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COUNTEREXAMPLES ON SPECTRA OF SIGN PATTERNS

YAROSLAV SHITOV

(Communicated by Patricia L. Hersh)

Abstract. An n × n sign pattern S, which is a matrix with entries 0,+,−,
is called spectrally arbitrary if any monic real polynomial of degree n can be
realized as a characteristic polynomial of a matrix obtained by replacing the
nonzero elements of S by numbers of the corresponding signs. A sign pattern
S is said to be a superpattern of those matrices that can be obtained from S by
replacing some of the nonzero entries by zeros. We develop a new technique
that allows us to prove spectral arbitrariness of sign patterns for which the
previously known Nilpotent Jacobian method does not work. Our approach
leads us to solutions of numerous open problems known in the literature. In
particular, we provide an example of a sign pattern S and its superpattern
S′ such that S is spectrally arbitrary but S′ is not, disproving a conjecture
proposed in 2000 by Drew, Johnson, Olesky, and van den Driessche.

1. Conjectures

The study of the spectra of matrix patterns received a significant amount of
attention in recent publications. The conjecture mentioned in the abstract appeared
in one of the foundational papers on this topic ([10]), and many subsequent works
proved it in different special cases ([3, 7, 12, 14, 15]). One of the known sufficient
conditions for superpatterns to be spectrally arbitrary is the Nilpotent Jacobian
condition ([2, 10]), which allowed for the solving of several intriguing problems
on this topic ([4, 11, 19]). Despite these efforts, the superpattern conjecture has
remained open until now, and we mention [5,17,18] as other recent work discussing
this conjecture.

Conjecture 1 ([10, Conjecture 16]). If S is a minimal spectrally arbitrary sign
pattern, then any superpattern of S is spectrally arbitrary.

We note that this conjecture involves the concept of a minimal spectrally ar-
bitrary sign pattern, that is, a sign pattern S which is spectrally arbitrary but is
not a superpattern of any other spectrally arbitrary sign pattern. In our paper,
we construct a sign pattern S and its superpattern S′ such that S is spectrally
arbitrary but S′ is not. We do not investigate the question of minimality of S, but
S is a superpattern of some minimal spectrally arbitrary pattern S0, and the pair
(S0, S

′) provides a counterexample to Conjecture 1 even if S is not minimal.
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As stated above, the Nilpotent Jacobian condition is sufficient for a zero pattern
(and every superpattern of it) to be spectrally arbitrary. Our results show that this
condition is not necessary, answering the questions posed explicitly in [1, 10, 17].

As a byproduct of our approach, we obtain solutions of two other related prob-
lems on the topic. Namely, we construct a sign pattern U such that diag(U,U) is
spectrally arbitrary but U itself is not. This gives a solution to the problem posed
in [8, Section 5] and an answer to [5, Question 3].

An n × n sign pattern S is said to allow arbitrary refined inertias if, for any
family n+, n−, n0, ni of nonnegative integers such that n+ + n− + n0 + 2ni = n,
there is a matrix with sign pattern S which has n+ eigenvalues with positive real
part, n− eigenvalues with negative real part, n0 zero eigenvalues, and ni purely
imaginary eigenvalues. We provide an example of a sign pattern that allows arbi-
trary refined inertias but is not spectrally arbitrary, which solves the problem asked
in [8, Section 5] and in [13, Section 5].

2. Counterexamples

We define the sign patterns

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

+ + 0 0 0 0
− − + 0 0 0
0 0 0 + 0 0
0 0 0 0 + 0
− − 0 0 0 +
+ + + 0 − 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

+ + 0 0 0 0
− − + 0 0 0
+ 0 0 + 0 0
0 0 0 0 + 0
− − 0 0 0 +
+ + + 0 − 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which agree at every entry except (3, 1), so T ′ is indeed a superpattern of T . Also,
we fix any 2 × 2 spectrally arbitrary pattern1 and denote it by D. Let us prove
several observations which we will put together in the theorem below.

Observation 2. Let R be a matrix obtained from T ′ by replacing the signs with
nonzero real numbers. Then R is not nilpotent.

Proof. The coefficients of t3 and t5 in the characteristic polynomial of R are equal
to −r12r23r31 + (r11 + r22)r56r65 and −r11 − r22, respectively. These coefficients
can vanish simultaneously only if r12r23r31 = 0. �

Observation 3. Let R be a matrix obtained from T by replacing the signs with
nonzero real numbers. Assume that t6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t+ a0 is the

characteristic polynomial of R. Then a3 = 0 if and only if a5 = 0.

Proof. The coefficients of t3 and t5 in the characteristic polynomial of R are equal
to (r11 + r22)r56r65 and −r11 − r22, respectively. As we see, the former of these
numbers is zero if and only if the latter one is zero. �

Observation 4. The sign pattern diag(T,D) is not spectrally arbitrary.

Proof. If f = (t2+ t+1)(t2− t+2)(t2+1)(t2− 1) is realizable as the characteristic
polynomial of a matrix with sign pattern diag(T,D), then f has a divisor realizable
as the characteristic polynomial of a matrix with sign pattern T . A straightforward
checking of possible cases leads to a contradiction with Observation 3. �

1In fact, spectrally arbitrary n× n sign patterns exist for all n � 2; see [16].
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In order to proceed, we consider the matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 1 0 0 0 0
−x4 −x2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

−x6 −x5 0 0 0 1
x7 x8 x9 0 −x3 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

whose sign pattern is T whenever the xi’s take positive values.

Observation 5. For all b, c, d ∈ R, there are positive values of the xi’s such that the
characteristic polynomial of X equals (t2 + b)(t2 + c)(t2 + d).

Proof. First, we assume that x1, x3, x8, x9 are arbitrary and check that the matrixX
defined by x2 = x1, x4 = b+c+d+x2

1−x3, x5 = bc+bd+cd−bx3−cx3−dx3+x2
3+x9,

x6 = bcx1 + bdx1 + cdx1 − bx1x3 − cx1x3 − dx1x3 + x1x
2
3 + x8 + x1x9, x7 =

−bcd + x1x8 − bx9 − cx9 − dx9 + x3x9 has a desired characteristic polynomial.
Picking x3 = 1 and defining x1 as a sufficiently large positive number, we make
x2, x3, x4 positive regardless of the values of x8, x9. Finally, the choice of x9 allows
us to make x5 positive, and now x6, x7 tend to +∞ as x8 gets large. �

Observation 6. If a3/a5 > 0, then there are positive values of the xi’s such that the
characteristic polynomial of X equals t6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t+ a0.

Proof. Again, we assume that x1, x8, x9 are arbitrary and check that the matrix
X defined by x2 = a5 + x1, x3 = a3/a5, x4 = (−a3 + a4a5 + a25x1 + a5x

2
1)/a5,

x5 = (a23 − a3a4a5 + a2a
2
5 + a25x9)/a

2
5, x6 = (a1a

2
5 + a23x1 − a3a4a5x1 + a2a

2
5x1 +

a25x8+a35x9+a25x1x9)/a
2
5, x7 = (−a0a5+a5x1x8+a3x9−a4a5x9)/a5 has a desired

characteristic polynomial. Defining x1 as a large enough positive number, we make
x2, x3, x4 positive regardless of the values of x8, x9. As in the proof of the previous
observation, the choice of x9 allows us to make x5 positive, and then x6, x7 tend to
+∞ as x8 gets large. �

Observation 7. Let f be a monic real polynomial of degree 16. Then f has a divisor
realizable as the characteristic polynomial of a matrix with sign pattern T .

Proof. Clearly, f is the product of eight quadratics of the form t2 + ait + bi. If
bi is negative, then such a quadratic has two roots of different signs, so we can
assume without loss of generality that at least seven of the initial quadratics have
their bi’s nonnegative. By the pigeonhole principle, among these seven quadratics
there are three that either have all ai’s positive, or all ai’s negative, or all ai’s zero.
In the first two cases, the product of these three quadratics is a polynomial as in
Observation 6, and the case of zero ai’s corresponds to Observation 5. �

Observation 8. Let V = diag(T, . . . , T,D, . . . , D) be a sign pattern of size (6t+2d).
(T occurs t times, D occurs d times.) If d � 5, then V is spectrally arbitrary.

Proof. The result is true for t = 0 because D is spectrally arbitrary (see also
in [9, Proposition 2.1]). Now let t > 0 and let f be a monic real polynomial of degree
6t + 2d (which is at least 16). We apply Observation 7 and find a polynomial h
that divides f and arises as the characteristic polynomial of a matrix M1 with sign
pattern T . Using the inductive assumption, we find a matrix M2 with characteristic
polynomial f/h and sign pattern that has the same form as V but with one T -block
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removed. Now the matrix diag(M1,M2) has sign pattern V and characteristic
polynomial f . �

Observation 9. For any family ν = (n+, n−, n0, ni) of nonnegative integers such
that n+ + n− + n0 + 2ni = 8, there is a family μ � ν and a matrix M with sign
pattern T and refined inertia μ.

Proof. If n0 + 2ni � 6, then we are done because of Observation 5. Otherwise, we
have n+ + n− � 3, and it suffices to check that any tuple μ = (m+,m−,m0,mi)
with m+ +m− � 3 arises as a refined inertia of a matrix with sign pattern T .

Now we see that one of the tuples μ − (3, 0, 0, 0), μ − (0, 3, 0, 0), μ − (2, 1, 0, 0),
μ− (1, 2, 0, 0) consists of nonnegative integers, and this tuple corresponds to some
monic polynomial h of degree 3. We note that, for a sufficiently large positive N ,
the polynomials (t−N)3h, (t+N)3h, (t+3N)(t−N)2h, (t− 3N)(t+N)2h satisfy
the condition as in Observation 6. As said above, one of these polynomials has μ
as a refined inertia. �

Observation 10. The sign pattern diag(T,D) allows arbitrary refined inertias.

Proof. Let ν = (n+, n−, n0, ni) be a family of nonnegative integers such that n+ +
n− + n0 + 2ni = 8. By Observation 9, there is a family μ � ν and a matrix M1

with sign pattern T and refined inertia μ. Since D is spectrally arbitrary, it allows
a matrix M2 with refined inertia ν−μ, and then the matrix diag(M1,M2) has sign
pattern diag(T,D) and refined inertia ν. �

Now we put all the observations together and conclude the paper.

Theorem 11. Let T, T ′, D be as above. Then
(1) the sign pattern S = diag(T,D,D,D,D,D) is spectrally arbitrary, but its

superpattern S′ = diag(T ′, D,D,D,D,D) is not spectrally arbitrary;
(2) diag(T,D) allows arbitrary refined inertias but is not spectrally arbitrary;
(3) there is a sign pattern U such that diag(U,U) is spectrally arbitrary but U is

not.

Proof. The definition of T and T ′ immediately shows that S′ is a superpattern of
S. By Observation 2, S′ does not allow a nilpotent matrix, so it is not spectrally
arbitrary. Observation 8 shows that S is spectrally arbitrary and completes the
proof of (1).

The sign pattern diag(T,D) is not spectrally arbitrary by Observation 4, and it
allows arbitrary refined inertias by Observation 10. This proves (2).

Finally, let U1 = diag(T,D). If U2 = diag(U1, U1) is spectrally arbitrary, then
the proof of (3) is complete. Otherwise, we define U3 = diag(U2, U2), and we are
done if U3 is spectrally arbitrary. If this is still not the case, we complete the proof
because diag(U3, U3) is spectrally arbitrary by Observation 8. �
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