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LOCALLY EXTREMAL GEODESIC LOOPS

ON A RIEMANNIAN MANIFOLD
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Abstract. This note proves that any locally extremal non-self-conjugate ge-
odesic loop in a Riemannian manifold is a closed geodesic. As a consequence,
any complete and non-contractible Riemannian manifold with diverging injec-
tivity radii along diverging sequences and without points conjugate to them-
selves, possesses a minimizing closed geodesic.

1. Introduction

It is obvious that the classical result on the existence of a closed geodesic in
any compact Riemannian manifold is no longer true if we remove the compact-
ness hypothesis. Consequently, any existence result of a closed geodesic in the
non-compact case requires one to assume further conditions on the topology of the
manifold and on its geometry at infinity. In the last decades several significant
theorems have appeared in this direction. In [6] Thorbergsson proved that any
complete Riemannian manifold contains a closed geodesic provided that it is non-
contractible and its sectional curvature is non-negative outside a compact set. In
[2,3], Benci and Giannoni proved the existence of a closed geodesic in any complete
Riemannian manifold with non-positive sectional curvature at infinity and whose
free loop space has non-trivial homology in sufficiently high dimension. The proof
involves variational techniques, and includes both a penalization method to over-
come the possible non-compactness of M and an estimate of the index form. More
recently, in [1] the authors extended the previous result to the case of a complete
Riemannian manifold with boundary, provided that the boundary is smooth, com-
pact, and convex (in the sense that its second fundamental form is non-negative in
the direction of the inner normal).

The purpose of this note is to prove a characterization of closed geodesics in
terms of locally extremal geodesic loops (Theorem 1.1), and deduce from it a new
result about the existence of a minimizing closed geodesic in a (non-necessarily
compact) complete Riemannian manifold with further conditions on the topology
(non-contractible) and the geometry at infinity (diverging injectivity radii along
diverging sequences), Theorem 1.4.

In order to formalize these ideas, let us begin with some basic preliminaries.
Let (M, g) be a complete Riemannian manifold. A (non-constant smooth) curve

γ : [0, l] → M is a geodesic loop if γ |(0,l) is a unitary geodesic in (M, g) and γ(0) =
γ(l). If, in addition, γ̇(0) = γ̇(l), it is a closed (or periodic) geodesic. A geodesic
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loop γ : [0, l] → M is said to be locally minimizing (resp., locally maximizing)
if length(γ) ≤ length(γ′) (resp., length(γ) ≥ length(γ′)) for any geodesic loop
γ′ : [0, l′] → M with initial conditions (γ′(0), γ̇′(0)) ∈ TM close1 enough to the
ones of γ, (γ(0), γ̇(0)). In general, a geodesic loop is said to be locally extremal
if it is either locally minimizing or locally maximizing. Finally, a geodesic loop
γ : [0, l] → M is self-conjugate if γ(0), γ(l) are conjugate between them along γ.

This is the first important result of this note:

Theorem 1.1. Any locally extremal non-self-conjugate geodesic loop in a Riemann-
ian manifold is a closed geodesic.

The proof of Theorem 1.1 will be developed in Section 2, and is based on a length-
shortening/lengthening argument directly applied on geodesic loops by taking ad-
vantage of the exponential map of (M, g) and the absence of conjugate points. In
the rest of this section we are going to apply this theorem to deduce the announced
result about the existence of a minimizing closed geodesic in this ambient (Theo-
rem 1.4). To this aim, we begin by recalling the following well-known property (see
[4, Th. 13.3, p. 239], [5]):

Proposition 1.2. For every point p in a complete and non-contractible Riemann-
ian manifold (M, g) there exists some geodesic loop γ : [0, l] → M satisfying
γ(0) = γ(l) = p.

Next, assume that (M, g) is a complete and non-contractible Riemannian mani-
fold with diverging injectivity radii along diverging sequences, i.e., satisfying that the
sequence {inj(pn)} ⊂ R formed by the injectivity radii of (M, g) at pn is unbounded
for any unbounded sequence {pn} ⊂ M . Then, the infimum of the injectivity radii
all along M is positive. In particular, the lengths of all geodesic loops on M are
bounded below by that positive number. Let l > 0 be the infimum of such lengths
and let {γn} ⊂ M be a sequence of geodesic loops in (M, g) realizing that infimum,
that is, length(γn) ↘ l. From the hypothesis about the divergence of the injectivity
radii, the sequence {γn} must remain in a bounded region of M , and so, up to a
subsequence, γ̇n(0) → v for some unitary v ∈ TpM , p ∈ M . Then, by continu-
ity, one deduces that the unitary geodesic γ with initial conditions γ(0) = p and
γ̇(0) = v satisfies γ(l) = p, and so, it is a minimizing (thus, simple) geodesic loop
in (M, g). In conclusion:

Proposition 1.3. Any complete and non-contractible Riemannian manifold with
diverging injectivity radii along diverging sequences possesses a minimizing geodesic
loop.

This proposition joined to Theorem 1.1 immediately provides the following re-
sult about existence of a minimizing closed geodesic on a non-necessarily compact
Riemannian manifold under simple geometric and topological hypotheses:

Theorem 1.4. Any complete and non-contractible Riemannian manifold (M, g)
with diverging injectivity radii along diverging sequences possesses

(i) either a minimizing self-conjugate geodesic loop,
(ii) or a minimizing closed geodesic.

In particular, if M has no points conjugate to themselves, possibility (i) is ruled
out, and the existence of a minimizing closed geodesic is ensured.

1Here, TM is implicitly endowed with, say, the Sasaki metric associated to g.
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Note that Theorem 1.4 includes the classical result (cited at the beginning of
this note) that any compact (thus, complete and non-contractible) Riemannian
manifold admits some minimizing closed geodesic, under the additional hypothesis
of non-existence of conjugate points to themselves.

Remark 1.5. (1) In principle, the approach followed in this paper does not permit
one to circumvent the hypothesis about non-self-conjugacy of the locally extremal
geodesic loop in Theorem 1.1. However, we suspect that this hypothesis is not really
necessary. Consequently, we believe that possibility (i), and so, the hypothesis
about non-existence of points conjugate to themselves, can be removed from both,
Theorem 1.4 and the paragraph above, resp.

(2) The extended Gabriel’s horn (i.e., the surface of revolution of the function
y = 1/x, for x > 0, around the y-axis) shows that Proposition 1.3 and Theorem
1.4 are no longer true if we remove the hypothesis about the divergence of the
injectivity radii along diverging sequences.

2. Proof of Theorem 1.1

Assume by contradiction that γ : [0, l] → M is a, say, locally minimizing,
non-self-conjugate geodesic loop in a Riemannian manifold (M, g) which is not
a closed geodesic; that is, γ : (0, l) → M is a unitary geodesic, γ(0) = γ(l) = p,
γ̇(0) �= γ̇(l) and γ(0)(= γ(l)) is not conjugate to itself along γ. Then, (d expp)v0 :
Tv0(TpM) → Texpp(v0)

M is non-singular, where v0 := l γ̇(0), and thus, expp(v0) =

expγ(0)(l γ̇(0)) = γ(l) = p. By continuity, we can find δ > 0 small enough such

that (d expq)v : Tv(TqM) → Texpq(v)
M is also non-singular, with q := γ(δ) �= p,

v := (l − δ) γ̇(δ). In particular,

(1) expq(v) = expγ(δ)((l − δ)γ̇(δ)) = γ(δ + (l − δ)) = γ(l) = p.

So, by the Inverse Function Theorem, expq : U ⊂ TqM → V ⊂ M is a diffeomor-
phism between certain neighborhoods U of v ∈ TqM and V of p ∈ M . Even more,
by taking δ > 0 smaller if necessary, we can assume that V is a normal ball of center
p and radius r0 greater than δ. In particular, the geodesic segment α ≡ γ |[0,δ] is
totally contained in V .

Consider the curve

α := (expq |U )−1 ◦ α : [0, δ] → U ⊂ TqM.

From (1),

v = (expq |U )−1(p) = (expq |U )−1(α(0)) = α(0) ∈ U ⊂ TqM.

So, if we define

u := α(δ) = (expq |U )−1(α(δ)) ∈ U ⊂ TqM,

the vectors u, v are not only different (recall that α(0) = p �= q = α(δ) and expq |U
is a diffeomorphism), but they are not colinear, that is, they satisfy

(2) u/|u| �= v/|v|.
In fact, otherwise, u = λv, for some positive λ �= 1. If 0 < λ < 1, then γ |[δ,δ+λ(l−δ)]

would be a geodesic loop,

γ(δ) = q = expq(u) = expq(λv) = expγ(δ)(λ(l − δ)γ̇(δ)) = γ(δ + λ(l − δ)),
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with (γ(δ) = q, γ̇(δ)) close to (γ(0) = p, γ̇(0)), such that

length(γ |[δ,δ+λ(l−δ)]) = λ(l − δ) < l,

in contradiction with the locally minimizing character of the geodesic loop γ. So,
we can assume that λ > 1. But, in this case, γ |[l,δ+λ(l−δ)] is a geodesic segment
connecting γ(l) = p with γ(δ + λ(l − δ)) = expγ(δ)(λ(l − δ)γ̇(δ)) = expq(λv) =

expq(u) = q, and satisfying

length(γ |[l,δ+λ(l−δ)]) < λ(l − δ) = λ|v| = |u| < r0.

So, γ |[l,δ+λ(l−δ)] is totally contained in the normal ball V , and thus, it must coincide
with γ |[0,δ], in contradiction with γ̇(0) �= γ̇(l).

Next, observe that

α(t) = expq(α(t)) = f(r(t), t), t ∈ [0, δ],

where

(3) f(r, t) := expq(r w(t)), r(t) := |α(t)|, w(t) :=
α(t)

|α(t)| .

In particular,

α̇(t) =
d

dt
f(r(t), t) =

∂f

∂r
ṙ(t) +

∂f

∂t
.

From the Gauss Lemma, g(∂f/∂r, ∂f/∂t) = 0. Moreover, |∂f/∂r| = 1. Hence,

|α̇(t)|2 =

∣∣∣∣∂f∂r
∣∣∣∣
2

ṙ(t)2 +

∣∣∣∣∂f∂t
∣∣∣∣
2

= ṙ(t)2 +

∣∣∣∣∂f∂t
∣∣∣∣
2

,

and thus,

|α̇(t)| =

√
ṙ(t)2 +

∣∣∣∣∂f∂t
∣∣∣∣
2

= |ṙ(t)|+

∣∣∣∂f∂t ∣∣∣2√
ṙ(t)2 +

∣∣∣∂f∂t ∣∣∣2 + |ṙ(t)|
.

Therefore,

(4)

length(α) =
∫ δ

0
|α̇(t)|dt ≥

∫ δ

0
ṙ(t)dt+

∫ δ

0

| ∂f
∂t |2√

ṙ(t)2+| ∂f
∂t |2+|ṙ(t)|

dt

= |α(δ)| − |α(0)|+
∫ δ

0

| ∂f
∂t |2√

ṙ(t)2+| ∂f
∂t |2+|ṙ(t)|

dt.

From (2),

w(δ) =
α(δ)

|α(δ)| =
u

|u| �=
v

|v| =
α(0)

|α(0)| = w(0).

Hence, |∂f/∂t| > 0 for some t ∈ [0, δ] (recall (3) and the fact that expq |U is a
diffeomorphism). In particular,

(5)

∫ δ

0

∣∣∣∂f∂t ∣∣∣2√
ṙ(t)2 +

∣∣∣∂f∂t ∣∣∣2 + |ṙ(t)|
dt = η0 > 0.

Moreover, we know that

(6) |α(0)| = |v| = |(l − δ)γ̇(δ)| = l − δ, |α(δ)| = |u|.
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So, from (4), (5), (6),

δ = length(α) ≥ |u| − (l − δ) + η0, and thus, |u| < l = length(γ).

Summarizing, γ′ : [0, |u|] → M , γ′(s) := expq(s · u/|u|), is a geodesic loop,

γ′(0) = expq(0) = q = α(δ) = expq(u) = γ′(|u|),
with (γ′(0) = q, γ̇′(0) = u/|u|) close to (γ(0) = p, γ̇(0)), such that

length(γ′) = |u| < length(γ),

in contradiction with the locally minimizing character of γ.
Finally, if, instead of locally minimizing, we initially assume that the geodesic

loop γ : [0, l] → M is locally maximizing, we again arrive at a contradiction by
taking δ negative instead of positive as in the previous argument.
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