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A NOTE ON THE DISCRETE FOURIER

RESTRICTION PROBLEM

XUDONG LAI AND YONG DING

(Communicated by Alexander Iosevich)

Abstract. In this paper, we establish a general discrete Fourier restriction
theorem. As an application, we make some progress on the discrete Fourier

restriction problem associated with KdV equations.

1. Introduction

Recently, the Fourier restriction problem has been widely studied (for example,
see [10], [11], [1], [5], [3]). In this paper, we investigate the discrete Fourier restric-
tion problems. Let us first see the discrete Fourier restriction problem associated
with KdV equations. More precisely, we are going to seek the best constant Ap,N

satisfying

(1.1)
∑

|n|≤N

|f̂(n, n3)|2 ≤ Ap,N‖f‖2
Lp′ (T2)

where f is a periodic function on T2, f̂ is the Fourier transform of f on T2, i.e.,

f̂(ξ) =
∫
T2 e

−2πix·ξf(x)dx, N is a sufficiently large integer, p ≥ 2, and 1
p + 1

p′ = 1.

For any ε > 0, Bourgain [2] showed that A6,N ≤ Nε. Later Hu and Li [7] proved

that Ap,N �ε N
1− 8

p+ε for p ≥ 14.
Bourgain [2] and Hu and Li [7] conjectured that

(1.2) Ap,N ≤
{

Cp for 2 ≤ p < 8,

Cε,pN
1− 8

p+ε for p ≥ 8.

Clearly, p = 8 is the critical number. In this paper, we will make slight progress for

this conjecture. We will show that Ap,N �ε N
1− 8

p+ε for p ≥ 12.
It is easy to see that the study of Ap,N is equivalent to the periodic Strichartz

inequality associated with the KdV equation:

(1.3)
∥∥∥ ∑

|n|≤N

ane
2πi(xn+tn3)

∥∥∥
Lp

x,t(T
2)

≤ Kp,N

( ∑
|n|≤N

|an|2
) 1

2

.

Received by the editors June 29, 2016, and, in revised form, March 27, 2017.
2010 Mathematics Subject Classification. Primary 42B05, 11L07.
Key words and phrases. Discrete Fourier restriction, exponential sums.
The work was supported by NSFC (No.11371057, No.11471033, No.11571160), SRFDP

(No.20130003110003), the Fundamental Research Funds for the Central Universities
(No.2014KJJCA10), the China Scholarship Council (No.201506040129), and the China Postdoc-
toral Science Foundation (No.2017M621253).

c©2018 American Mathematical Society

3839

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/13975


3840 XUDONG LAI AND YONG DING

In fact, we have Ap,N ≈ K2
p,N by using the dual method. Later while considering

the Cauchy problem of the fifth-order KdV-type equations, Hu and Li [8] studied
the following Strichartz inequality:

(1.4)
∥∥∥ ∑

|n|≤N

ane
2πi(xn+tnk)

∥∥∥
Lp

x,t(T
2)

≤ Kp,N

( ∑
|n|≤N

|an|2
) 1

2

,

where k is a positive integer and k ≥ 2. They [8] proved that K6,N � Nε if k is

odd and Kp,N �ε N
1
2 (1−

2(k+1)
p )+ε for p ≥ p0 where

p0 =

{
(k − 2)2k + 6 if k is odd,
(k − 1)2k + 4 if k is even.

In (1.3) and (1.4), the discrete Fourier restriction problems are studied in two
dimensions when the Fourier transform is indeed restricted to the curve (n, n3) and
(n, nk). It is natural to consider a similar problem for higher dimensions when the
Fourier transform is restricted to the general curve (nk1 , · · · , nkd), where k1, · · · , kd
are positive integers. Let Kp,d,N be the best constant in the following inequality:

(1.5)
∥∥∥ ∑

|n|≤N

ane
2πi(α1n

k1+···+αdn
kd )

∥∥∥
Lp(Td)

≤ Kp,d,N

( ∑
|n|≤N

|an|2
) 1

2

.

Our main result in the present paper is as follows.

Theorem 1.1. Let an be a complex number for all |n| ≤ N . Let d > 1 and

k1, · · · , kd be positive integers with 1 ≤ k1 < · · · < kd = k. Set K =
∑d

i=1 ki. Let
Kp,d,N be defined in (1.5). Suppose p ≥ k(k + 1). Then for any ε > 0, we have

(1.6) Kp,d,N �ε N
1
2 (1−

2K
p )+ε,

where the implicit constant depends on k1, · · · , kd, p, ε, but does not depend on N .

Remark 1.2. In [9], T. D. Wooley adapted the efficient congruencing method to
prove that (1.6) holds for p ≥ 2k(k + 1). And whenever p > 2k(k + 1), one may
take ε = 0 in (1.6).

Remark 1.3. In Section 3, we will show the bound in (1.6) is sharp up to a constant
ε. One may conjecture (1.6) holds for all p ≥ 2K. Notice if ki = i, i = 1, · · · , d,
then 2K = d(d+ 1). Thus (1.6) is valid for p ≥ 2K in this case.

By using Theorem 1.1, one could make some progress on the previous results.
Applying Theorem 1.1 with d = 2, k1 = 1, k2 = 3 and d = 2, k1 = 1, k2 = k (here
k ≥ 2), we may obtain the following corollaries.

Corollary 1.4. Let Kp,N be defined in (1.3). Suppose p ≥ 12. Then for any ε > 0,
we get

Kp,N �ε N
1
2 (1−

8
p )+ε,

where the implicit constant is independent of N . If p > 24, one may take ε = 0.

Corollary 1.5. Let Kp,N be defined in (1.4). Suppose p ≥ k(k+ 1). Then for any
ε > 0, we have

Kp,N �ε N
1
2 (1−

2(k+1)
p )+ε,

where the implicit constant is independent of N . If p > 2k(k + 1), one may take
ε = 0.
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By setting d = k, ki = i, for i = 1, · · · , k, an = 1 for n = 1, · · · , N , an = 0 for
n = 0,−1, · · · ,−N in Theorem 1.1, one obtains

(1.7)

∫
Tk

∣∣∣
N∑

n=1

e2πi(α1n+···+αkn
k)
∣∣∣pdα �ε N

p−k(k+1)+ε

for p ≥ k(k + 1), which is Vinogradov’s mean value theorem proved by Bourgain,
Demeter and Guth [4] recently. (1.5) can be regarded as a weighted version of (1.7)
and (1.5) is apparently harder than (1.7). Notice that the curve (tk1 , tk2 , · · · , tkd)
may be degenerate, for example, the curve (t, t3) has zero curvature at point (0, 0).
It seems to be difficult to use the method developed in [3] and [4] to prove (1.6)
for p ≥ 2K, since what they deal with are hypersurfaces with nonzero Gaussian
curvature or nondegenerate curve. The proof of Theorem 1.1 is based on a key
lemma from [4]. Bourgain et al. [4] used this lemma to prove (1.7).

Throughout this paper, the letter C stands for a positive constant and Ca denotes
a constant depending on a. A �ε B means A ≤ CεB for some constant Cε. A ≈ B
means that A � B and B � A. For a set E ⊂ Rd, we denote the Lebesgue measure
of E by |E|.

2. Proof of Theorem 1.1

Before giving the proof of Theorem 1.1, we first introduce some lemmas.

Lemma 2.1 (See Theorem 4.1 in [4]). For each 1 ≤ n ≤ N , let tn be a point
in (n−1

N , n
N ]. Suppose BR is a ball in Rd with center cB and radius R. Define

wBR
(x) =

(
1 + |x−cB |

R

)−200

. Then for each R � Nd, each ball BR in R
d, each

an ∈ C, each p ≥ 2 and ε > 0, we have

( 1

|BR|

∫ ∣∣∣
N∑

n=1

ane
2πi(x1tn+···+xdt

d
n)
∣∣∣pwBR

(x)dx
) 1

p

�ε

(
Nε +N

1
2 (1−

d(d+1)
p )+ε

)( N∑
n=1

|an|2
) 1

2

,

(2.1)

where the implicit constant does not depend on N , R, and an.

Lemma 2.2. Suppose an ∈ C and p ≥ 2. Then for any ε > 0, we get

(∫
Td

∣∣∣ ∑
|n|≤N

ane
2πi(x1n+x2n

2+···+xdn
d)
∣∣∣pdx)

1
p

�ε

(
Nε +N

1
2 (1−

d(d+1)
p )+ε

)( ∑
|n|≤N

|an|2
) 1

2

,

(2.2)

where the implicit constant is independent of N and an.

Proof. We first notice that the function
∑

|n|≤N

ane
2πi(x1n+x2n

2+···+xdn
d)
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is periodic with period 1 in the variables x1, · · · , xd. By using Minkowski’s inequal-
ity, making a change of variables and the above periodic fact, one may get

(∫
Td

∣∣∣ ∑
|n|≤N

ane
2πi(x1n+x2n

2+···+xdn
d)
∣∣∣pdx)

1
p

≤ a0 +
(∫

Td

∣∣∣
N∑

n=1

ane
2πi(x1n+x2n

2+···+xdn
d)
∣∣∣pdx)

1
p

+
(∫

Td

∣∣∣
N∑

n=1

a−ne
2πi(x1n+x2n

2+···+xdn
d)
∣∣∣pdx)

1
p

.

Hence, to prove (2.2), it suffices to show that

(∫
Td

∣∣∣
N∑

n=1

ane
2πi(x1n+x2n

2+···+xdn
d)
∣∣∣pdx)

1
p

has the desired bound. Applying Lemma 2.1 with R =
√
dNd, tn = n

N and BR =
B(0, R) which is centred at 0, we may obtain

(
N−d2

∫ ∣∣∣
N∑

n=1

ane
2πi(x1

n
N +···+xd(

n
N )d)

∣∣∣pwBR
(x)dx

) 1
p

�ε

(
Nε +N

1
2 (1−

d(d+1)
p )+ε

)( N∑
n=1

|an|2
) 1

2

.

(2.3)

Since wBR
(x) ≈ 1 on B(0, R) and [0, Nd]d ⊂ B(0, R), the left side of (2.3) is larger

than (
N−d2

∫
[0,Nd]d

∣∣∣
N∑

n=1

ane
2πi(x1

n
N +···+xd(

n
N )d)

∣∣∣pdx)
1
p

.

By making a change of variables, x1 = Nα1, · · · , xd = Ndαd, the above integral
equals

(2.4)
(
N−d2+ d(d+1)

2

∫
AN

∣∣∣
N∑

n=1

ane
2πi(α1n+···+αdn

d)
∣∣∣pdα)

1
p

,

where AN = [0, Nd−1]× [0, Nd−2]× · · · × [0, 1]. Notice that the function

KN (α) =

N∑
n=1

ane
2πi(α1n+α2n

2+···+αdn
d)

is periodic with period 1 in the variables α1, · · · , αd. Since AN has N
d(d−1)

2 number
of unit cubes, by the periodic fact of KN (α), it follows that (2.4) is equal to

(∫
Td

∣∣∣
N∑

n=1

ane
2πi(α1n+···+αdn

d)
∣∣∣pdα)

1
p

,

which completes the proof. �
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Now we begin with the proof of Theorem 1.1. We first show that the proof can
be reduced to the case pk = k(k + 1), that is,

(2.5)
∥∥∥ ∑

|n|≤N

ane
2πi(α1n

k1+···+αdn
kd )

∥∥∥
Lpk (Td)

�ε N
1
2 (1−

2K
pk

)+ε
( ∑

|n|≤N

|an|2
) 1

2

.

Suppose (2.5) is true. Utilizing the Cauchy-Schwarz inequality, we get

∥∥∥ ∑
|n|≤N

ane
2πi(α1n

k1+···+αdn
kd )

∥∥∥
L∞(Td)

� N
1
2

( ∑
|n|≤N

|an|2
) 1

2

.

By using the Riesz-Thorin interpolation theorem (see, for example, [6]) to interpo-
late (2.5) and the above L∞ estimate, one could easily get the required bound of the
Lp estimate for p ≥ k(k + 1) in Theorem 1.1. Therefore, it remains to show (2.5).
Consider positive integers k1, · · · , kd with 1 ≤ k1 < · · · < kd = k and denote by

{l1, · · · , ls} the complement set of {k1, · · · , kd} in {1, 2, · · · , k}. Set K =
∑d

n=1 kn.
Then we may see

(2.6)
s∑

i=1

li =
1

2
k(k + 1)− K.

Note that pk = k(k+1) is an even integer; therefore, we may set pk = 2u. By using

the simple fact
∫ 1

0
e2πixydy = δ(x), here δ is a Dirac measure at 0 and we have

Λ :=

∫
Td

∣∣∣ ∑
|n|≤N

ane
2πi(α1n

k1+···+αdn
kd )

∣∣∣2udα

=

∫
Td

( ∑
|n|≤N

ane
2πi(α1n

k1+···+αdn
kd ) ·

∑
|m|≤N

ame−2πi(α1m
k1+···+αdm

kd )
)u

dα

=
∑

|n1|,··· ,|nu|≤N,

∑
|m1|,··· ,|mu|≤N

an1
· · · anu

am1
· · · amu

× δ
( u∑

i=1

(nk1
i −mk1

i )
)
· · · δ

( u∑
i=1

(nkd
i −mkd

i )
)
.

(2.7)

Thus (2.7) equals the number of integral solutions of the system of equations

(2.8)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u∑
i=1

(nk1
i −mk1

i ) = 0,

· · ·
u∑

i=1

(nkd

i −mkd

i ) = 0,

|ni| ≤ N, |mi| ≤ N, i = 1, · · · , u,

with each solution counted with weight an1
· · · anu

am1
· · · amu

.
For each solution (n1, · · · , nu,m1, · · · ,mu) of (2.8), there exist integers hj , j =

1, · · · , k, such that (n1, · · · , nu,m1, · · · ,mu) is an integral solution of the following
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system of equations:

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∑
i=1

(ni −mi) = h1,

u∑
i=1

(n2
i −m2

i ) = h2,

· · ·
u∑

i=1

(nk
i −mk

i ) = hk,

|ni| ≤ N, |mi| ≤ N, i = 1, · · · , u,
where hj = 0 if j = ki for some i = 1, · · · , d. By the last condition of (2.9), it is
easy to see that |hj | ≤ 2uN j for j = 1, · · · , k.

On the other hand, for each integral solution (n1, · · · , nu,m1, · · · ,mu) of (2.9)
with |hj | ≤ 2uN j for j = 1, · · · , k and hj = 0 if j = ki for some 1 ≤ i ≤ d,
(n1, · · · , nu,m1, · · · ,mu) is also an integral solution of (2.8). Now we define

Λ(h) =

∫
Tk

∣∣∣ ∑
|n|≤N

ane
2πi(α1n+α2n

2+···+αkn
k)
∣∣∣2ue2πi(−α1h1−···−αkhk)dα.

By using orthogonality, the above term is equal to∑
|n1|,··· ,|nu|≤N

∑
|m1|,··· ,|mu|≤N

an1
· · · anu

am1
· · · amu

× δ
( u∑

i=1

(ni −mi)− h1

)
· · · δ

( u∑
i=1

(nk
i −mk

i )− hk

)
,

which counts the number of integral solution of (2.9) with each solution counted
with weight an1

· · · anu
am1

· · · amu
. Combining the above arguments, we conclude

that

Λ =
∑

|hl1
|≤2uNl1

· · ·
∑

|hls |≤2uNls

Λ(h),

where h in the sum also satisfies hj = 0 if j = ki for some i = 1, · · · , d. Obviously,
|Λ(h)| ≤ Λ(0). Hence we obtain

|Λ| ≤
∑

|hl1
|≤2uNl1

· · ·
∑

|hls |≤2uNls

Λ(0) ≤ (2u)sN l1+···+lsΛ(0)

� N
1
2k(k+1)−KNpkε

( ∑
|n|≤N

|an|2
) pk

2

,

where in the last inequality we use (2.6) and apply Lemma 2.2 with p = k(k + 1).
Hence we establish (2.5) which completes the proof of Theorem 1.1.

3. Sharpness of Theorem 1.1

In this section, we show that N
1
2 (1−

2K
p ) is the best upper bound for Kp,d,N when

p ≥ 2K. Therefore Theorem 1.1 is sharp up to a factor of Nε.

Proposition 3.1. Let Kp,d,N be defined in (1.5). Suppose p is an even integer.
Then there exist constants C1, C2 such that

Kp,d,N ≥ max
{
C1, C2N

1
2 (1−

2K
p )

}
.
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Proof. Set p = 2u. Let 1 ≤ k1 < k2 < · · · < kd and K = k1 + · · ·+ kd. Define

Λ(N, 2u) =

∫
Td

∣∣∣ ∑
|n|≤N

e2πi(α1n
k1+···+αdn

kd )
∣∣∣2udα.

By using orthogonality, Λ(N, 2u) counts the number of integral solutions of the
following system of equations:

(3.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u∑
i=1

(nk1
i −mk1

i ) = 0,

· · ·
u∑

i=1

(nkd
i −mkd

i ) = 0,

|ni| ≤ N, |mi| ≤ N, i = 1, · · · , u,

Notice that the system of equations (3.1) has (2N+1)u number of trivial solutions.
In fact, for each (n1, · · · , nu) with |ni| ≤ N , i = 1, 2, · · · , u, one may choose
(m1, · · · ,mu) = (n1, · · · , nu). Hence we have

(3.2) Λ(N, 2u) ≥ CN
p
2 .

Define the set ΩN as

ΩN =
{
α ∈ T

d : |αi| ≤
1

8dNki
, i = 1, · · · , d

}
.

Then we have |ΩN | ≈ N−K. If α ∈ ΩN and |n| ≤ N , then∣∣∣ ∑
|n|≤N

e2πi(α1n
k1+···+αdn

kd )
∣∣∣ ≥ ∣∣∣Re

∑
|n|≤N

e2πi(α1n
k1+···+αdn

kd )
∣∣∣

≥
∑

|n|≤N

cos(2π(α1n
k1 + · · ·+ αdn

kd)) ≥ CN.

Now we conclude that

(3.3) Λ(N, 2u) ≥
∫
ΩN

∣∣∣ ∑
|n|≤N

e2πi(α1n
k1+···+αdn

kd )
∣∣∣2udα ≥ CNp|ΩN | ≥ CNp−K.

Recall Kp,d,N is the best constant for the following inequality:

∥∥∥ ∑
|n|≤N

ane
2πi(α1n

k1+···+αdn
kd )

∥∥∥
Lp(Td)

≤ Kp,d,N

( ∑
|n|≤N

|an|2
) 1

2

.

Choosing an = 1 for all |n| ≤ N , then we have Kp,d,N ≥ N− 1
2 (Λ(N, p))

1
p . Combin-

ing the estimates (3.2) and (3.3), we may get

Kp,d,N ≥ max
{
C1, C2N

1
2 (1−

2K
p )

}

which completes the proof. �
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