Counterexamples on spectra of sign patterns
Author:
Yaroslav Shitov
Journal:
Proc. Amer. Math. Soc. 146 (2018), 3709-3713
MSC (2010):
Primary 15A18, 15B35
DOI:
https://doi.org/10.1090/proc/14041
Published electronically:
June 13, 2018
MathSciNet review:
3825826
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: An $n\times n$ sign pattern $S$, which is a matrix with entries $0,+,-$, is called spectrally arbitrary if any monic real polynomial of degree $n$ can be realized as a characteristic polynomial of a matrix obtained by replacing the nonzero elements of $S$ by numbers of the corresponding signs. A sign pattern $S$ is said to be a superpattern of those matrices that can be obtained from $S$ by replacing some of the nonzero entries by zeros. We develop a new technique that allows us to prove spectral arbitrariness of sign patterns for which the previously known Nilpotent Jacobian method does not work. Our approach leads us to solutions of numerous open problems known in the literature. In particular, we provide an example of a sign pattern $S$ and its superpattern $Sβ$ such that $S$ is spectrally arbitrary but $Sβ$ is not, disproving a conjecture proposed in 2000 by Drew, Johnson, Olesky, and van den Driessche.
- Hannah Bergsma, Kevin N. Vander Meulen, and Adam Van Tuyl, Potentially nilpotent patterns and the nilpotent-Jacobian method, Linear Algebra Appl. 436 (2012), no. 12, 4433β4445. MR 2917420, DOI https://doi.org/10.1016/j.laa.2011.05.017
- T. Britz, J. J. McDonald, D. D. Olesky, and P. van den Driessche, Minimal spectrally arbitrary sign patterns, SIAM J. Matrix Anal. Appl. 26 (2004), no. 1, 257β271. MR 2112860, DOI https://doi.org/10.1137/S0895479803432514
- Michael S. Cavers and Shaun M. Fallat, Allow problems concerning spectral properties of patterns, Electron. J. Linear Algebra 23 (2012), 731β754. MR 2966802, DOI https://doi.org/10.13001/1081-3810.1553
- Michael S. Cavers, In Jae Kim, Bryan L. Shader, and Kevin N. Vander Meulen, On determining minimal spectrally arbitrary patterns, Electron. J. Linear Algebra 13 (2005), 240β248. MR 2181880, DOI https://doi.org/10.13001/1081-3810.1163
- M. Catral, D. D. Olesky, and P. van den Driessche, Allow problems concerning spectral properties of sign pattern matrices: a survey, Linear Algebra Appl. 430 (2009), no. 11-12, 3080β3094. MR 2517861, DOI https://doi.org/10.1016/j.laa.2009.01.031
- Michael S. Cavers and Kevin N. Vander Meulen, Spectrally and inertially arbitrary sign patterns, Linear Algebra Appl. 394 (2005), 53β72. MR 2100576, DOI https://doi.org/10.1016/j.laa.2004.06.003
- L. Corpuz and J. J. McDonald, Spectrally arbitrary zero-nonzero patterns of order 4, Linear Multilinear Algebra 55 (2007), no. 3, 249β273. MR 2286686, DOI https://doi.org/10.1080/03081080600944829
- L. Deaett, D. D. Olesky, and P. van den Driessche, Refined inertially and spectrally arbitrary zero-nonzero patterns, Electron. J. Linear Algebra 20 (2010), 449β467. MR 2735967, DOI https://doi.org/10.13001/1081-3810.1387
- Luz M. DeAlba, Irvin R. Hentzel, Leslie Hogben, Judith McDonald, Rana Mikkelson, Olga Pryporova, Bryan Shader, and Kevin N. Vander Meulen, Spectrally arbitrary patterns: reducibility and the $2n$ conjecture for $n=5$, Linear Algebra Appl. 423 (2007), no. 2-3, 262β276. MR 2312406, DOI https://doi.org/10.1016/j.laa.2006.12.018
- J. H. Drew, C. R. Johnson, D. D. Olesky, and P. van den Driessche, Spectrally arbitrary patterns, Linear Algebra Appl. 308 (2000), no. 1-3, 121β137. MR 1751135, DOI https://doi.org/10.1016/S0024-3795%2800%2900026-4
- Colin Garnett and Bryan L. Shader, A proof of the $T_n$ conjecture: centralizers, Jacobians and spectrally arbitrary sign patterns, Linear Algebra Appl. 436 (2012), no. 12, 4451β4458. MR 2917422, DOI https://doi.org/10.1016/j.laa.2011.06.051
- Colin Garnett and Bryan L. Shader, The nilpotent-centralizer method for spectrally arbitrary patterns, Linear Algebra Appl. 438 (2013), no. 10, 3836β3850. MR 3034502, DOI https://doi.org/10.1016/j.laa.2011.10.004
- I.-J. Kim, D. D. Olesky, B. L. Shader, P. van den Driessche, H. van der Holst, and K. N. Vander Meulen, Generating potentially nilpotent full sign patterns, Electron. J. Linear Algebra 18 (2009), 162β175. MR 2491653, DOI https://doi.org/10.13001/1081-3810.1302
- In-Jae Kim, Bryan L. Shader, Kevin N. Vander Meulen, and Matthew West, Spectrally arbitrary pattern extensions, Linear Algebra Appl. 517 (2017), 120β128. MR 3592013, DOI https://doi.org/10.1016/j.laa.2016.12.010
- G. MacGillivray, R. M. Tifenbach, and P. van den Driessche, Spectrally arbitrary star sign patterns, Linear Algebra Appl. 400 (2005), 99β119. MR 2131919, DOI https://doi.org/10.1016/j.laa.2004.11.021
- J. J. McDonald, D. D. Olesky, M. J. Tsatsomeros, and P. van den Driessche, On the spectra of striped sign patterns, Linear Multilinear Algebra 51 (2003), no. 1, 39β48. MR 1950412, DOI https://doi.org/10.1080/0308108031000053639
- J. J. McDonald and A. A. Yielding, Complex spectrally arbitrary zero-nonzero patterns, Linear Multilinear Algebra 60 (2012), no. 1, 11β26. MR 2869669, DOI https://doi.org/10.1080/03081087.2010.512730
- Timothy C. Melvin, Spectrally arbitrary zero-nonzero patterns of matrices over a variety of fields, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)βWashington State University. MR 3211725
- Rajesh Pereira, Nilpotent matrices and spectrally arbitrary sign patterns, Electron. J. Linear Algebra 16 (2007), 232β236. MR 2338347, DOI https://doi.org/10.13001/1081-3810.1198
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15A18, 15B35
Retrieve articles in all journals with MSC (2010): 15A18, 15B35
Additional Information
Yaroslav Shitov
Affiliation:
129346 Russia, Moscow, Izumrudnaya ulitsa, dom 65, kvartira 4
MR Author ID:
864960
Email:
yaroslav-shitov@yandex.ru
Keywords:
Matrix theory,
eigenvalues,
sign pattern
Received by editor(s):
December 22, 2016
Received by editor(s) in revised form:
October 31, 2017, and November 14, 2017
Published electronically:
June 13, 2018
Communicated by:
Patricia L.Β Hersh
Article copyright:
© Copyright 2018
American Mathematical Society