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MÖBIUS ORTHOGONALITY FOR THE ZECKENDORF
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(Communicated by Matthew A. Papanikolas)

Abstract. We show that the (morphic) sequence (−1)sϕ(n) is asymptotically
orthogonal to all bounded multiplicative functions, where sϕ denotes the Zeck-

endorf sum-of-digits function. In particular we have
∑

n<N (−1)sϕ(n)μ(n) =
o(N), that is, this sequence satisfies the Sarnak conjecture.

1. Introduction

The Sarnak conjecture [36,37] says that the Möbius function μ(n) is asymptoti-
cally orthogonal to any deterministic sequence, that is, for any sequence (xn) that
can be realized in a deterministic flow we have:

(1)
∑
n<N

μ(n)xn = o(N) (N → ∞).

If this equation holds true, we also say that (xn) satisfies a Möbius randomness
principle. This conjecture has received a lot of attention during the last years and
could be proved for several instances [3–5, 9, 11, 16–18, 20–24, 26, 29, 31, 35, 38, 41].
In particular special automatic sequences were handled recently: [8, 10, 12, 15, 19,
25, 27, 32, 33]. And finally the second author could solve the Sarnak conjecture for
all automatic sequences [34]. We also want to note the recent survey on Sarnak’s
conjecture by Ferenczi, Ku�laga-Przymus, and Lemańczyk [14].

Automatic sequences constitute an interesting class of deterministic sequences
that can be characterized in several different ways; see [1]. For example they can be
seen as codings of fixed points of morphisms (on sequences over a finite alphabet)
of constant length. The most prominent example is the Thue–Morse sequence
(tn)n∈N = (0110100110010110 . . .) which is the fixed point of the morphism σ(0) =
01, σ(1) = 10 starting with 0 (where the coding is the identity).

It is, thus, a natural question whether a corresponding result holds for morphic
sequences, which are obtained by general morphisms, followed by a coding. One of
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the simplest morphic sequences is the Fibonacci word

(xn)n≥1 = (2 + �nϕ� − �(n+ 1)ϕ�)n≥1 = (010010100100101001 . . .)

which is the fixed point of the morphism σ(0) = 01, σ(1) = 0, starting with 0

(and where ϕ = (1 +
√
5)/2 denotes the golden mean). A Möbius Randomness

Principle (1) for this case, and more generally for Sturmian words, follows from [18,
Theorem 5.2] by setting xn = �nα + β� − �(n − 1)α + β� or xn = �nα + β� −
�(n − 1)α + β� for some irrational α and real β. We note that Sturmian words
are characterized as binary nonperiodic words having minimal factor complexity:
there are exactly k + 1 different factors (contiguous subsequences) of length k [1,
Theorem 10.5.2]. Automatic sequences, on the other hand, have sublinear factor
complexity [1, Corollary 10.3.2]. Moreover, morphic sequences have at most a
quadratic number of factors of length k [1, Corollary 10.4.9]. Sturmian, automatic
and morphic sequences are, therefore, deterministic (the topological entropy being
0).

Furthermore, we would like to mention a result by Houcein El Abdalaoui,
Lemańczyk, and de la Rue [23], which shows that automorphisms with quasi-
discrete spectrum satisfy the Sarnak conjecture. This general result also covers
some morphic sequences like the Fibonacci word. However, the sequence (−1)sϕ(n)

under consideration does not belong to this class [30]. Additionally, the Sarnak
conjecture has been settled for some other morphic sequences by Ferenczi, Ku�laga-
Przymus, and Lemańczyk [14, Theorem 5.9], using different methods.

The purpose of this article is to settle the problem of Möbius randomness for the
sequence

xn = (−1)sϕ(n),

where sϕ(n) denotes the Zeckendorf sum-of-digits of n, that is, the minimal number
of Fibonacci numbers needed to represent n as their sum. The sequence sϕ mod 2
is morphic; see [6, p. 14]. It is given by the following substitution σ together with
the coding π:

σ :

⎧⎪⎪⎨
⎪⎪⎩

a 	→ ab
b 	→ c
c 	→ cd
d 	→ a

⎫⎪⎪⎬
⎪⎪⎭

, π :

⎧⎪⎪⎨
⎪⎪⎩

a 	→ 0

b 	→ 1

c 	→ 1

d 	→ 0

⎫⎪⎪⎬
⎪⎪⎭

,

and we are interested in the coding of the fixed point starting with a. Therefore,

sϕ(n) mod 2 = (011101001000110001011100 . . .) .

Actually, we prove a relation that is more general than (1).

Theorem 1. Let sϕ(n) be the Zeckendorf sum-of-digits function and let m(n) be a
bounded multiplicative function. Then, we have

(2)
∑
n<N

(−1)sϕ(n)m(n) = o(N) (N → ∞).

The proof of Theorem 1 is based on a general principle that is due to Kátai [27]
(see also Bourgain, Sarnak, and Ziegler [5] for a quantitative version). Suppose
that (xn)n∈N is a bounded complex valued sequence with values in a finite set and
that for every pair (p, q) of different prime numbers we have∑

n<N

xpnxqn = o(N).
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Then for all bounded multiplicative functions m(n) it follows that∑
n<N

xnm(n) = o(N) (N → ∞).

Thus, it is sufficient to check the condition

(3)
∑
n<N

(−1)sϕ(pn)+sϕ(qn) = o(N) (N → ∞),

which will be done in the main body of the paper. We note that a statement like (3)
was proved for the usual sum-of-digits function [7, 8, 39].

Remark 1. It is not always clear if a morphic sequence (given by a substitution of
nonconstant length) is automatic or not (that is, whether it is the fixed point of a
substitution of constant length or not). In Section 4 we show that (3) holds for all

q > p ≥ 2. In particular this implies that the sequences ((−1)sϕ(k
λn))n∈N are pair-

wisely different for all k ≥ 2 and λ ∈ N. Therefore, the k-kernel of ((−1)sϕ(n))n∈N

is infinite and, thus, this sequence is not automatic (see again [1] for more details
on this topic).

In Section 2 we recall some facts about the Zeckendorf expansion of nonnegative
integers and prove that there exists n > 0 such that sϕ(pn) + sϕ(qn) is odd. In
Section 3 we present a generating function approach for the analysis of sums of the
form ∑

Fk−1≤n<Fk

(−1)sϕ(pn)+sϕ(qn),

where Fk denotes the k-th Fibonacci number. With the help of these preliminaries
the proof of (3) is then given in Section 4.

2. The Zeckendorf sum-of-digits function

For k ≥ 0 let Fk be the k-th Fibonacci number, that is, F0 = 0, F1 = 1, and
Fk = Fk−1 + Fk−2 for k ≥ 2. By Zeckendorf’s Theorem [42] every positive integer
n admits a unique representation

n =
∑
i≥2

εiFi,

where εi ∈ {0, 1} and εi = 1 ⇒ εi+1 = 0. By this theorem we may write the i-th
coefficient εi as a function of n. The Zeckendorf sum-of-digits of n is then defined
as

sϕ(n) =
∑
i≥2

εi(n).

We set sϕ(0) = 0. We note that sϕ(n) is the least k such that n is the sum of k
Fibonacci numbers.

The main purpose of this section is to prove that there exist integers n′, n′′ > 0
such that sϕ(pn

′) + sϕ(qn
′) is even and sϕ(pn

′′) + sϕ(qn
′′) is odd. Actually we will

prove a slightly more general property in Lemma 4.
For the proof of Lemma 4 we need some preliminaries. Let {x} denote the

fractional part of x and 〈x〉 := {x+ 1
2}−

1
2 ∈ [− 1

2 ,
1
2 ) denote the signed distance to



3682 MICHAEL DRMOTA, CLEMENS MÜLLNER, AND LUKAS SPIEGELHOFER

the nearest integer. Obviously, {x} ≡ 〈x〉 mod 1 holds for all x ∈ R. We denote by
εk(n) the n-th digit of n in the Zeckendorf expansion and, furthermore,

v(n, k) =
∑

2≤i<k

εi(n)Fi.

We define

Rk(u) := (−1)kuϕ+

⎧⎪⎨
⎪⎩

[
− 1

ϕk−1 ,
1
ϕk

)
, 0 ≤ u < Fk−1;[

− 1
ϕk+1 ,

1
ϕk

)
, Fk−1 ≤ u < Fk,

where ϕ = (
√
5 + 1)/2. This allows us to detect the last k digits of n in the

Zeckendorf expansion (see for example [40, Proposition 5.7]).

Lemma 1. Let k ≥ 2, 0 ≤ u < Fk and n ≥ 0. Then we have

v(n, k) = u

if and only if

(−1)knϕ ∈ Rk(u) + Z.

We want to show that the functions sϕ(pn)+ sϕ(qn) have a quasi-additive prop-
erty with respect to the Zeckendorf expansion (compare to [28]). We say that n1

and n2 are r-separated at position k if εi(n1) = 0 for i ≥ k − r and εi(n2) = 0 for
i ≤ k + r. In particular this means that

εi(n1 + n2) =

⎧⎨
⎩

εi(n1) for i < k − r,
0 for k − r ≤ i ≤ k + r,
εi(n2) for i > k + r.

We define a shift operator S : N → N by

S(n) =
∑
k≥2

Fk+1εk(n).

Furthermore, we say that a function f(n) is quasi-additive with respect to the
Zeckendorf expansion if there exists r ≥ 0 such that

f(n1 + n2) = f(n1) + f(n2)

for all integers n1, n2 that are r-separated at some position k and

f(n) = f(S(n))

for all integers n such that v(n, r) = 0. Note that sϕ is 0-quasi-additive with respect
to the Zeckendorf expansion.

Lemma 2. Suppose that q > p ≥ 2 are integers and that f(n) = sϕ(pn) + sϕ(qn).
Then f is quasi-additive with respect to the Zeckendorf expansion.

Proof. Since the sum of quasi-additive functions is quasi-additive, it suffices to
show the property for n 	→ sϕ(mn). First, we need to find r such that if n1 and n2

are r-separated, mn1 and mn2 are still 0-separated, which yields the claim by the
0-quasi-additivity of sϕ.

Choose r in such a way that ϕr−1 > m and assume that n1 and n2 are r-separated
at k. Then v(n2, k + r + 1) = 0. We obtain

〈
(−1)k+r+1n2ϕ

〉
∈
[
− 1

ϕk+r
,

1

ϕk+r+1

)
⊆

[
− 1

mϕk+1
,

1

mϕk+1

)
,
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therefore,

〈
(−1)k+1mn2ϕ

〉
= m(−1)r〈(−1)k+r+1n2ϕ

〉
⊆

[
− 1

ϕk
,

1

ϕk+1

)
,

from which it follows that v(mn2, k + 1) = 0, that is, εi(mn2) = 0 for i ≤ k.
Moreover, we have εi(n1) = 0 for i ≥ k − r by assumption. This implies n1 <

Fk−r, therefore, mn1 < ϕr−1Fk−r ≤ Fk−r+r−1+1 = Fk, which implies εi(mn1) = 0
for i ≥ k. Therefore, mn1 and mn2 are 0-separated at k.

A simple computation shows

Fk+1 = ϕFk −
(
− 1

ϕ

)k

,

which implies

S(n) = ϕn−
∑
k≥2

εk(n)

(
− 1

ϕ

)k

.

Thus, we find for ϕr−3 > m and v(n, r) = 0

|S(mn)−mS(n)| =

∣∣∣∣∣∣ϕmn−
∑
k≥2

εk(mn)

(
− 1

ϕ

)k

−mϕn+m
∑
k≥2

εk(n)

(
− 1

ϕ

)k
∣∣∣∣∣∣

≤
∑
k≥2

εk(mn)
1

ϕk
+m

∑
k≥r

εk(n)
1

ϕk

≤ 1

ϕ2

1

1− 1
ϕ2

+m
1

ϕr

1

1− 1
ϕ2

=
1

ϕ
+m

1

ϕr−1
<

1

ϕ
+

1

ϕ2
= 1.

This gives S(mn) = mS(n) for ϕr−3 > m and v(n, r) = 0 and by the 0-quasi-
additivity of sϕ(.)

sϕ(mS(n)) = sϕ(S(mn)) = sϕ(mn),

which shows that n 	→ sϕ(mn) is quasi-additive. �
Lemma 3. Let q > p ≥ 1 be integers and n, k ∈ N such that v(n, k) = 0 and
ϕk−1 > 2q. Then we have

max{	 : v(qn, 	) = 0} ≤ max{	 : v(pn, 	) = 0}.

Proof. We find that v(n, k) = 0 implies

{(−1)knϕ} ∈
[
− 1

ϕk−1
,
1

ϕk

)
+ Z ⊆

[
− 1

2q
,
1

2q

)
+ Z.

Or, phrasing it in terms of the signed distance to the nearest integer,

〈(−1)knϕ〉 ∈
[
− 1

ϕk−1
,
1

ϕk

)
⊆

[
− 1

2q
,
1

2q

)
.

This gives

〈(−1)�qnϕ〉 = (−1)k+�q · 〈(−1)knϕ〉,
〈(−1)�pnϕ〉 = (−1)k+�p · 〈(−1)knϕ〉

for all 	 ≥ 0.
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Thus, we find that v(qn, 	) = 0 if and only if

q(−1)k+�〈(−1)knϕ〉 ∈
[
− 1

ϕ�−1
,
1

ϕ�

)
.

However, this implies

p(−1)k+�〈(−1)knϕ〉 ∈
[
− 1

ϕ�−1
,
1

ϕ�

)

which is equivalent to v(pn, 	) = 0. �

Lemma 4. For all m ≥ 2 and integers q > p ≥ 2 there exists r such that n 	→
sϕ(pn) and n 	→ sϕ(qn) are r-quasi-additive, and there exist positive integers n′, n′′

such that v(n′, r) = v(n′′, r) = 0, n′ and n′′ cannot be decomposed into two positive
integers that are r-separated and

sϕ(qn
′) ≡ sϕ(pn

′) mod m,

sϕ(qn
′′) �≡ sϕ(pn

′′) mod m.

Proof. By Lemma 2 there exists a minimal r0 such that n 	→ sϕ(qn) and n 	→ sϕ(pn)
are r-quasi-additive for all r ≥ r0. Therefore, the integers ni = Fr0+1+i(2r0+2), for

i = 0, . . . ,m−1 are pairwise r0-separated and we find ni = Si(r0+2)(n0). This gives
by the r0 quasi-additivity of n 	→ sϕ(qn) and n 	→ sϕ(pn),

sϕ(q(n0 + . . .+ nm−1)) ≡ msϕ(qn0) ≡ 0 mod m,

sϕ(p(n0 + . . .+ nm−1)) ≡ msϕ(pn0) ≡ 0 mod m.

This concludes the proof of the first part, by choosing r = r0 + 1 and n′ = n0 +
. . .+ nm−1.

The main idea for the proof of the second statement is to find positive integers
n1, n2 such that

sϕ(q(n2 + n1)) + 1 = sϕ(qn2) + sϕ(qn1),

sϕ(p(n2 + n1)) = sϕ(pn2) + sϕ(pn1),

and v(n1, r) = v(n2, r) = v(n2 + n1, r) = 0, where r = r0 + 1. This shows the
existence of some ñ such that

sϕ(qñ) �≡ sϕ(pñ) mod m

where v(ñ, r) = 0. We decompose ñ into indecomposable parts and an argument by
contradiction shows immediately that one of these parts has the desired property.

It is sufficient to choose k and n1, n2 such that

• v(qn2, k + 4) = Fk+1 and v(pn2, k + 1) = 0.
• Fk ≤ qn1 < Fk+1 and pn1 < Fk:

We define n = n1 + n2 and find that εi(pn) = εi(pn2) + εi(pn1) as pn2 and pn1 are
0-separated at position k + 1. Furthermore, we find εi(qn) = εi(qn2) + εi(qn1) for
all i ∈ N \ {k, k+ 1, k+ 2, k+ 3} and the digits at position k+ 3, k+ 2, k+ 1, k are
(0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) for qn, qn2, and qn1, respectively.

For parity reasons, we ask for v(qn2, k+5) = Fk+1 instead of v(qn2, k+4) = Fk+1.
Since (Fn)n∈N is periodic modulo q, we can choose n′

1 > 2Frp and k ∈ N with
ϕk > 2q such that n′

1 · q = Fk. We choose n1 = n′
1 + n′′

1 such that v(n1, r) = 0 and
n′′
1 < Fr. The condition n′

1 > 2Frp assures that Fk ≤ qn1 < Fk+1 and pn1 < Fk.
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We use again the following identity:

ϕFk = Fk+1 −
(
− 1

ϕ

)k

.

Thus, we find

Rk+5(Fk+1) + Z = − 1

ϕk+1
+

[
− 1

ϕk+4
,

1

ϕk+5

)
+ Z

⊆
[
− 1

ϕk
,

1

ϕk+1

)
+ Z = Rk+1(0) + Z.

Let I be the representative of Rk+5(Fk+1) mod 1 in [− 1
2 ,

1
2 ). Thus we find I ⊂[

− 1
ϕk ,

1
ϕk+1

)
. We denote by I ′ := I · 1q ⊂

[
− 1

qϕk ,
1

qϕk+1

)
. As {nϕ} is dense in [0, 1),

we find n2 such that 〈n2ϕ〉 ∈ I ′ ⊂ Rk+1(0).
By construction, we find 〈qn2ϕ〉 ∈ I and v(n2, k + 1) = 0. 〈qn2ϕ〉 ∈ I gives

v(qn2, k + 5) = Fk+1 and, therefore, v(qn2, k + 4) = Fk+1. Since v(n2, k + 1) = 0
and ϕk > 2q we can apply Lemma 3, which gives v(pn2, k+1) = 0 as required. �

3. Generating functions

In this section, let q > p ≥ 2 be integers and let f(n) be defined by

(4) f(n) = sϕ(pn) + sϕ(qn).

By Lemma 2 the function f is quasi-additive.
Next we fix a finite subset L = {	1, 	2, . . . , 	d} of positive integers with the

property 	1 ≤ 2r and 	j + 1 < 	j+1 ≤ 	j + 2r + 1, 1 ≤ j < d, and consider the
generating function

HL(x, z) =
∑
k≥3

xk
∑

Fk−1≤n<Fk

zf(n+NL(k)),

where NL(k) is given by

NL(k) =
∑
�∈L

Fk+� =

d∑
j=1

Fk+�j .

Furthermore, let B′ be the set of positive integers n that have no decomposition
of the form n = n1 + n2, where n1 and n2 are nonzero and r-separated (at some
position k) and B = {n ∈ B′ : v(n, r + 1) = Fr}. Then we set

B(x, z) =
∑
n∈B

x�(n)zf(n)

and
BL(x, z) =

∑
n∈B

x�(n)zf(n+NL(�(n))),

where 	(n) = k if Fk−1 ≤ n < Fk. The generating functions B′(x, z) and B′
L(x, z)

are defined analogously. The generating function HL(x, z) can be expressed in the
following form (compare with [28]).

Lemma 5. Suppose that f(n) is quasi-additive with respect to the Zeckendorf ex-
pansion for some integer r ≥ 1. Then we have

HL(x, z) = B′
L(x, z) +

B′(x, z)BL(x, z)(1− x)

1− x− xr+1B(x, z)
.
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Proof. The generating function HL is a functional of all Zeckendorf expansions of
n + NL(	(n)), where n runs over all positive integers, that is, we always add the
digits corresponding toNL(	(n)). The expansion of every n /∈ B′ can be decomposed
in the following way. They start with an expansion corresponding to an element
in B′ (which may start with less than r zeros). Then there is a possibly empty
sequence of pairs consisting of a sequence of at least r + 1 zeros followed by an
expansion corresponding to an element in B (which start with exactly r zeros).
Finally there is an element of B followed by digits corresponding to L. This means
that n = n0+Sk1(n1)+. . .+Skt(nt) where n0 ∈ B′, n1, . . . , nt ∈ B, ki ≥ r+1 and the
Ski(ni) are pairwise r-separated and by the quasi-additivity of f : f(n+NL(	(n))) =
f(n0) + f(n1) + . . .+ f(nt−1) + f(nt +NL(	(nt))).

When n already belongs to B′, we do not decompose it at all. This gives,

HL(x, z) = B′
L(x, z) +B′(x, z)

1

1−B(x, z)x
r+1

1−x

BL(x, z)

= B′
L(x, z) +

B′(x, z)BL(x, z)(1− x)

1− x− xr+1B(x, z)
.

This proves the lemma. �

The next lemma gives a quantitative bound on how many elements there are in
B.

Lemma 6. Assume that r ≥ 2 and let 1 < ϕr < ϕ be the solution of the equation

1− 1

ϕr
− 1

ϕ2
r

+
1

ϕ2r+2
r

= 0.

Then we have

#{n ∈ B : 	(n) = k} = O
(
ϕk
r

)
,

#{n ∈ B′ : 	(n) = k} = O
(
ϕk
r

)
.

Proof. We only prove the statement for B′ as B ⊆ B′. We are interested in the num-
ber of 0-1-sequences of length k − 2, starting with 1, with the property that two
adjacent 1s are separated by at least one zero but at most 2r zeros. These sequences
can be seen as (possibly empty) concatenations of the words 10, 100, . . . , 102r fol-
lowed by 1 and a (possible empty) concatenation of zeros. The corresponding

generating function is x2

1−(x2+···+x2r+1)
x

1−x = x2−x3

1−x−x2+x2r+2
x

1−x . The denominator

1 − (x2 + · · · + x2r+1) is positive at x = 1/ϕ (since 1 − 1/ϕ2 − 1/ϕ3 − · · · = 0)
and negative at x = 1, therefore, there is a unique zero 1/ϕr in the range (1/ϕ, 1),
which yields the claim by Pringsheim’s Theorem. �

It is an immediate consequence of Lemma 6 that B(x, z), BL(x, z), B
′(x, z), and

B′
L(x, z) converge absolutely for all x, z with |x| < 1/ϕr and |z| = 1.

4. Proof of Theorem 1

As mentioned in the introduction it is sufficient to show (3) which we will do
now in several steps. As above we fix two integers q > p ≥ 1.
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Lemma 7. There exist η > 0 such that uniformly for all finite L (as described
above) ∑

Fk−1≤n<Fk

(−1)f(n+NL(k)) = O
(
ϕ(1−η)k

)
.

Proof. We first note that the above sum is just the coefficient of xk of the function
HL(x,−1). Thus, we have to show that HL(x,−1) has no singularities for |x| ≤
1/ϕ + ε for some ε > 0 and apply Cauchy’s formula. For this purpose we use
the representation of HL(x, z) given in Lemma 5, where r will be chosen later.
As mentioned at the end of Section 3 (after the proof of Lemma 6) the functions
B(x,−1) and BL(x,−1) have no singularities in the region |x| < 1/ϕr. Hence the
only possible singularity of HL(x,−1) in the region |x| < 1/ϕr could be due to a
solution of the equation

(5) x+ xr+1B(x,−1) = 1.

We show that there exists x1 > x0 := 1/ϕ such that this equation does not have
a solution for |x| ≤ x1, which implies that HL(x,−1) is uniformly bounded for
|x| ≤ x1. We first note that

x0 + xr+1
0 B(x0, 1) = 1

since the coefficient of xk of HL(x, 1) is of order ϕk and, therefore, it is necessary
that HL(x, 1) has a singularity at x = x0.

By Lemma 4 there are integers n′, n′′, and r for which f(n′) is even and f(n′′)
is odd and n′, n′′ ∈ B. It follows that there exists x′

1 > x0 such that

(6) |B(x,−1)| < B(x0, 1) for all |x| ≤ x′
1.

This further implies that there exists x1 > x0 such that for |x| ≤ x1

|x+ xr+1B(x,−1)| ≤ |x|+ |x|r+1|B(x,−1)|
≤ x1 + xr+1

1 |B(x,−1)|
< x0 + xr+1

0 B(x0, 1) = 1.

Finally, by Cauchy’s formula we obtain∣∣∣∣∣∣
∑

Fk−1≤n<Fk

(−1)f(n+NL(�(n)))

∣∣∣∣∣∣ =
∣∣∣∣∣
1

2πi

∫
|x|=x1

HL(x,−1)x−k−1 dx

∣∣∣∣∣
≤ max

|x|=x1

|HL(x,−1)|x−k
1

= O
(
ϕ(1−η)k

)
,

where η > 0 is defined by ϕ1−η = x−1
1 . �

With the help of Lemma 7 we can finally derive the desired upper bound.

Lemma 8. There exists η > 0 such that∑
1≤n<N

(−1)f(n) = O
(
N1−η

)
.
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Proof. First we observe that Lemma 7 implies that we also have

(7)
∑

1≤n<Fk

(−1)f(n+NL(k)) = O
(
ϕ(1−η)k

)

uniformly for all finite sets L = {	1, 	2, . . . , 	d} of positive integers with the property
	1 ≤ 2r and 	j + 1 < 	j+1, 1 ≤ j < d.

To see this, assume first that there is some j with 	j+1 > 	j +2r+1. In this case
we can apply Lemma 2 and split the contribution of NL(k) into at least two parts
so that we can restrict ourselves to the situation covered by Lemma 7. Secondly,
we partition the sum over n < Fk into several subsums:∑

n<Fk

(−1)f(n+NL(k)) =
∑
j≤k

∑
Fj−1≤n<Fj

(−1)f(n+NL(k)).

For j > k−2r−1 we can directly apply Lemma 7 by shifting the corresponding sets
L accordingly. Finally for j ≤ k − 2r − 1 we apply first Lemma 2 and separate the
contribution of f(n+NL(k)) into f(n) + f(NL(k)) and apply Lemma 7 for L = ∅.
This gives

∑
n<Fk

(−1)f(n+NL(k)) = O

⎛
⎝∑

j≤k

ϕ(1−η)j

⎞
⎠ = O

(
ϕ(1−η)k

)
.

In order to complete the proof of Lemma 8 we consider the Zeckendorf expansion
of N :

N =
J∑

j=1

Fkj
,

where kj > kj+1 + 1 (for 1 ≤ j < J). Furthermore, we set L1 = ∅ and Lj =
{kj−1 − kj , kj−2 − kj , . . . , k1 − kj} for 2 ≤ j ≤ J . Then we have

∑
n<N

(−1)f(n) =
J∑

j=1

∑
n<Fkj

(−1)f(n+NLj
(kj)).

Since (7) holds uniformly for all possible finite sets L we thus obtain∑
n<N

(−1)f(n) = O
(
F 1−η
k1

)
= O

(
N1−η

)
,

which completes the proof of the lemma. �

5. Possible extensions

We proved that the infinite word sϕ modulo 2 satisfies a Möbius Randomness
Principle (MRP). This gives rise to several questions on possible extensions of
this result. For example, is it true that every sequence observed by the symbolic
dynamical system associated with sϕ modulo 2 satisfies the Sarnak conjecture?
Moreover, it is certainly possible to extend our results to the case sϕ modulo m for
arbitrary m ≥ 2.

Finally, we want to mention some possible directions of further research:

(1) Prove an MRP for (−1)sα(n), where sα is the Ostrowski sum-of-digits func-
tion (for arbitrary irrational α), generalizing the case α = ϕ (see [2] for a
survey on the Ostrowski numeration system). We expect that the methods
of this paper can be used at least for the case of quadratic irrational α.
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(2) Prove an MRP for sequences that are automatic with respect to the Zeck-
endorf numeration (they appeared under the name of Fibonacci-automatic
sequences in [13]). It is expected that one can find a similar decomposition
for these automata as in [34] and use the techniques that were developed
in this paper.

(3) Prove an MRP for general morphic sequences, that is, sequences that are
projections of a fixed point of a morphism. This is probably the most
difficult generalization and will likely need some new ideas. However, the
methods used in this paper seem to fit this framework rather well.
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[22] El Houcein El Abdalaoui, Mariusz Lemańczyk, and Thierry de la Rue,On spectral disjointness
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179–182. MR0308032

http://www.ams.org/mathscinet-getitem?mr=3626236
http://www.ams.org/mathscinet-getitem?mr=3415586
http://www.ams.org/mathscinet-getitem?mr=3622068
http://www.ams.org/mathscinet-getitem?mr=3121731
http://www.ams.org/mathscinet-getitem?mr=3674178
http://www.ams.org/mathscinet-getitem?mr=3674178
http://www.ams.org/mathscinet-getitem?mr=1912360
http://www.ams.org/mathscinet-getitem?mr=3391174
http://www.ams.org/mathscinet-getitem?mr=836415
http://www.ams.org/mathscinet-getitem?mr=3651942
http://www.ams.org/mathscinet-getitem?mr=3422903
http://www.ams.org/mathscinet-getitem?mr=3347317
http://www.ams.org/mathscinet-getitem?mr=2680394
http://www.ams.org/mathscinet-getitem?mr=3420517
http://www.ams.org/mathscinet-getitem?mr=3724218
http://www.ams.org/mathscinet-getitem?mr=3014544
http://www.ams.org/mathscinet-getitem?mr=3298371
http://www.ams.org/mathscinet-getitem?mr=1034195
http://www.ams.org/mathscinet-getitem?mr=0308032


THE ZECKENDORF SUM-OF-DIGITS FUNCTION 3691

Institut für Diskrete Mathematik und Geometrie TU Wien, Wiedner Hauptstr. 8–10,

1040 Wien, Austria

Email address: michael.drmota@tuwien.ac.at

Institut für Diskrete Mathematik und Geometrie TU Wien, Wiedner Hauptstr. 8–10,

1040 Wien, Austria

Email address: clemens.muellner@tuwien.ac.at

Institut für Diskrete Mathematik und Geometrie TU Wien Wiedner Hauptstr. 8–10,

1040 Wien, Austria

Email address: lukas.spiegelhofer@tuwien.ac.at


	1. Introduction
	2. The Zeckendorf sum-of-digits function
	3. Generating functions
	4. Proof of Theorem 1
	5. Possible extensions
	References

