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(Communicated by Irena Peeva)

Abstract. Let (R,m) be a Noetherian regular local ring of characteristic p >
0 and let I be a nonzero ideal of R. Let D(−) = HomR(−, E) be the Matlis
dual functor, where E = ER(R/m) is the injective hull of the residue field R/m.
In this short note, we prove that if Hi

I (R) �= 0, then SuppR(D(Hi
I(R))) =

Spec(R).

1. Introduction

Let (R,m) be a Noetherian local commutative ring with unity, let I be an ideal
of R, and let E := ER(R/m) be an R-injective hull of the residue field R/m. Then
for any R-module M , we denote by Hi

I(M) the i-th local cohomology module of M
supported in I and by D(M) := HomR(M,E) the Matlis dual of M .

Suppose now that Hi
I(R) = 0 for all i �= c and let x= {x1, x2, ..., xc} be a regular

sequence in I. Hellus [[3], Corollary 1.1.4] proved that I is a set theoretic complete
intersection ideal defined by xi if and only if xi form a D(Hc

I (R))-regular sequence.
Motivated by this result, Hellus studied the associated primes of Matlis duals of
the top local cohomology modules and conjectured the following equality:

AssR(D(Hc
(x1,x2,··· ,xc)

(R))) = {p ∈ Spec(R) | Hc
(x1,x2,··· ,xc)

(R/p) �= 0}.
It has been shown that this conjecture holds true in many cases; see, e.g., [2], [5],
[6], [7].

Furthermore, Hellus proved that the above conjecture is equivalent to the fol-
lowing condition [[3], Theorem 1.2.3]:

• If (R,m) is a Noetherian local domain, c ≥ 1, and x1, x2, · · · , xc ∈ R, then
the implication

Hc
(x1,x2,··· ,xc)

(R) �= 0 =⇒ 0 ∈ AssR(D(Hc
(x1,x2,··· ,xc)

(R)))

holds.

We conjecture that if R is regular, then the above implication holds for all nonzero
ideals independently of the number of generators, i.e.,

Conjecture 1. Let (R,m) be a Noetherian regular local ring, let I be a nonzero
ideal of R, and i ≥ 1. If Hi

I(R) �= 0, then 0 ∈ AssR(D(Hi
I(R))).

Received by the editors July 3, 2017, and, in revised form, July 6, 2017 and November 27,
2017.

2010 Mathematics Subject Classification. Primary 13D45, 13H05.
Key words and phrases. Local cohomology, Matlis duality, F -modules.
The first author gratefully acknowledges NSF support through grant DMS-1500264.
The second author was supported by TÜBİTAK 2214/A Grant Program: 1059B141501072.

c©2018 American Mathematical Society

3715

http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/14038


3716 GENNADY LYUBEZNIK AND TUĞBA YILDIRIM

Note that Conjecture 1 is not true for nonregular rings. For a concrete example
of a Noetherian local ring (A,m) of dimension > 1 such that H1

m(A) = A/m, hence
0 /∈ AssR(D(H1

m(A))); see [[1], Example 2.4]. The authors would like to thank
M. Asgarzadeh for bringing this example to our attention.

We prove the following:

Theorem 1.1. Let (R,m) be a complete Noetherian regular local ring of charac-
teristic p > 0 and let M be an F -finite F -module such that 0 /∈ Ass(M). Then
0 ∈ Ass(D(M)).

We would like to point out that 0 /∈ Ass(M) is a necessary condition of Theorem
1.1. Indeed, R itself is an F -finite F -module and 0 ∈ Ass(R) but 0 /∈ Ass(D(R)) =
Ass(E) = {m}.

As an immediate consequence of Theorem 1.1, we obtained the main result of
this paper which establishes Conjecture 1 in the equicharacteristic p > 0 case:

Corollary 1.2. Let (R,m) be a Noetherian regular local ring containing a field of
characteristic p > 0 and let I be a nonzero ideal of R. If Hi

I(R) �= 0, then

SuppR(D(Hi
I(R))) = Spec(R).

2. Preliminaries

In this section, we collect some basic definitions and results about F -module
theory and our main reference is [9].

Throughout, R is a commutative Noetherian regular ring of characteristic p > 0.
Let R

′
be the additive group of R regarded as an R-bi-module with the usual left

action and with the right R-action defined by r
′
r = rpr

′
for all r ∈ R and r

′ ∈ R
′
.

The Frobenius functor
F : R−mod −→ R −mod

of Peskine-Szpiro [10] is defined by

F (M) = R
′ ⊗R M

F (M N) = (R
′ ⊗R M R

′ ⊗R N)h id⊗Rh

for all R-modules M and all R-module homomorphisms h, where F (M) acquires

its R-module structure via the left R-module structure on R
′
.

The iteration of a Frobenius functor on R leads one to the iterated Frobenius
functors F i(−) which are defined for all i ≥ 1 recursively by F 1(−) = F (−) and
F i+1 = F ◦ F i(−) for all i ≥ 1.

Note that the Frobenius functor F (−) is exact [[8], Theorem 2.1]; F (R) ∼= R and
for any ideal I of R, F (R/I) = R/I [p], where I [p] is the ideal of R generated by
p-th powers of all elements of I [[10], I.1.3d].

Note also that if R is a complete local ring, then for any Artinian R-module N ,
F (D(N)) = D(F (N)) [[9], Lemma 4.1] and so R = F (R) = F (D(E)) = D(F (E))
implies F (E) = E. Then it follows from Remark 1.0.(f) of [9] that for any finitely
generated R-module M , F (D(M)) = D(F (M)).

Now, for an R-module M , define a Frobenius map ψM : M −→ F (M) on M
by ψM (m) := 1 ⊗ m ∈ F (M) for all m ∈ M . It is worth pointing out that if
ann(m) = I ⊆ R, then ann(ψM (m)) = I [p].

An F -module M is an R-module equipped with R-module isomorphism θ :
M −→ F (M) which we call the structure morphism.
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A generating morphism of an F -module M is an R-module homomorphism β :
M −→ F (M), whereM is some R-module, such thatM is the limit of the inductive
system in the top row of the commutative diagram

M F (M) F 2(M) · · ·

F (M) F 2(M) F 3(M) · · ·

β

β F (β)

F (β)

F 2(β)

F 2(β)

F (β) F 2(β) F 3(β)

and θ : M −→ F (M), the structure isomorphism of M, is induced by the vertical
arrows in this diagram.

If β is an injective map, then the exactness of F implies that all maps in the
direct limit system are injective, so that M injects into M. In this case, we shall
refer to β as a root morphism of M, and M as a root of M. If M is an F -module
possessing a root morphism β : M −→ M with M finitely generated, then we say
that M is F -finite. In particular, R, with any F -module structure, is an F -finite
module.

3. Proofs

Our aim in this section is to give the proof of Theorem 1.1. But we first need a
series of lemmas.

Lemma 3.1. Let (R,m) be a complete Noetherian regular local ring containing
a field of characteristic p > 0 and let M be an F -finite F -module such that 0 /∈
Ass(M). Then the Matlis dual of M, D(M), can be expressed as

D(M) = lim←−(N F (N) F 2(N) · · · ),α F (α) F 2(α)

where N is an Artinian R-module and α : F (N) −→ N is a surjective map such
that Ker(α : F (N) → N) �= 0.

Proof. Since M is an F -finite F -module, there exists a root morphism β : M →
F (M) with a finitely generated R-module M such that

M = lim−→(M F (M) F 2(M) · · · ).β F (β) F 2(β)

Then applying Matlis dual functor D(−) = HomR(−, ER(R/m)) to M, we obtain

D(M) = lim←−(D(M) D(F (M)) D(F 2(M)) · · · ).D(β) D(F (β)) D(F 2(β))

But then since Frobenius functor commutes with D(−), we can write D(M) as

D(M) = lim←−(N F (N) F 2(N) · · · ),α F (α) F 2(α)

where N = D(M) and α = D(β). Then since β is injective and M is finitely
generated, α = D(β) is surjective and N = D(M) is Artinian.

On the other hand, since 0 /∈ Ass(M), I = Ann(M) = Ann(N) is a nonzero
ideal of R. Then it follows that Ann(F (N)) = I [p] and so Ker(α : F (N) → N) �= 0,
as desired. �
Lemma 3.2. Let the notation be as in Lemma 3.1. Then, for each k ≥ 1, there

exists bk ∈ Ker(F k−1(α)) such that ann(bk) = m[pk−1].
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Proof. Since Ker(α : F (N) → N) �= 0 is a nonzero Artinian R-module, there exists
an element b1 ∈ Soc(Ker(α)) ⊆ F (N), where Soc(Ker(α)) := AnnKer(α)(m) denotes
the socle of Ker(α) and define bk, for all k ≥ 2, inductively as the image of bk−1

under the Frobenius map (defined in the preceding section) on F k−1(N), that is,
bk := ψFk−1(N)(bk−1) = 1 ⊗ bk−1 ∈ F k(N). Then by induction on k (considering

that ann(b1) = m and ann(x) = I implies ann(ψ(x)) = I [p]), we have ann(bk) =

m[pk−1]. On the other hand, since b1 ∈ Ker(α) := Ker(F 0(α)), an easy induction
argument shows that bk ∈ Ker(F k−1(α)) for all k ≥ 0. For if bk−1 ∈ Ker(F k−2(α)),
then F k−1(α)(bk) = F k−1(α)(1⊗ bk−1) = 1⊗ F k−2(α)(bk−1) = 0. �

Lemma 3.3. Let the notation be as in Lemma 3.1 and let bk be defined as in

Lemma 3.2 and y ∈ m \ mk. Then ann(ybk) ⊆ mpk−1−k. In particular, if k ≥ 4,
ann(ybk) ⊆ mk.

Proof. To prove the fact that ann(ybk) ⊆ mpk−1−k, suppose on the contrary that

there exists an element z ∈ ann(ybk) such that z /∈ mpk−1−k. Then clearly, yz ∈
ann bk. On the other hand as R ∼= κ[[X1, ..., Xn]], κ ∼= R/m a field of characteristic

p > 0, and y /∈ mk and z /∈ mpk−1−k, we may write

y = f + f
′
,

z = g + g
′
,

where f (resp., g) is a nonzero polynomial in κ[[X1, X2, ..., Xn]] of degree at most

k− 1(resp., pk−1− k− 1) and f
′
(resp., g

′
) is either zero or a formal power series in

κ[[X1, X2, ..., Xn]] in which each summand has degree at least k (resp., pk−1 − k).
Then yz = fg + fg′ + gf ′ + g′f ′. Note that since κ[[X1, ..., Xn]] is an integral
domain and f and g are nonzero elements in κ[[X1, ..., Xn]], so is fg. Note also
that since fg′, gf ′, and g′f ′ are either zero or contain terms of degrees strictly
larger than the smallest degree of fg, they cannot cancel any terms of smallest
degree. But then since the degree of the smallest term of fg is less than or equal

to 0 �= deg(fg) ≤ pk−1 − k − 1 + k − 1 = pk−1 − 2, yz /∈ mpk−1

which contradicts

the fact that yz ∈ ann(bk) = m[pk−1]. Hence ann(ybk) ⊆ mpk−1−k, as desired.

If, in particular, k ≥ 4, then pk−1−k ≥ k and so ann(ybk) ⊆ mpk−1−k ⊆ mk. �

Now we are ready to give the proof of Theorem 1.1:

Proof of Theorem 1.1. Since M is an F -finite F -module such that 0 /∈ Ass(M), it
follows from Lemma 3.1 that

D(M) = lim←−(N F (N) F 2(N) · · · ),α F (α) F 2(α)

for some Artinian R-module N and surjective map α : F (N) −→ N . It is worth
noting that the exactness of the functor F k(−) implies that F k(α) is surjective for
all k ≥ 0.

Now we claim that there exists a nonzero element n
′
= (n

′

0, n
′

1, · · · , n
′

k, · · · ) ∈
D(M) such that ann(n′

k) ⊆ mk for all k ≥ 4, where n
′

k is the image of n
′
in F k(N).

To construct such an element, let n′
0 be an element of N and, for every 1 ≤

k ≤ 3, choose n′
k ∈ F k(N) such that n′

k−1 = F k−1(α)(n′
k). For k ≥ 4, let

bk ∈ Ker(F k−1(α)) be as defined in Lemma 3.2 and define nk in such a way that

F k−1(α)(nk) = n
′

k−1. Then, either ann(nk) ⊆ mk or ann(nk + bk) ⊆ mk. Indeed, if
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ann(nk + bk) � mk, there exists an element y ∈ m \ mk such that y(nk + bk) = 0
and so ann(nk) ⊆ ann(ynk) = ann(ybk). But then it follows from Lemma 3.3 that
ann(nk) ⊆ ann(ybk) ⊆ mk.

Now, for k ≥ 4, define

n
′

k =

{
nk if ann(nk) ⊆ mk,
nk + bk otherwise.

Clearly, n
′
= (n

′

0, n
′

1, · · · , n
′

k, · · · ) ∈ D(M) and ann(n′
k) ⊆ mk for all k ≥ 4. This

proves the claim.
Finally, ann(n

′
) = 0 for if z ∈ ann(n

′
), then z ∈ ann(n

′

k) ⊆ mk for all k ≥ 4
which then implies that z ∈

⋂
n∈N

mn = {0}. This completes the proof of Theorem
1.1. �

The proof of Corollary 1.2 is an immediate consequence of Theorem 1.1:

Proof of Corollary 1.2. Without loss of generality, we may, and do, assume that R
is complete [[3], Remark 4.1.1]. Since R is an F -finite F -module, so are its all local
cohomology modules and since 0 /∈ AssR(H

i
I(R)) for any nonzero ideal I of R, the

result follows from Theorem 1.1. �
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