary form and AQ be its matrix representation. If L
is an n-dimensional lattice endowed with inner product 〈·,·〉 such that Q(�x) = 〈�x, �x〉,
we say that L is the associated lattice for Q. We define the truant of Q to be
the least n ∈ N − S such that n is not represented by Q. It should be noted that
this generalizes the definition appearing in earlier literature, most notably in [3],
where S = ∅.

An escalation of L is any lattice generated by L and a vector whose norm is
the truant. An escalator lattice is any lattice that can be obtained by successive
escalation of the trivial lattice.

Given a form Q of n− 1 variables with associated matrix AQ and truant t, any

escalation by t will result in an n-ary form Q̂ with associated matrix

A
̂Q =

⎡⎢⎢⎢⎣
a1n/2

AQ

...
a(n−1)n/2

a1n/2 · · · a(n−1)n/2 t

⎤⎥⎥⎥⎦ .

The restrictions that det(A
̂Q) > 0 and that ain ∈ 2Z for 1 ≤ i ≤ n − 1 imply

that there will be finitely many possible escalations of a quadratic form Q by its
truant t. Note that the resulting escalation lattice does not depend on the order in
which basis vectors are appended.

2.2. Modular forms. For details and additional background we refer the reader
to [8], [10], and [19]. Any additional specific references will be provided in context.

Throughout, let Q be a quaternary form with associated matrix AQ. We define
the level N = NQ of Q to be the smallest integer such that N(2(AQ))

−1 is an
integral matrix with even diagonal entries.

We define the determinant D = DQ of Q to be the determinant of AQ. For all
primes p � 2N , we define the following quadratic character χQ:

χQ(p) =

(
D

p

)
.

Recall that the local normalized form (also called the Jordan decomposition) of Q
is

Q(�x) ≡Zp

∑
j

pvjQj(xj),

with dim(Qj) ≤ 2 (and in fact, for p �= 2, dim(Qj) = 1). We then define

S0 = {j | vj = 0}, S1 = {j | vj = 1},
S2 = {j | vj ≥ 2},

and we let si =
∑

j∈Si
dim(Qj).

We then define the theta series associated to Q as

ΘQ(z) = 1 +
∑
m≥1

rQ(m)e2πimz.
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Theorem 5. ΘQ(z) is a modular form of weight 2 over Γ0(NQ) with associated
character χQ.

Proof. See [1, Theorem 2.2, pg. 61]. �

Each space of modular forms of fixed weight, level, and character decomposes
into the space of cusp forms and the space of Eisenstein series. Therefore, we write
ΘQ(z) = EQ(z) +CQ(z), where EQ(z) is Eisenstein and CQ(z) is a cusp form. We
then consider

rQ(m) = aE(m) + aC(m),

where rQ(m), aE(m), and aC(m) respectively denote the mth Fourier coefficient
for ΘQ(z), EQ(z), and CQ(z).

The Eisenstein coefficients are well understood; they are nonnegative, rational,
and can be computed explicitly. The main tool is due to Siegel [18]. Note that
throughout, p denotes a place:

Theorem 6 (Siegel).

aE(m) =
∏
p≤∞

βp(m),

where

βp(m) = lim
U→{m}

Vol(Q−1(U))

Vol(U)
,

where U is an open neighborhood of m in Qp.
Specifically for p �= ∞, we have that

βp(m) = lim
v→∞

#{�x ∈ (Z/pvZ)4 | Q(�x) ≡ m (mod pv)}
p3v

.

To compute β∞(m), the following result applies:

Theorem 7 (Siegel).

β∞(m) =
π2m√
det(AQ)

,

Proof. This is simply a special case of Hilfssatz 72 of [18]. �

Now we recall some terminology from Hanke [10] relevant specifically to local
density computations at finite places.

Let Rpv (m) :=
{
�x ∈ (Z/pvZ)4 | Q(�x) ≡ m (mod pv)

}
and set rpv (m) :=

#Rpv (m). We say �x ∈ Rpv (m)

• is of Zero type if �x ≡ �0 (mod p), in which case we say �x ∈ RZero
pv (m) with

rZeropv (m) := #RZero
pv (m);

• is of Good type if pvjxj �≡ 0 (mod p) for some j ∈ {1, 2, 3, 4}, in which
case we say �x ∈ RGood

pv (m) with rGood
pv (m) := #RGood

pv (m);

• and is of Bad type otherwise, in which case we say �x ∈ RBad
pv (m) with

rBad
pv (m).

If rpv (m) > 0 for all primes p and for all v ∈ N, we say that m is locally
represented. If Q(�x) = 0 has only the trivial solution over Zp, we say that p is
an anisotropic prime for Q.

In the following theorems, we discuss reduction maps that allow for explicit
calculation of local densities. Let the multiplicity of a map f : X → Y at a
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given y ∈ Y be #{x ∈ X | f(x) = y}. If all y ∈ Y have the same multiplicity M ,
then we say that the map has multiplicity M .

Theorem 8. We have

rGood
pk+� (m) = p3�rGood

pk (m)

for k ≥ 1 for p odd and for k ≥ 3 for p = 2.

Proof. See [10, Lemma 3.2]. �

Theorem 9. The map

πZ : RZero
pk (m) → Rpk−2

(
m

p2

)
�x 
→ p−1�x (mod pk−2)

is a surjective map with multiplicity p4.

Proof. See [10, pg. 359]. �

Theorem 10. There are two forms of bad-type solutions. Accounting for the num-
ber of such solutions will require the local density of forms related to Q (whose
specific diagonalization is given below). For even more detailed descriptions of
these supplementary forms and concrete examples of such computations, we refer
the reader to [19, Chapters 3, 4].

• Bad-Type-I solutions occur when S1 �= ∅ and �xS1 �≡ �0. The map

πB′ : RBad-1
pk,Q (m) → RGood

pk−1,Q′

(
m

p

)
,

which is defined for each index j by

xj 
→ p−1xj v′j = vj + 1, j ∈ S0,
xj 
→ xj v′j = vj − 1, j �∈ S0,

is surjective with multiplicity ps1+s2 .
• Bad-Type-II solutions can only occur when S2 �= ∅ and involves either S1 =
∅ or �xS1 ≡ �0. The map

πB′′ : RBad-II
pk,Q (m) → R

�xS2
�≡�0

pk−2,Q′′

(
m

p2

)
,

which is defined for each index j by

xj 
→ p−1xj v′′j = vj , j ∈ S0 ∪ S1,
xj 
→ xj v′′j = vj − 2, j �∈ S2,

is surjective with multiplicity p8−s0−s1 .

Proof. Again, see [10, pg. 360]. �
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In practice, instead of exact formulas for aE(m), we employ effective lower
bounds on aE(m). Given a form Q with level NQ and associated character χQ,
for all m locally represented by Q we have

aE(m) ≥ CEdm

⎛⎜⎜⎝ ∏
p�NQ,p|m
χ(p)=−1

p− 1

p+ 1

⎞⎟⎟⎠ ,

where dm is a particular divisor of m and where CE is a highly technical constant
achieved from reasonable lower bounds for all βp(m). An exact formula for CE is
given in Theorem 5.7(b) of [10].

We similarly compute an upper bound on |aC(m)|, due to Deligne [7]. For a given
Q, there exists a constant Cf , determined by writing CQ(z) as a linear combination
of normalized Hecke eigenforms (and shifts thereof). Specifically, if gi(z) is such a
normalized Hecke eigenform and CQ(z) =

∑
i γigi(z), then Cf =

∑
i |γi|. Then for

all m ∈ N,

|aC(m)| ≤ Cf

√
m τ (m),

where τ (m) counts the number of positive divisors of m.

3. Computational methods

Following the ideas of [3] and [10] with the notation of [3], we know that any
m ∈ N is represented by Q if it is locally represented, has bounded divisibility at
all anisotropic primes, and if the following inequality holds:

√
m′

τ (m)

∏
p|m,p�N
χ(p)=−1

p− 1

p+ 1
>

Cf

CE
,(1)

where m′ is the largest divisor of m with no anisotropic prime factors. Define B(m)
to be the left side of (1). Note that B(m) is multiplicative. Hence, as m becomes
divisible by more primes, B(m) is an increasing function. (It is not true in general
that B is an increasing function; it is possible for primes p < q to have B(p) > B(q),
as described below in Lemma 11.) However, there are only finitely many m ∈ N
where

B(m) ≤ Cf

CE
.(2)

We call locally represented m ∈ N satisfying (2) eligible.

3.1. Generating eligible numbers. Since
Cf

CE
can be quite large in comparison to

B(m), we require a faster method of computing eligible numbers than sequentially
calculating all numbers such that inequality (2) holds. Therefore, we introduce the
concept of an eligible prime. Define

CB :=
∏
p

B(p)<1

B(p).

Note that the only primes that contribute to this product are anisotropic or less
than 11, since B(p) ≥ 1 for all primes p ≥ 11, unless p is anisotropic. An eligible
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prime is then a prime p such that

B(p) ≤ Cf

CECB
.(3)

Observe that not all eligible primes are eligible numbers. To generate a list of
eligible primes, we enumerate through all primes until (3) no longer holds. We
note, however, that we must also check the next prime after that for which (3) fails
due to the following result (which was not mentioned in [3]):

Lemma 11. For any primes p < q, if B(p) > B(q), then q − p ≤ 2.

Proof. The only case needing consideration is if p and q are not anisotropic with
χ(p) �= −1 and χ(q) = −1. Then

B(p) =

√
p

2
and B(q) =

√
q

2

q − 1

q + 1
.

Note that if q ≤ p+ 2, (
B(q)

B(p)

)2

≤ p3 + 4p2 + 5p+ 2

p3 + 6p2 + 9p

is always less than 1; therefore, B(p) > B(q) when q − p ≤ 2.
On the other hand, if q ≥ p+ 3, then(

B(q)

B(p)

)2

≥ p3 + 9p2 + 25p+ 21

p3 + 8p2 + 16p
,

which is always greater than 1; so B(p) < B(q) if q − p ≥ 3. �

Once our list of eligible primes is generated, we sort by B(p) in order to imple-
ment the following algorithm, which is also outlined in [3, section 4.3.1].

Since any squarefree eligible number is the product of a finite number of distinct
eligible primes, we take the product of the smallest eligible primes p� until p1 · · · p�+1

is not eligible. We then know that any squarefree eligible number will be the product
of at most � distinct eligible primes.

Set a := p1 · · · pr to be the product of the first r eligible primes, for each 1 ≤
r ≤ �. While a is eligible, we replace pr by pr+1 and continue replacing this single
prime until a is no longer eligible. We then repeat the process, replacing the last
two primes pr−1 and pr with pr and pr+1, respectively. We continue this until we
either have run out of eligible primes or until we can no longer increment.

Once we have a set of squarefree eligible numbers (including 1), we determine
their representability by the form Q using techniques described in more detail in
section 3.2. This results in a finite set S1 of squarefree numbers which fail to be
represented by Q. However, as S1 is comprised only of squarefree integers, we do
not yet have a complete list of possible exceptions; for instance, if Q excepts 2 and
8, then S1 = {2}. Thus, we construct a new set S2 of possible exceptions of the

form sp2, where s ∈ S1, p is an eligible prime, and B(sp2) ≤ Cf

CE
. We repeat this

process, continuing until Sh = ∅ for some h. We then take
⋃

1≤i≤h−1 Si to be the

entire set of possible exceptions. Note that we need not check B
(
sp2

)
for p larger

than our max eligible prime since B
(
pj
)
> B (p) for j ≥ 2, unless p = 2 or p is

anisotropic (and our largest anisotropic prime is always less than our largest eligible
prime). This means that if sp is not eligible, then neither is sp2.
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3.2. Computing representability. Given a set of eligible numbers, we proceed to
check their representability by the formQ. The naive approach of simply computing
the theta series up to the largest eligible number is infeasible for most forms because
of the time and storage involved. We instead first check representability using a
split local cover of Q, a form Q′ that locally represents the same numbers as Q
and can be written as Q′ = dx2 ⊕ T for a minimal d ∈ N and ternary subform T .
Furthermore, Q′ has the property that global representation by Q′ implies global
representation by Q. Therefore, we check the global representability of each eligible
number a by Q′ and hence by Q by checking if a − dx2 is globally represented by
T . We thus compute the theta series of T up to precision Y = �2dc

√
X�, where X

is the largest eligible number and c is a constant to allow for multiple attempts at
checking a − dx2. For the code in [3], c = 5 sufficed; for our purposes, the typical
range for c was 5 ≤ c ≤ 10. Any numbers that fail to be found to be represented
by T are then handled by computing the theta series of Q to that precision.

Despite the improvements gained by the split local cover, we still encounter
memory and speed issues on many forms. To deal with these, we use an approxi-
mate boolean theta function, also described in [3, section 4.3.2]. This stores a
single bit for each number up to Y indicating whether or not it is represented by
T . Additionally, rather than computing the entirety of the theta series, we evaluate
Q only at the vectors in the intersection of an appropriately chosen small rectan-
gular prism and the ellipsoid T (�y) ≤ Y . This gives far fewer vectors to check, at
the expense of giving potential false negatives for numbers that are represented by
vectors outside the prism.

The combined use of the split local cover and approximate boolean theta func-
tion significantly improves runtime speed and memory usage. According to [3], it

requires storing
√
X bits and has a runtime of O

(
X1/4

)
. This is a substantial

improvement over the naive method, which stores X bits and takes O
(
X2

)
time.

We saw such improvement firsthand: the form

3x2 − 2xy + 4y2 − 4xz − 2yz + 6z2 − 2xw + 8yw − 2zw + 7z2,

which fails to represent the pair {1, 2}, took approximately 31 minutes to run using a
split local cover and approximate boolean theta function. By contrast, our systems
were unable to handle the memory requirements for computing the form without a
boolean theta function. Even using a split local cover and boolean theta function
without approximation took 4 hours and 25 minutes.

4. Higher escalations

In order to fully address Theorem 1 we must move beyond four variables to
find any additional pairs {m,n} for which there exists a classically integral positive
definite quadratic form representing exactly the set N − {m,n}. We begin by
considering the quaternary forms obtained from our previous escalations which
except more than 2 numbers. We classify these into three types:

• Type A: Forms that except only a finite set of numbers;
• Type B: Forms that except infinitely many numbers but have no local
obstructions; and

• Type C: Forms that have local obstructions.

For a given form of Type A, let L := {m,n1, . . . , nk} be its ordered set of
exceptions. To determine if there is a higher escalation excepting precisely the pair
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{m,ni} for 1 ≤ i ≤ k, we escalate by the truant and check that {m,ni} still fails to
be represented. We repeat this process until either ni is represented, making this
pair an impossibility for escalations of this form, or L− {m,ni} is represented.

Forms of Type B are due to unbounded divisibility by an anisotropic prime p
at integers not represented by the form. (All forms we encountered have at most
one anisotropic prime.) Consequently, we conjecture that all but finitely many
exceptions are contained in

F :=
⋃
k∈S

Fk,

where S is a finite subset of N and Fk =
{
kpj | j ∈ N

}
. We then compute the

representability of all eligible numbers not in F by using the methods of section
3.2, resulting in a finite set of exceptions not in F . For each k ∈ S, we observe that
escalations by k and kp will suffice for representation of all eligible numbers in Fk.
However, in practice, a single escalation usually results in a finite set of exceptions,
to which we can then apply the methods of Type A.

The methods of Type B forms do not directly extend to Type C forms, as it is
not immediately clear whether local obstructions only cause finitely many square-
free exceptions. Instead, we seek to generalize the notion of the “10-14 switch”,
employed by Bhargava and Hanke in [3, section 5.2]. This technique exploits the
commutativity of the escalation process by escalating a ternary form first by the
truant(s) of the quaternaries with local obstructions that it generates and then
by the truant of said ternary. In their case, this removes all local obstructions.
However, a single switch is not sufficient for our case; therefore, we generalize to
multiple potential switches. First, we escalate the quaternary forms as usual; then
for each resulting quinary form we search for a quaternary subform with no local
obstructions. We find such subforms for all quinary Type C escalations, to which
we can then apply the methods of Type A or Type B.

We provide the following example to illustrate our need for generalizing the
“10-14” switch on Type C forms. The quaternary form Q with

AQ =

⎛⎜⎜⎝
2 0 0 −1
0 3 −2 0
0 −2 4 0
−1 0 0 7

⎞⎟⎟⎠
is of Type C, having a local obstruction at 17. Two quinary escalations of this
form, by a truant of 9, are Q1 and Q2, where

AQ1
=

⎛⎜⎜⎜⎜⎝
2 0 0 −1 −3
0 3 −2 0 0
0 −2 4 0 0
−1 0 0 7 0
−3 0 0 0 9

⎞⎟⎟⎟⎟⎠ and AQ2
=

⎛⎜⎜⎜⎜⎝
2 0 0 −1 0
0 3 −2 0 −1
0 −2 4 0 2
−1 0 0 7 −3
0 −1 2 −3 9

⎞⎟⎟⎟⎟⎠.

The subform of Q1 obtained by removing the first row and column from AQ1
leads

to a quaternary with no local obstructions. However, that of Q2 obtained in the
same way simply leads back to a form of Type C (having a local obstruction at
5). Consideration of these subforms corresponds to what we may refer to as a
2−{3, 4, 7, 9} switch occurring at the beginning of the escalation process. The 2 here
refers to the truant by which we do not immediately escalate, while the elements of
the set are the new truants by which we do escalate to achieve quaternary forms.
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Note that a set, as opposed to an ordered list, is sufficient by commutativity of the
escalation process.

The only quaternary subform of Q2 with no local obstruction is that obtained by
removal of the third row and column. This consideration corresponds to a 4−{7, 9}
switch during escalation at the binary form stage. Removal of the third row and
column forQ1, however, yields a quaternary form that does have a local obstruction.
There is therefore no single escalation switch in the case of this Type C form that
suffices.

5. Proofs of main results

We now state with more detail our main results.

Theorem 1. There are exactly 73 sets S = {m,n} (with m < n) for which there
exists a classically integral positive definite quadratic form that represents precisely
those natural numbers outside S.

Table 1. Possible excepted pairs

m n
Min. Required

Variables

1
2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 23, 25, 26, 30, 41 4

55 5

2
3, 5, 6, 8, 10, 11, 15, 18, 22, 30, 38 4

14, 50 5

3 6, 7, 11, 12, 19, 21, 27, 30, 35, 39 4

5
7, 10, 13, 14, 20, 21, 29, 30, 35 4

37, 42, 125 5

6
15 4

54 5

7 10, 15, 23, 28, 31, 39, 55 4

10
15, 26, 40, 58 4

250 5

14 30, 56, 78 4

To generate our candidate forms excepting all pairs {m,n}, we borrow from the
theory of escalator lattices. By the 15-Theorem [2], we know that m ≤ 15, so it
remains to find the possible values of n.

For quaternary forms, we find the maximum value of n by fixing an m and
pursuing our standard method of escalating by a vector with a norm equal to the
truant. We implement the escalation process outlined in section 2.1 using the free
and open-source computer algebra system SageMath [16] and the QuadraticForm

class in particular. Once we reach four-dimensional forms, we use the maximal
truant of the forms on our list as the upper bound for n.

When m = 6, we find that none of the four-variable candidates generated with
our usual method except any additional values. Thus we approach this case by
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explicitly fixing each n ≤ 15 (because 15 is the smallest truant of any ternary
escalator excepting 6) to determine whether any forms excepting {6, n} exist. For
all other m, we begin the escalation process anew, this time with a bounded range
for n given m. Along the way, we remove any forms that represent m or n and any
which are not positive definite. At each dimension we also iterate through our list
to remove those forms equivalent to another in the list.

These techniques generate exhaustive lists of four-variable candidate forms failing
to represent exactly two x < 10000, as well as candidate forms excepting precisely
one x < 10000. To prove that these forms represent all x ≥ 10000, we implement
the methods described in section 3 using the Magma computer algebra system [5].
This proves that there are 65 possible excepted pairs by quaternary forms.

To determine a full list of all possible pairs {m,n}, we next consider higher-
dimensional forms. We begin by sorting the quaternary forms (resulting from our
prior escalations) that except more than two values into the categories listed in
section 4 and applying the corresponding techniques. Although some quinary forms
do except more than two values, escalating to six or more variables yields no new
pairs. Hence, we complete our list with 8 additional pairs {m,n} for which there
is an almost universal quinary quadratic form.

6. An example

6.1. Escalation for m = 5. We escalate to construct candidates for quadratic
forms that except {5, n}. This process will also provide a list of all forms which could
only fail to represent 5, and therefore will include Halmos’s form. The escalation of
the trivial lattice results in the lattice defined by

[
1
]
, which is simply the quadratic

form x2. Since the truant here is 2, any escalation must be of the form

A(a) =

[
1 a
a 2

]
,

where a ∈ Z and det
(
A(a)

)
> 0. This forces a ∈ {0,±1}. Noting that[

−1 0
0 1

]
A(−1)

[
−1 0
0 1

]t
= A(1),

we need only consider the two escalators A(0) and A(1). However, as A(1) represents
5, we in fact proceed only with the escalator A(0).

The truant of A(0) is 7, so the three-dimensional escalators are of the form

A(0,b,c) =

⎡⎣1 0 b
0 2 c
b c 7

⎤⎦
for b, c ∈ Z and det

(
A(0,b,c)

)
> 0. This yields 31 escalator matrices. Up to

equivalence, however, there are only the 6 below:⎡⎣ 1 0 −1
0 2 −3
−1 −3 7

⎤⎦ ,

⎡⎣1 0 0
0 2 −3
0 −3 7

⎤⎦ ,

⎡⎣ 1 0 −1
0 2 −1
−1 −1 7

⎤⎦ ,

⎡⎣1 0 0
0 2 −1
0 −1 7

⎤⎦ ,

⎡⎣ 1 0 −1
0 2 0
−1 0 7

⎤⎦ ,

⎡⎣1 0 0
0 2 0
0 0 7

⎤⎦ ,
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which have the respective truants

13, 20, 13,
10, 13, 14.

Hence, we use these truants to escalate once again, obtaining 166 quaternary
forms up to equivalence.

6.2. Halmos’s form. We use techniques different from those of Pall [13] to prove
the previously mentioned conjecture of Halmos [9].

Corollary 12. The diagonal quadratic form Q(�x) = x2+2y2+7z2+13w2 represents
all positive integers except for 5.

We first note that our form has level NQ = 728 = 23 · 7 · 13 and character

χQ(p) =
(

182
p

)
. Finding all m ∈ N to be locally represented, using Siegel’s product

formula and Theorem 7, we see that

aE(m) =
π2m√
182

(∏
p<∞

βp(m)

)

=
π2m√
182

β2(m)β7mβ13(m)

⎛⎝ ∏
2,7,13�=p|m

βp(m)

⎞⎠⎛⎝ ∏
2,7,13�=q�m

βq(m)

⎞⎠ .

Lemma 13. For primes q �= 2, 7, 13 with q � m,

βq(m) =

(
1− χQ(q)

q2

)
.

Proof. This follows from [10, Lemma 3.3.2]. �

Thus

aE(m) =
π2m√
182

β2(m)β7mβ13(m)(LQ(2, χQ))
−1

⎛⎝ ∏
2,7,13�=p|m

βp(m)p2

p2 − χQ(p)

⎞⎠ .

Lemma 14. Let LQ(2, χQ) =
213

√
182π2

33124
.

Proof. This follows from techniques outlined in [11, pg. 104]. �

This now means that

aE(m) =
182m

213
β2(m)β7(m)β13(m)

⎛⎝ ∏
2,7,13�=p|m

βp(m)p2

p2 − χQ(p)

⎞⎠ .
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Lemma 15. Let

β2(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

4

k−1∑
i=0

1

22i
+

1

22k

{
3/4 if ord2(m) = 2k , m/22k ≡ 1, 3 (mod 8),

5/4 if ord2(m) = 2k , m/22k ≡ 5, 7 (mod 8),

3

4

k∑
i=0

1

22i
+

1

22k+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3/4 if ord2(m) = 2k + 1 , m/22k+1 ≡ 1, 3

(mod 8),

1/4 if ord2(m) = 2k + 1 , m/22k+1 ≡ 5, 7

(mod 8),

β7(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

48

49

k−1∑
i=0

1

72i
+

1

72k

{
8/7 if ord7(m) = 2k , m/72k ≡ 1, 2, 4 (mod 7),

6/7 if ord7(m) = 2k , m/72k ≡ 3, 5, 6 (mod 7),

48

49

k∑
i=0

1

72i
+

1

72k+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2/7 if ord7(m) = 2k + 1 , m/72k+1 ≡ 1, 2, 4

(mod 7),

0 if ord7(m) = 2k + 1 , m/72k+1 ≡ 3, 5, 6

(mod 7),

β13(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

168

169

k−1∑
i=0

1

132i
+

1

132k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
14/13 if ord13(m) = 2k , m/132k ≡

1, 3, 4, 9, 10, 12 (mod 13),

12/13 if ord13(m) = 2k , m/132k ≡
2, 5, 6, 7, 8, 11 (mod 13),

168

169

k∑
i=0

1

132i
+

1

132k+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2/13 if ord13(m) = 2k + 1 , m/132k+1

≡ 1, 3, 4, 9, 10, 12 (mod 13),

0 if ord13(m) = 2k + 1 , m/132k+1

≡ 2, 5, 6, 7, 8, 11 (mod 13),

for k ∈ N ∪ {0}.

Proof. We provide details for the claim regarding β2(m) with ord2(m) odd. The
remaining proofs behave similarly. Additional examples of these computations can
be found in [19].

Suppose that ord2(m) = 2k+ 1 for k ∈ N ∪ {0}. Then there are solutions of the
Good, Zero, and Bad-I types:

β2(m) = lim
v→∞

rGood
2v (m)

23v
+ lim

v→∞

rZero2v (m)

23v
+ lim

v→∞

rBad-I
2v (m)

23v
.

We compute these individually, beginning with the Bad types:
Let Q′ be the quadratic form Q′(�x) = 2x2 + y2 + 14z2 + 26w2. Then

lim
v→∞

rBad-I
2v (m)

23v
= lim

v→∞

2rGood
2v−1,Q′

(m
2

)
23v

=
rGood
27,Q′

(m
2

)
223

.

Note that rGood
27,Q′

(
m
2

)
is nonzero only if ord2(m) = 1. Now, for the Good types:

lim
v→∞

rGood
2v (m)

23v
=

rGood
27 (m)

221
=

3

4
,
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and for the Zero types:

lim
v→∞

rZero2v (m)

23v
= lim

v→∞

1

23v

[
k∑

i=1

24irGood
2v−2i

( m

22i

)
+

k∑
i=1

24irBad-I
2v−2i

( m

22i

)]

=

k∑
i=1

rGood
27

(
m/22i

)
22i+21

+

k∑
i=1

rGood
27,Q′

(
m/22i+1

)
22i+23

.

Simplifying the sum of Good, Bad, and Zero type solutions yields the above
claim. �

Lemma 16. For k ∈ N ∪ {0} and primes p �= 2, 7, 13 such that p | m,

βp(m) · p2

p2 − χQ(p)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

p2k

(
p2k+1 − 1

p− 1

)
if ordp(m) = 2k , χQ(p) = 1,

1

p2k

(
p2k+1 + 1

p+ 1

)
if ordp(m) = 2k , χQ(p) = −1,

1

p2k+1

(
p2k+2 − 1

p− 1

)
if ordp(m) = 2k + 1 , χQ(p) = 1,

1

p2k+1

(
p2k+2 − 1

p+ 1

)
if ordp(m) = 2k + 1 , χQ(p) = −1.

Proof. See [19, Lemma 3.3.6]. �

Lemmas 14 through 16, along with Theorem 7, provide a means to calculate
aE(m) for any m ∈ N.

Given the above formula for aE(m), as well as values for rQ(m), we are able to
calculate aC(m) = rQ(m) − aE(m) for any m. Using [5], we determine that the
cuspidal subspace of M2 (Γ0(728), χQ) has a dimension of 108. Computing a basis
of normalized Hecke eigenforms for this subspace to determine our cuspidal bound
as in [3, section 4.2.2], we find that

Cf =
∑
i

|γi| ≈ 13.4964 .

Additionally, for the Eisenstein bound we find that

CE =
36

71
.

We now prove Corollary 12 regarding Halmos’s form Q.

Proof. Having calculated both CE and Cf , we now employ the methods detailed
in section 3 to compute and check eligible numbers. Note that

CB = B(2)B(3)B(5),

since B(p) > 1 for all p > 5. With this, we compute that there are 5, 634 eligible
primes and 343, 203 squarefree eligible numbers, the largest of which is 18047039010.
Using the approximate boolean theta function of the split local cover Q = x2 ⊕(
2y2 + 7z2 + 13w2

)
, we compute the representability of each of these numbers.

This approximation shows that all squarefree eligible numbers except 1 and 5 are
represented. Computing the full theta series of Q we see that, while 1 is represented,
5 indeed is not. Therefore, we take S1 = {5} to be the set of squarefree exceptions.
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We hence compute that there are 28 eligible numbers of the form 5p2, and the set of
exceptions of this form is S2 = ∅. Thus, we have that S = S1 = {5} is the entire set
of exceptions for this form, confirming Halmos’s conjecture. Our implementation
of this entire process takes approximately 2 minutes and 7 seconds. �
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