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OBSERVATIONS ON QUASIHYPERBOLIC GEOMETRY

MODELED ON BANACH SPACES

ANTTI RASILA, JARNO TALPONEN, AND XIAOHUI ZHANG

(Communicated by Jeremy Tyson)

Abstract. In this paper, we continue our study of the quasihyperbolic metric
over Banach spaces. The main results of the paper present a criterion for
smoothness of geodesics of quasihyperbolic type metrics in Banach spaces,

under a Dini type condition on the weight function, which improves an earlier
result of the first two authors. We also answer a question posed by the first
two authors in an earlier paper with R. Klén and present results related to the
question of smoothness of quasihyperbolic balls.

1. Introduction

The quasihyperbolic metric in the n-dimensional Euclidean space Rn is a natural
generalization of the hyperbolic metric, which was first introduced by F.W. Gehring
and his students Palka [9] and Osgood [8] in the 1970’s. The significance of this
metric arises from its several useful properties. In particular, the quasihyperbolic
metric is generally well-behaved in quasiconformal mappings and related classes of
transformations, and it naturally arises in the generalization of the Schwarz-Pick
lemma for quasiconformal mappings in Rn. In addition, bounds for this metric can
be obtained by using the distance ratio metric, a quantity that has a simple and
natural definition and is easy to compute.

Notably, unlike the conformal modulus and related approaches relying on n-
dimensional volume integration, the quasihyperbolic metric can be defined on a
wide range of metric spaces, including infinite dimensional Banach spaces. This
observation has led to the concept of (dimension) free quasiconformality, which
was developed by Väisälä (see [24]). The definition is based on the quasiconformal
Schwarz-Pick lemma, where the Grötzsch modulus function is replaced with an
arbitrary strictly increasing function of the non-negative real numbers onto itself.
This definition coincides with other definitions of quasiconformality in Rn. It has
led to the study of this class of mappings in Banach spaces, but it is also workable
in more general metric settings (see [12]). Besides its role in the theory of quasi-
conformal mappings, the quasihyperbolic metric is also related to certain domain
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classification problems, which are of independent interest, and applications related
to certain function spaces and partial differential equations.

Because of these important applications, there has been significant interest in the
quasihyperbolic metric itself and related concepts such as quasihyperbolic geodesics
and balls. However, analytic properties of such objects are usually not easy to see
directly from the definition of the quasihyperbolic distance. In this context, it is
generally assumed that the quasihyperbolic metric would exhibit behavior similar
to the hyperbolic metric, at least on a sufficiently small scale. For example, the
quasihyperbolic metric is conformal in the sense that small quasihyperbolic balls
are geometrically close to the balls of the norm metric.

The first two authors have investigated these questions in a series of articles
[16, 19, 20], the latest of which is joint work with R. Klén. The purpose of this pa-
per is to further refine and improve this line of research by presenting a more precise
condition for smoothness of geodesics of quasihyperbolic type weighted metrics, giv-
ing additional results on tangential properties of quasihyperbolic balls, and, finally,
presenting some open questions related to the connection of the quasihyperbolic
metric with the geometry of the underlying Banach space.

2. Preliminaries

In this section, we recall certain basic definitions required to formulate our main
results. We refer to the monographs [2–5, 11, 21] and the survey article [24] for
suitable background information.

2.1. Quasihyperbolic metric. Let X be a Banach space with dimX ≥ 2, and
suppose that Ω � X, Ω �= ∅ is a domain, i.e., a non-trivial, path connected open
subset. For x ∈ Ω, we denote by d(x) distance d(x, ∂Ω). Then the quasihyperbolic
length of a rectifiable arc γ in Ω is defined by

�k(γ) :=

∫
I

‖dγ‖
d(γ(t))

.

The quasihyperbolic distance of two points x, y ∈ Ω is the number

k(x, y) := kΩ(x, y) := inf
γ

�k(γ),

where the infimum is taken over all rectifiable arcs γ joining the points x, y ∈ Ω.
Next we recall the following definitions that are central in the geometry of Banach

spaces.

2.2. Uniform convexity. The modulus of convexity δX(ε), 0 < ε ≤ 2, is defined
by

δX(ε) := inf{1− ‖x+ y‖/2 : x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε}.

A Banach space X is called uniformly convex if δX(ε) > 0 for all ε > 0. Furthermore,
we call a space X uniformly convex of power type p ∈ [2,∞) if δX(ε) ≥ Kεp, for some
K > 0. Note that the modulus δX measures the convexity of the unit ball. A set C
is strictly convex if it is convex and d(sx+(1−s)y, ∂C) > 0 for all x, y ∈ ∂C, x �= y,
and 0 < s < 1.
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2.3. Uniform smoothness. The modulus of smoothness ρX(τ ), τ > 0, is defined
by

ρX(τ ) := sup{(‖x+ y‖+ ‖x− y‖)/2− 1 : x, y ∈ X, ‖x‖ = 1, ‖y‖ = τ}.
A Banach space X is uniformly smooth if

lim
τ→0+

ρX(τ )

τ
= 0.

Again, a space X is called uniformly smooth of power type p ∈ [1, 2] if ρX(τ ) ≤ Kτp,
for some K > 0.

2.4. Smoothness. The Gateaux derivative of a functional F : X → R at a point
x0 ∈ X is a linear mapping F (x0) : X → R defined by

F (x0)[y] = lim
t→0

F (x0 + ty)− F (x0)

t

for each y ∈ X, provided that it exists. In this case F is said to be Gateaux
differentiable at x0. If the norm ‖ · ‖ of a Banach space X is Gateaux differentiable
away from the origin, then X is said to be Gateaux smooth. See [2] for further
details.

2.5. LUR spaces. Recall that X is locally uniformly rotund (LUR) if for all x, xn ∈
SX, n ∈ N, with

lim
n→∞

‖x+ xn

2
‖ = 1,

it follows that
lim
n→∞

‖xn − x‖ = 0.

Note that a uniformly convex space is LUR, and this in turn implies that the space
is strictly convex.

By following the argument of the main lemma of [18], we see the following useful
observations. If λ and γ are rectifiable paths with unit quasihyperbolic speed in a
convex domain of a strictly convex space and

(2.1)

∥∥∥∥∥ λ′ + γ′

2d(λ+γ
2 )

∥∥∥∥∥ = 1,

then there is a representation

(2.2) λ′(t) = F (t)d(λ(t)), γ′(t) = F (t)d(γ(t))

at points t of differentiability of these paths. Here F (t) is a norm-1 vector and d(x)
denotes the distance d(x, ∂Ω). Moreover,∥∥∥∥∥ λ′ + γ′

2d(λ+γ
2 )

∥∥∥∥∥ ≤
∥∥∥∥ λ′ + γ′

d(λ) + d(γ)

∥∥∥∥ ≤ ‖λ′‖+ ‖γ′‖
d(λ) + d(γ)

=

∥∥∥∥F (d(λ) + d(γ))

d(λ) + d(γ)

∥∥∥∥ = ‖F‖ =

∥∥∥∥F + F

2

∥∥∥∥ =

∥∥∥∥12
(

λ′

d(λ)
+

γ′

d(γ)

)∥∥∥∥ .
The first inequality follows from the concavity of the distance function and the first
equality from (2.2). Suppose that λ and γ have unit quasihyperbolic speed. Then
we have ∥∥∥∥ λ′

d(λ)
+

γ′

d(γ)

∥∥∥∥ ≤ ‖λ′‖
d(λ)

+
‖γ′‖
d(γ)

=
d(λ)

d(λ)
+

d(γ)

d(γ)
= 2.
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The geometric interpretation of these facts is that the quasihyperbolic length of
the pointwise average of paths is dominated by the average of the quasihyperbolic
lengths of the mentioned paths. If X is a strictly convex space, then the above
readily yields that quasihyperbolic geodesics are unique and that quasihyperbolic
balls are strictly convex.

Lemma 2.1. Let X be an LUR Banach space. Suppose that x, yn ∈ X, where
x �= 0, n ∈ N, are vectors satisfying

lim
n→∞

‖x‖+ ‖yn‖ − ‖x+ yn‖ = 0,

where (yn) is a norm bounded sequence. Then d(yn, [x]) → 0 as n → ∞.

Proof. Let x and yn be vectors as above. Without loss of generality ‖x‖ = 1.
According to the Hahn-Banach theorem we may fix fn ∈ X∗, ‖fn‖ = 1, such that
fn(x + yn) = ‖x + yn‖ for n ∈ N. Then fn(x) → 1 and fn(yn) − ‖yn‖ → 0 as
n → ∞.

Write (fn ⊗ x)(z) = fn(z)x, z ∈ X. Note that

‖(fn ⊗ x)(x+ yn)‖ = |fn(x+ yn)|‖x‖ = ‖x+ yn‖.
Observe that

x+ yn = fn(x+ yn)x− (fn(x+ yn)x− (x+ yn)),

where

fn((fn(x+ yn)x− (x+ yn))) = fn(x+ yn)fn(x)− fn(x+ yn) → 0.

From any subsequence (nk) we may pick a further subsequence (nkj
) such that

fnkj
(x+ ynkj

) → c as n → ∞. Then, using the LUR condition with cx in place of

x and noting that ∥∥∥∥∥
cx+ (x+ ynkj

)

2

∥∥∥∥∥ → ‖cx‖, j → ∞

yield that x + ynkj
→ cx. This suffices for showing the statement of the lemma,

since (nk) is arbitrary. �

The following lemma is from [1].

Lemma 2.2 ([1]). Let λ be a positive real number and let
∑∞

k=0 xk be a convergent
series with non-negative terms. Suppose that

λxn ≥
∞∑

k=n+1

xk (n = 0, 1, 2, . . .).

Then, for 0 < α ≤ 1 we have

∞∑
k=0

xα
k ≤ 1

(λ+ 1)α − λα

( ∞∑
k=0

xk

)α

with equality in the case xk = (λ/(λ+ 1))k, k ≥ 0.

2.6. Radon-Nikodym property. A Banach space is said to have the Radon-
Nikodym property (RNP) if any absolutely continuous path starting from the origin
can be recovered by Bochner integrating its derivative.

For basic information about these concepts we refer to [5] and [6]. See also [2].
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3. Main results

The first of our main results is the following improvement of [20, Theorem 3.1].
This result deals with weighted metric spaces where teh quasihyperbolic weight is
replaced by a general positive continuous weight function.

Theorem 3.1. Let X be a uniformly convex Banach space whose modulus of con-
vexity has a power type. Let ν be the modulus of continuity of the weight function
w. We assume that the function ν satisfies the condition

(3.1) lim sup
s→0+

∫ s

0

ν(t)

t
dt

ν(s)
< ∞.

Then every dw-geodesic γ is C1 excluding the endpoints.

Above in (3.1) we have a strengthening of a Dini type condition.

Proof. It is easy to see from the condition (3.1) that there exist a constant C and
a positive integer k0 ∈ N such that for all k ≥ k0, k ∈ N,∫ 2−k

0

ν(t)

t
dt < Cν(2−k).

Since
∞∑

j=k+1

ν(2−j) ≤ 2

∫ 2−j

0

ν(t)

t
dt,

we have that, for all k ≥ k0,

∞∑
j=k+1

ν(2−j) ≤ Cν(2−k).

Then by Lemma 2.2, we obtain

∞∑
j=k0

ν(2−j)α ≤ 1

(C + 1)α − Cα

⎛
⎝ ∞∑

j=k0

ν(2−j)

⎞
⎠

α

< ∞,

which implies that

(3.2)
∞∑
j=1

ν(2−j)α < ∞.

Let

β(h) =
1

c

(
2

ω0

) 1
p

ν(3h)
1
p , p ≥ 2,

be the same function as in [20]. Using (3.2) with α = 1
p , we see that

∞∑
j=1

β

(
h

2j

)
< ∞.

Now the theorem follows from the argument of Rasila-Talponen [20]. �
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It is known that certain convexity properties (e.g. uniform convexity and the
RNP with strict convexity) of the underlying Banach space are transferred to the
quasihyperbolic geometry in the case of a convex domain. It was asked in [16]
whether for a locally uniformly rotund (LUR) Banach space the quasihyperbolic
metric in a symmetric convex domain in fact induces via a Minkowski functional a
norm which is LUR. Next this question is settled affirmatively in the reflexive case.

Theorem 3.2. Let X be a LUR reflexive Banach space and let Ω ⊂ X be a convex
domain. Let x0, y, yn ∈ Ω, n ∈ N, such that

k(x0, y) = k(x0, yn), n ∈ N,

k
(
x0,

y + yn
2

)
→ k(x0, y), n → ∞.

Then yn → y in norm as n → ∞. Moreover, if Ω is symmetric, then the Minkowski
functional of the ball Bk(0, r) is an equivalent LUR norm on X for any r > 0.

Proof. The latter part of the statement follows from the previous part by first ob-
serving that Bk(0, r) ⊂ Ω is a symmetric convex bounded subset including the
origin as an interior point. Therefore the norm ||| · ||| induced by the Minkowski
functional is equivalent to the given norm of the Banach space X. Thus, in Bk(0, r)
the norm topology and the topology induced by the quasihyperbolic metric coin-
cide, and in particular there is no need to distinguish between different modes of
sequential convergence (norm vs. quasihyperbolic). By using the fact that the func-
tion x �→ d(x, ∂Ω) is bounded on Bk(0, r) from above and from below by positive
constants, we obtain that |||yn||| → 1 if and only if k(0, yn) → 1.

Let x0, y ∈ Ω and � = k(x0, y). Fix yn ∈ Ω, n ∈ N, such that k(x0, yn) = � for
all n ∈ N and

k
(
x0,

y + yn
2

)
→ �, as n → ∞.

Note that X is strictly convex, being LUR. Since X is a strictly convex reflexive
Banach space and Ω is its convex domain, there is, up to a reparametrization, a
unique quasihyperbolic geodesic λ between x0 and y; see [19,20]. Let us investigate
the unique quasihyperbolic unit speed quasihyperbolic geodesics λ, λn : [0, �] →
Ω between x0, y and x0, yn, respectively. We will follow closely the arguments
in [18–20]; see also the “Preliminaries” section for the Radon-Nikodym Property
(RNP) and [6].

Recall that according to the RNP of X the paths λ, λn are differentiable a.e. and
can be recovered by integrating the derivatives in the Bochner sense:

λn(t) = λn(0) +

∫ t

0

λ′
n(s) ds, t ∈ [0, �].

According to the parametrization of the paths we have that∥∥∥∥ λ′(t)

d(λ(t))

∥∥∥∥ =

∥∥∥∥ λ′
n(t)

d(λn(t))

∥∥∥∥ = 1, n ∈ N, for a.e. t ∈ [0, �].

We wish to show that

‖y − yn‖ → 0, n → ∞.

It suffices to show that for any subsequence (nk) there exists a further subsequence
(nkj

) such that the above convergence holds when passing to this subsequence and
letting j → ∞ (because then clearly lim supn→∞ ‖y − yn‖ = 0).
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Since Bk(x0, �) is convex we have that k(x0,
y+ynk

2 ) ≤ �. We observe that

1 =
1

2

(
‖λ′‖
d(λ)

+
‖λ′

nk
‖

d(λnk
)

)
≥

1
2 (‖λ′‖+ ‖λ′

nk
‖)

1
2 (d(λ) + d(λnk

))
≥

1
2

∥∥λ′ + λ′
nk

∥∥
d
(
1
2 (λ+ λnk

)
)

and

� =

∫ �

0

1

2

(
‖λ′‖
d(λ)

+
‖λ′

nk
‖

d(λnk
)

)
≥

∫ �

0

1
2

∥∥λ′ + λ′
nk

∥∥
d
(
1
2 (λ+ λnk

)
) ≥ k

(
x0,

y + ynk

2

)
→ �,

as k → ∞.
It follows that

1
2

∥∥λ′ + λ′
nk

∥∥
d
(
1
2 (λ+ λnk

)
) → 1

in L1 and, in measure, as k → ∞. Thus there is a further subsequence (nkj
) such

that

1
2

∥∥∥λ′(t) + λ′
nkj

(t)
∥∥∥

d
(

1
2

(
λ(t) + λnkj

(t)
)) → 1

for a.e. t ∈ [0, �] as j → ∞.
Using an adaptation of considerations after (2.2) we get∥∥∥∥∥ λ′

d(λ)
+

λ′
nkj

d(λnkj
)

∥∥∥∥∥ → 2

for a.e. t as j → ∞. It follows from the LUR assumption that∥∥∥∥∥ λ′

d(λ)
−

λ′
nkj

d(λnkj
)

∥∥∥∥∥ → 0

for a.e. t as j → ∞. Lebesgue’s dominated convergence theorem then yields

(3.3)

∫ �

0

∥∥∥∥∥ λ′

d(λ)
−

λ′
nkj

d(λnkj
)

∥∥∥∥∥ dm → 0, j → ∞.

By [18, Lemma 3.3], the path λnkj
converges uniformly to the geodesic path λ, and

hence

(3.4)

∥∥∥∥∥
λ′
nkj

(t)

d(λ′
nkj

(t))
−

λ′
nkj

(t)

d(λ′(t))

∥∥∥∥∥ → 0, j → ∞,

uniformly. Since

ynkj
= x0 +

∫ �

0

λ′
nkj

(t) dt

and

y = x0 +

∫ �

0

λ′(t) dt



3870 ANTTI RASILA, JARNO TALPONEN, AND XIAOHUI ZHANG

by the Radon-Nikodym Property, we have

‖ynkj
− y‖ =

∥∥∥∥∥
∫ �

0

(λ′
nkj

(t)− λ′(t))dt

∥∥∥∥∥
≤

∫ �

0

∥∥∥λ′
nkj

(t)− λ′(t)
∥∥∥ dt

≤ max
0≤t≤�

{d(λ(t))}
∫ �

0

∥∥∥∥∥
λ′
nkj

(t)

d(λ(t))
− λ′(t)

d(λ(t))

∥∥∥∥∥ dt
≤ max

0≤t≤�
{d(λ(t))}

(∫ �

0

∥∥∥∥∥
λ′
nkj

(t)

d(λnkj
(t))

− λ′(t)

d(λ(t))

∥∥∥∥∥ dt
+

∫ �

0

∥∥∥∥∥
λ′
nkj

(t)

d(λnkj
(t))

−
λ′
nkj

(t)

d(λ(t))

∥∥∥∥∥ dt
)

→ 0,

which follows from (3.3) and (3.4).
Thus yn → y in norm as k → ∞. �

The following result has some bearing on some previous results on the existence
and smoothness of geodesics and the smoothness of the quasihyperbolic metric in
convex domains; see [19, 20].

Theorem 3.3. Let X be a Banach space. Let Ω ⊂ X be a domain and let γ : [0, �] →
Ω be a quasihyperbolic unit speed quasihyperbolic geodesic between points x0, x ∈ Ω
of quasihyperbolic length �. Suppose that the Gateaux derivative (k(x0, ·))′(x) exists
and the vector derivative

γ′(�) = lim
t→�−

γ(�)− γ(t)

�− t

exists. Then

sup
z∈SX

(k(x0, ·))′(x)
[

z

d(x)

]
= (k(x0, ·))′(x)[γ′(�)],

where ‖γ′(�)‖ = d(x).

Proof. The latter part of the claim is clear from the continuity of the distance
function. Therefore the claim reduces to checking that

‖(k(x0, ·))′(x)‖X∗ = (k(x0, ·))′(x)
[
γ′(�)

d(x)

]
,

where ∥∥∥∥γ′(�)

d(x)

∥∥∥∥ = 1.

Clearly

(3.5)
1

d(x)
≥ ‖(k(x0, ·))′(x)‖X∗ ≥ (k(x0, ·))′(x)

[
γ′(�)

d(x)

]
> 0.

Note that according to the definition of the geodesic k(x0, γ(t)) = t for each t ∈
[0, �], and therefore the chain rule gives us that

d

dt
k(x0, γ(t))

∣∣∣
t=�

= (k(x0, ·))′(x)[γ′(�)] = 1.
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This means that the first two inequalities in (3.5) hold as equalities. This proves
the claim. �

Corollary 3.4. Let X be a Gateaux smooth Banach space. Let Ω ⊂ X be a domain
and let γ : [0, �] → Ω be a quasihyperbolic unit speed quasihyperbolic geodesic between
points x0, x ∈ Ω (and of quasihyperbolic length �). Assume that y = γ(t) for some
0 < t < 1. Suppose k(x0, ·) and k(y, ·) are Gateaux differentiable at x and γ has
left derivative at �. Then k(x0, ·)′(x) and k(y, ·)′(x) coincide.

In particular, the geometric interpretation of this fact is that the unique tangent
spaces of the spheres Sk(x0, �) and Sk(y, �− t) at x coincide.

Proof. The functionals d(x)(k(x0, ·)′(x)), d(x)(k(y, ·)′(x)) ∈ SX∗ attain their norm

at γ′(�)
d(x) according to Theorem 3.3 and its proof. Thus, the Gateaux smoothness of

X together with the Smulyan lemma yields that these functionals coincide. �

The following result is an immediate consequence of the smoothness of quasi-
hyperbolic balls.

Corollary 3.5. Suppose that X is a uniformly smooth Banach space and Ω ⊂ X
is a convex domain. Then the geometric conclusion of the previous result holds: If
Bk(y, s) ⊂ Bk(x, r) and z ∈ Sk(x, r) ∩ Sk(y, s), then the quasihyperbolic spheres
Sk(x, r) and Sk(y, s) have the same tangent space at z.

In particular, the assumption on X is valid above if X is a Hilbert space, e.g. Rn

with the usual norm.

Proof. The statement follows from the fact that under the assumptions for any
x0 ∈ Ω the quasihyperbolic metric k(x0, ·) is continuously Frechet differentiable in
Ω away from x0; see Theorem 2.7 in [16]. Indeed, recall that the quasihyperbolic
balls in convex domains are convex. The domain is geodesic here, since the Banach
space is reflexive, being uniformly smooth. This means that the tangent space T of
Bk(x, r) at z exists. Moreover, the tangent space is unique according to the Frechet
differentiability of k(x, ·). A similar fact holds also for Bk(y, s). Clearly T is also
the unique tangent space of Bk(y, s) ⊂ Bk(x, r) at z. �

4. Final remarks

Professor Beata Randrianantoanina has asked in a personal communication the
following general question relating the geometry of Banach spaces to the properties
of quasihyperbolic manifolds modeled on these spaces.

Question 4.1. Which Banach space properties can be characterized by the corre-
sponding quasihyperbolic metric induced norm, following [16]?

The authors have also previously raised the question about the characterization
of reflexive Banach spaces in terms of quasihyperbolic metrics. Namely, every reflex-
ive Banach space has the property that for every convex domain the corresponding
quasihyperbolic metric space is geodesic; see [19].

Question 4.2. Does the converse implication hold?

It is useful to observe that if (2.1) holds suitably asymptotically for a pair of
sequences of paths, then the conclusion holds asymptotically as well. This is con-
venient in particular in the setting of uniformly convex spaces.
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Corrigendum. The following theorem appears in [19].

Theorem 4.3. Let X be a Banach space, and let Ω � X be a domain. Then each
j-ball Bj(x0, r), x0 ∈ Ω, is starlike for radii r ≤ log 2.

Although the statement of the theorem is correct, the proof contains a blunder
with the grouping of terms. The corrected proof goes as follows.

Proof. Let x0, y ∈ Ω, x0 �= y, such that j(x0, y) ≤ log 2. This is to say that

‖x0 − y‖
d(x0) ∧ d(y)

≤ 1.

By using simple calculations involving the triangle inequality we get

j(x0, ty + (1− t)x0) ≤ log

(
1 +

t‖x0 − y‖
d(x0) ∧ (d(y)− (1− t)‖x0 − y‖)

)

≤ log

(
1 +

t‖x0 − y‖
t‖x0 − y‖

)
= log 2, t > 0.

�
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[23] Jussi Väisälä, Free quasiconformality in Banach spaces. IV, Analysis and topology, World
Sci. Publ., River Edge, NJ, 1998, pp. 697–717. MR1667841
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