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FOURTH ORDER PARTIAL DIFFERENTIAL EQUATIONS

FOR KRALL-TYPE ORTHOGONAL POLYNOMIALS

ON THE TRIANGLE

ANTONIA M. DELGADO, LIDIA FERNÁNDEZ, AND TERESA E. PÉREZ

(Communicated by Yuan Xu)

Abstract. We construct bivariate polynomials orthogonal with respect to a
Krall-type inner product on the triangle defined by adding Krall terms over
the border and the vertexes to the classical inner product. We prove that
these Krall-type orthogonal polynomials satisfy fourth order partial differential
equations with polynomial coefficients, as an extension of the classical theory
introduced by H. L. Krall in the 1940s.

1. Introduction

In 1938, H. L. Krall studied the problem of determining polynomial solutions of a
linear differential equation of even order with polynomial coefficients, and he found
necessary and sufficient conditions for this solutions to exist. In [12], he classified
the fourth order equations with polynomial solutions. Afterwards, A. M. Krall
studied these new polynomials in 1981 (see [13]) and he called them Legendre-type,
Laguerre-type, and Jacobi-type polynomials. These polynomials are orthogonal
with respect to modifications of classical weight functions by adding a Dirac delta
at one point of the support of the measure. This kind of modification had been
previously studied by V. B. Uvarov in [18]. In the main result, he expressed the
polynomials orthogonal with respect to the new measure in terms of the polynomials
orthogonal with respect to the classical one.

In some special cases of classical Laguerre and Jacobi measures, if the pertur-
bations are given at the endpoints of the support of the measure, then the new
polynomials are eigenfunctions of higher order differential operators with polyno-
mial coefficients and are called Krall polynomials (see, for instance, [19] and the
references therein).

In [11], T. H. Koornwinder focused his study on the so-called Jacobi-type poly-
nomials, namely the case where the measure is the Jacobi weight function together
with additional mass points at 1 and −1. He constructed the corresponding or-
thogonal polynomials and studied their properties. In fact, a relationship between

Received by the editors March 24, 2017, and, in revised form, September 19, 2017, December 5,
2017, and December 12, 2017.

2010 Mathematics Subject Classification. Primary 33C50, 42C05.
Key words and phrases. Orthogonal polynomials on the triangle, low dimensional Krall-type

modification, fourth order partial differential equations.
This work has been partially supported by MINECO of Spain and the European Regional

Development Fund (ERDF) through grant MTM2014-53171-P, and by Junta de Andalućıa grant
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Jacobi-type polynomials and the classical ones was established. This case was also
studied by L. L. Littlejohn in [15], where he showed that the orthogonal polyno-
mials satisfy a fourth order differential equation in the particular case when the
parameters are equal to zero and the masses are the same in both points. In [9],
Koekoek and Koekoek analysed the case when Jacobi-type polynomials satisfy a
finite order differential equation. In a more general framework, it is possible to
consider perturbations of regular functionals via the addition of Dirac deltas. In
recent years, this kind of polynomial has been extensively studied (see [2] and the
references therein).

In the multivariate case, orthogonal polynomials with respect to a moment func-
tional obtained from a standard one by adding Dirac masses at some points were
studied in [3, 7]. In particular, a Jacobi weight function on the simplex with mass
points added at the vertices is considered in [3]. In [4], the authors presented a
Uvarov modification of the two variable classical measure on the unit disk by adding
a finite set of equally spaced mass points on the border. A general framework of
Uvarov modifications in the multivariate case was studied in [5].

Besides Uvarov modifications by adding Dirac masses at a finite and discrete set
of points, in the context of several variables it is possible to modify the moment
functional with other moment functionals defined on lower-dimensional manifolds
such as curves, surfaces, etc. Recently, a family of orthogonal polynomials with
respect to such a Uvarov modification of the classical ball measure by means of a
mass uniformly distributed over the sphere was introduced in [16]. The authors
proved that, at least in the Legendre case, these multivariate orthogonal polynomi-
als satisfy a fourth order partial differential equation, which constitutes a natural
extension of Krall orthogonal polynomials ([13]) to the multivariate case.

The aim of this work is to examine a Krall-type inner product on the triangle
defined by adding Krall terms over the border and the vertexes of the triangle.
For general values of the parameters, we construct a mutually orthogonal basis ob-
tained in terms of univariate Jacobi-type orthogonal polynomials. We show that,
for particular values of the parameters, these Krall-type orthogonal polynomials
satisfy fourth order partial differential equations with polynomial coefficients, as an
extension of the classical theory introduced by H. L. Krall in the 1940s [12] and
developed later in [13]. The restriction on the values of the parameters is inherited
by the fact that we need to use the univariate results of [9] and [10] for classical
Jacobi-type polynomials. We point out that the eigenvalues of the partial differen-
tial equation may depend on the partial degrees of the polynomial eigenfunctions.
This phenomenon has already appeared in the literature, for example, for the ten-
sor product of two Jacobi polynomials, and several other nontrivial examples (see
[10]).

The structure of the paper is as follows. Section 2 is devoted to introduce the
Krall-type inner product and to study Krall-type orthogonal polynomials on the
triangle. To this end, we recall some properties of classical bivariate orthogonal
polynomials on the triangle. In particular, we construct a basis of orthogonal
polynomials for this Krall-type inner product using a method developed by T. H.
Koornwinder in [10]. The main results of this work are contained in Section 3.
Here we study differential properties for Krall-type orthogonal polynomials, and
we deduce fourth order partial differential equations satisfied by these orthogonal
polynomials.
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2. Krall-type orthogonal polynomials on the triangle

In this section, we study general low-dimensional Krall modifications of the classi-
cal triangle inner product, including masses along the borders and over the vertexes
of the triangle. Moreover, we construct a basis of orthogonal polynomials following
the ideas of Koornwinder ([10], revisited in [6]). We begin the section by recalling
the classical bivariate inner product on the triangle as well as a base of orthogonal
polynomials associated with it.

2.1. Classical bivariate orthogonal polynomials on the triangle. Let us
consider the triangle in R

2:

Δ = {(x, y) ∈ R
2 : x � 0, y � 0 , 1− x− y � 0}.

For α, β, γ > −1, classical orthogonal polynomials on the triangle are orthogonal
with respect to the weighted inner product

〈f, g〉Δ = ω(α,β,γ)

∫∫
Δ

f(x, y)g(x, y)xαyβ(1− x− y)γdxdy,

where

ω(α,β,γ) =

(∫∫
Δ

xαyβ(1− x− y)γdxdy

)−1

=
Γ(α+ β + γ + 3)

Γ(α+ 1)Γ(β + 1)Γ(γ + 1)
.

A base of orthogonal polynomials on the triangle can be found in [6] and is given
by

(2.1) P
(α,β,γ)
n,k (x, y) = P

(βk,α)
n−k (x) (1− x)k P

(γ,β)
k

( y

1− x

)
, 0 � k � n,

where

(2.2) βk = 2k + β + γ + 1, k � 0.

Here, {P (a,b)
n (t)}n�0 denotes the sequence of classical Jacobi polynomials orthogo-

nal on [0, 1] with respect to the inner product

〈f, g〉(a,b) = ω(a,b)

∫ 1

0

f(t)g(t)(1− t)atbdt,

where

(2.3) ω(a,b) =

(∫ 1

0

(1− t)atbdt

)−1

=
Γ(a+ b+ 2)

Γ(a+ 1)Γ(b+ 1)
.

These polynomials are normalized as in [17, eq. (4.1.1)] in the form

P (a,b)
n (1) =

(
n+ a

n

)
=

(a+ 1)n
n!

.

As a consequence, if we denote by

h(a,b)
n = 〈P (a,b)

n , P (a,b)
n 〉(a,b), h

(α,β,γ)
n,k = 〈P (α,β,γ)

n,k , P
(α,β,γ)
n,k 〉Δ

the corresponding squared norms, then they are related by

h
(α,β,γ)
n,k =

ω(β0,α)

ω(βk,α)
h
(βk,α)
n−k h

(γ,β)
k ,

since ω(α,β,γ) = ω(γ,β)ω(β0,α).
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2.2. Krall-type orthogonal polynomials on the triangle. We denote σ =
(α, β, γ) and λ = (λ1, λ2, λ3, μ1, μ2, μ3), and asume that α, β, γ > −1 and λi � 0,
μi � 0, for i = 1, 2, 3. Let us define the low-dimensional Krall perturbation of the
classical inner product on the triangle in the form

(2.4)

〈f, g〉λσ =ω(α,β,γ)

∫∫
Δ

f(x, y)g(x, y)xαyβ(1− x− y)γdxdy

+ λ1 ω(β0,α)

∫ 1

0

f(x, 0)g(x, 0)(1− x)β0xαdx

+ λ2 ω(β0,α)

∫ 1

0

f(x, 1− x)g(x, 1− x)(1− x)β0xαdx

+ λ3 ω(γ,β)

∫ 1

0

f(0, y)g(0, y)(1− y)γyβdy

+ μ1 f(0, 0) g(0, 0) + μ2 f(0, 1) g(0, 1) + μ3 f(1, 0) g(1, 0),

where β0 = β + γ + 1 was defined in (2.2).
Let us observe that the inner product adds low-dimensional terms over the bor-

ders of the triangle and Dirac masses over the vertexes. The respective weight
functions on the borders are the natural restrictions of the classical bivariate weight
function to the respective edges.

Now, we want to give a basis of orthogonal polynomials associated with the inner
product (2.4) in a similar form as the usual basis for the classical inner product on
the triangle given by (2.1), using Jacobi-type polynomials in one variable instead
of classical Jacobi polynomials. Next, we recall that Jacobi-type polynomials are
defined in the following way.

Let a, b > −1 and M,N � 0 be given parameters. Consider the univariate
Jacobi-type inner product on [0, 1] defined by

〈
f, g

〉(M,N)

(a,b)
= ω(a,b)

∫ 1

0

f(t)g(t)(1− t)atbdt+Mf(0)g(0) +Nf(1)g(1),

where ω(a,b) is the normalization constant given by (2.3).
An explicit expression for a basis of polynomials orthogonal with respect to this

inner product can be obtained directly from [11] by doing a change of variable.
This basis can be written as

(2.5)

P (a,b;M,N)
n (t) = (C(a,b)

n )2

×
[
a
(b,a;N)
n M(1− t)− a

(a,b;M)
n Nt

a+ b+ 1

d

dt
+ a(a,b;M)

n a(b,a;N)
n

]
P (a,b)
n (t),

where

C(a,b)
n =

(a+ b+ 1)n
n!

,

a(a,b;M)
n =

(a+ 1)n n!

(b+ 1)n(a+ b+ 1)n
+

n(n+ a+ b+ 1)M

(b+ 1)(a+ b+ 1)
.

The squared norms of these polynomials will be denoted by h
(a,b;M,N)
n .

For 0 � k � n, we define the sequence of two-variable polynomials

(2.6) Q
(σ;λ)
n,k (x, y) = P

(βk,α;Mk,Nk)
n−k (x) (1− x)k P

(γ,β;λ1,λ2)
k

( y

1− x

)
,
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where βk = 2k + β + γ + 1, Mk, Nk � 0, k � 0, and λ1, λ2 � 0.
We prove the orthogonality of these polynomials with respect to a Krall-type

inner product such as (2.4) for an adequate election of the parameters μi, for
i = 1, 2, 3, and Mk, Nk, for k � 0.

Theorem 2.1. The set of polynomials

{Q(σ;λ)
n,k (x, y) : 0 � k � n},

defined by (2.6), is a sequence of orthogonal polynomials with respect to the low-
dimensional Krall inner product (2.4) if and only if

(2.7) μ1 = λ1 λ3, μ2 = λ2 λ3

and

(2.8) Mk =
ω(βk,α)

ω(β0,α)
λ3, Nk =

λ4

1 + λ1 + λ2
δk,0,

where λ4 = μ3 and δk,0 denotes the usual Dirac delta.

Proof. First, we compute the inner product (2.4) for a pair of functions f(x, y) and
g(x, y) such that their product can be expressed in the form

(2.9) f(x, y)g(x, y) = F (x, y/(1− x)) = F1(x)F2(y/(1− x)).

The first integral in the inner product (2.4), afer the change of variable t = 1/(1−x),
can be written as∫∫

Δ

F
(
x,

y

1− x

)
xαyβ(1− x− y)γdxdy

=

∫ 1

0

F1(x)(1− x)β+γ+1xαdx

∫ 1

0

F2(t)(1− t)γtβdt.

Then, the first three integrals in (2.4) can be expressed as a product of one-
dimensional integrals plus two mass points:[
ω(β0,α)

∫ 1

0

F1(x)(1− x)β0xαdx
][
ω(γ,β)

∫ 1

0

F2(t)(1− t)γtβdt+λ1F2(0)+λ2F2(1)
]
.

Let us assume that the constants μi in the inner product (2.4) are given by (2.7).
Summing the next three terms in (2.4) for F (x, y/(1 − x)) = F1(x)F2(y/(1 − x)),
we get

λ3F1(0)
[
ω(γ,β)

∫ 1

0

F2(y)(1− y)γyβdy + λ1F2(0) + λ2F2(0)
]
.

Therefore, except for the last term, we can see (2.4) as a product of univariate inner
products with mass points as in [11] for functions of type (2.9), that is,

〈f(x, y), g(x, y)〉λσ =
[
ω(β0,α)

∫ 1

0

F1(x)(1− x)β0xαdx+ λ3F1(0)
]

×
[
ω(γ,β)

∫ 1

0

F2(t)(1− t)γtβdt+ λ1F2(0) + λ2F2(1)
]

+ λ4f(1, 0)g(1, 0).

Observe that, for this kind of function, the last term is not always well defined.
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Using the above expression, we compute 〈Q(σ;λ)
n,k , Q

(σ;λ)
m,j 〉λσ. Now, the functions

involved in the integrals are of the form (2.9),

Q
(σ;λ)
n,k (x, y)Q

(σ;λ)
m,j (x, y) = F1(x)F2

( y

1− x

)
,

where

F1(x) = P
(βk,α;Mk,Nk)
n−k (x)P

(βj ,α;Mj ,Nj)
m−j (x)(1− x)k+j

and

F2

( y

1− x

)
= P

(γ,β;λ1,λ2)
k

( y

1− x

)
P

(γ,β;λ1,λ2)
j

( y

1− x

)
.

In such a case, for the last term in (2.4) it is easy to see that

Q
(σ;λ)
n,k (1, 0) = P

(βk,α;Mk,Nk)
n−k (1)l

(γ,β;λ1,λ2)
k δk,0 = P

(βk,α;Mk,Nk)
n−k (1)δk,0,

where l
(γ,β;λ1,λ2)
k is the leading coefficient of P

(γ,β;λ1,λ2)
k (t). Thus, the last term in

the inner product reads

λ4 P
(βk,α;Mk,Nk)
n−k (1)P

(βj ,α;Mj ,Nj)
m−j (1)δ0,kδ0,j .

Then, by using the orthogonality of the univariate polynomials {P (γ,β;λ1,λ2)
k (t)}k�0,

we get

〈Q(σ;λ)
n,k ,Q

(σ;λ)
m,j 〉λσ

=
ω(β0,α)

ω(βk,α)
h
(γ,β;λ1,λ2)
k δk,j

×
[
ω(βk,α)

∫ 1

0

P
(βk,α;Mk,Nk)
n−k (x)P

(βk,α;Mk,Nk)
m−k (x)(1− x)βkxαdx

+ λ3

ω(βk,α)

ω(β0,α)
P

(βk,α;Mk,Nk)
n−k (0)P

(βk,α;Mk,Nk)
m−k (0)

+
λ4

h
(γ,β;λ1,λ2)
k

ω(βk,α)

ω(β0,α)
P

(βk,α;Mk,Nk)
n−k (1)P

(βk,α;Mk,Nk)
m−k (1)δ0,k

]
.

We can observe that the last term in the above expression is different from zero

only when k = 0. Then, we use that h
(γ,β;λ1,λ2)
0 = 1 + λ1 + λ2, and therefore,

〈Q(σ;λ)
n,k , Q

(σ;λ)
m,j 〉λσ =

ω(β0,α)

ω(βk,α)
h
(βk,α;Mk,Nk)
n−k h

(γ,β;λ1,λ2)
k δn,mδk,j .

A similar reasoning shows the direct implication. �

From now on, we will refer to the basis

{Q(σ;λ)
n,k (x, y) : 0 � k � n, n � 0}

given in (2.6) as Krall-type orthogonal polynomials on the triangle.
As a consequence, if we denote it by

h
(σ;λ)
n,k = 〈Q(σ;λ)

n,k , Q
(σ;λ)
n,k 〉λσ,

we obtain a relation between these norms and the norms of Jacobi-type polynomials.

Corollary 2.2. For 0 � k � n, we get

h
(σ;λ)
n,k =

ω(β0,α)

ω(βk,α)
h
(βk,α;Mk,Nk)
n−k h

(γ,β;λ1,λ2)
k .
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Remark 2.3. Using (2.5) and the relations (22.7.17) and (22.7.20) on p. 782 of [1],
we can give a connection formula between Krall-type and classical polynomials on
the triangle. For n � 0, we have

Q
(σ;λ)
n,0 (x, y) = (C(β0,α)

n )2

×
[
d1P

(α,β,γ)
n,0 (x, y) + (d2(1− x) + d3x)P

(α+1,β+1,γ)
n−1,0 (x, y)

]
,

and, for 1 � k � n,

Q
(σ;λ)
n,k (x, y) = (C

(βk,α)
n−k )2(C

(γ,β)
k )2

×
[
e1 P

(α,β,γ)
n,k (x, y) + (e2(1− x− y) + e3y)P

(α+1,β+1,γ)
n−1,k (x, y)

+ (e4(1− x− y) + e5y)P
(α+1,β,γ+1)
n−1,k (x, y)

+ (e6(1− x− y) + e7y)P
(α,β+1,γ+1)
n−1,k−1 (x, y)

]
,

where the coefficients appearing in the identities depend on n, k, and the parameters
involved in the inner product (2.4).

3. Partial differential equations for Krall-type polynomials

When the second family of Jacobi-type polynomials in the definition (2.6) of the
Krall-type orthogonal polynomials satisfies a finite order differential equation, then
this property is inherited by the bivariate polynomials. In [9] there is an exhaustive
description of this situation, as we will see later.

Proposition 3.1. If the Jacobi-type polynomials {P (γ,β;λ1,λ2)
k (t)}k�0 satisfy a dif-

ferential equation of order m, that is,

m∑
j=0

aj(t)
dj u

dtj
= 0,

then the Krall-type orthogonal polynomials {Q(σ;λ)
n,k (x, y)}n�k�0 satisfy the following

partial differential equation of order m:

m∑
j=0

(1− x)jaj

( y

1− x

) ∂j

∂yj
Q

(σ;λ)
n,k (x, y) = 0.

Proof. Using the explicit expression (2.6), it is clear that

∂j

∂yj
Q

(σ;λ)
n,k (x, y) =

1

(1− x)j
P

(βk,α;Mk,Nk)
n−k (x) (1− x)k (P

(γ,β;λ1,λ2)
k )j)

( y

1− x

)
,

where pj)(t) denotes the jth derivative of the polynomial p(t).

If P
(γ,β;λ1,λ2)
k (t) satisfies a differential equation of order m, that is,

m∑
j=0

aj(t)(P
(γ,β;λ1,λ2)
k )j)(t) = 0,
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then
m∑
j=0

(1− x)jaj

( y

1− x

) ∂j

∂yj
Q

(σ;λ)
n,k (x, y)

=
m∑
j=0

aj

( y

1− x

)
P

(βk,α;Mk,Nk)
n−k (x) (1− x)k (P

(γ,β;λ1,λ2)
k )j)

( y

1− x

)

= P
(βk,α;Mk,Nk)
n−k (x) (1− x)k

m∑
j=0

aj

( y

1− x

)
(P

(γ,β;λ1,λ2)
k )j)

( y

1− x

)
= 0,

and the result holds. �

Remark 3.2. Observe that the coefficients aj(t) may depend on k, and eventually
on the other parameters γ, β, λ1, and λ2. In particular, if aj(t) is a polynomial of
degree at most j in one variable, then (1− x)jaj

(
y

1−x

)
is a polynomial of degree at

most j in two variables. Moreover, in the cases studied in [9], all the coefficients
are independent of k except for a0(t) = a0. Therefore, the eigenvalues of the
partial differential equation may depend on the partial degree k of the Krall-type
polynomial.

In [9], the authors looked for differential equations of the form

M
∞∑
i=0

âi(t) u
i)(t) +N

∞∑
i=0

b̂i(t) u
i)(t) +M N

∞∑
i=0

ĉi(t) u
i)(t)

+ (1− t) t u′′(t) + [(b+ 1)(1− t)− (a+ 1)t]u′(t) + n(n+ a+ b+ 1)u(t) = 0,

satisfied by Jacobi-type polynomials {P (a,b,M,N)
n (t)}n�0, where âi(t), b̂i(t), and

ĉi(t), for i � 1, are independent of n, the degree of the polynomial solution, and

â0(t), b̂0(t), and ĉ0(t) are independent of t. They proved that, for M2 + N2 >
0, Jacobi-type polynomials satisfy a unique differential equation of infinite order,
except for a ∈ {0, 1, 2, . . .} or b ∈ {0, 1, 2, . . .}. In particular, they showed that the
order equals⎧⎨

⎩
2 b+ 4 if M > 0, N = 0, and b ∈ {0, 1, 2, . . .},
2 a+ 4 if M = 0, N > 0, and a ∈ {0, 1, 2, . . .},
2 a+ 2 b+ 6 if M > 0, N > 0, and a, b ∈ {0, 1, 2, . . .}.

In this way, Proposition 3.1 and [9] provide a unique finite order partial differential
equation for Krall-type polynomials on the triangle when λ2

1+λ2
2 > 0 in the following

form:

(1) For λ1 > 0, λ2 = 0, and β ∈ {0, 1, 2, . . .}, it follows that the polynomials

Q
(σ;λ)
n,k (x, y) are eigenfunctions of a differential operator in y of order 2β+4

with eigenvalue depending only on k.

(2) For λ1 = 0, λ2 > 0, and γ ∈ {0, 1, 2, . . .}, the polynomials Q
(σ;λ)
n,k (x, y) are

again eigenfunctions of a partial differential operator in y of order 2γ + 4
with eigenvalue depending only on k.

(3) For λ1 > 0, λ2 > 0, and γ, β ∈ {0, 1, 2, . . .}, then Q
(σ;λ)
n,k (x, y) are eigen-

functions of a partial differential operator in y of order 2β + 2γ + 6 with
eigenvalue depending on k.
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Observe that above finite partial differential equations for Krall-type polynomi-
als are unique in this form, only have derivatives in the second variable, and the
eigenvalue depends only on the second index k.

If we consider the special case when the second family of univariate orthogonal
polynomials involved in (2.6) are classical Jacobi polynomials, then, as a conse-
quence of Proposition 3.1, we obtain a second order partial differential equation for
Krall-type orthogonal polynomials on the triangle.

Let α, β, γ > −1. For 0 � k � n, the bivariate polynomials

(3.1) Q
(σ;λ)
n,k (x, y) = P

(βk,α;Mk,Nk)
n−k (x)(1− x)kP

(γ,β)
k

( y

1− x

)

are orthogonal with respect to the inner product (2.4) with the constants given by
(2.7) and (2.8), for the particular case when the parameters λ1 and λ2 vanish, that
is,

〈f, g〉λσ = ω(α,β,γ)

∫∫
Δ

f(x, y)g(x, y)xαyβ(1− x− y)γdxdy

+ λ3ω(γ,β)

∫ 1

0

f(0, y)g(0, y)(1− y)γyβdy

+ λ4f(1, 0)g(1, 0).

In such a case, the parameters appearing in (3.1) take the form

βk = 2k + β + γ + 1, Mk =
ω(βk,α)

ω(β0,α)
λ3, Nk = λ4 δk,0.

Using Proposition 3.1 and the second order differential equation for classical

Jacobi polynomials {P (γ,β)
k (t)}k�0 given in [17], Krall-type polynomials on the tri-

angle (3.1) satisfy the next second order partial differential equation,

(3.2) D(Q
(σ;λ)
n,k )(x, y) = −k(k + β + γ + 1)Q

(σ;λ)
n,k (x, y),

where

(3.3) D(f)(x, y) = (1− x− y)y
∂2f

∂y2
+ [(β + 1)(1− x− y)− (γ + 1)y]

∂f

∂y
.

Now, we will use different tools in order to obtain a fourth order partial differen-
tial equation for Krall-type polynomials on the triangle in such a way that partial
derivatives with respect to both x and y variables will appear. This will be done
when both parameters α and λ4 vanish. We consider this particular case since we
use results given in [10] for the univariate Jacobi-type polynomials.

In the rest of the section, we will consider α = λ4 = 0. Observe that in this case

Mk = λ3
βk + 1

β0 + 1
= λ3

2k + β + γ + 2

β + γ + 2
�= 0.
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Define the second order partial differential operators L1 and L2, acting on func-
tions of two variables:

L1(f)(x, y) =
λ3

β0 + 1

[
− (1− x)x

∂2f

∂x2
+ 2xy

∂2f

∂x∂y
− xy

∂2f

∂y2

+ (β + γ + 2)x
∂f

∂x
− (β + 1)x

∂f

∂y
+

β0 + 1

λ3
f
]
,

L2(f)(x, y) =− (1− x)x
∂2f

∂x2
+ 2xy

∂2f

∂x∂y
− xy

∂2f

∂y2

+(−2 + (β + γ + 4)x)
∂f

∂x
+ (2y − (β + 1)x)

∂f

∂y
+

(β0 + 1)(λ3 + 1)

λ3
f.

Theorem 3.3. The polynomials

(3.4) Q
(σ;λ)
n,k (x, y) = P

(βk,0;Mk,0)
n−k (x)(1− x)kP

(γ,β)
k

( y

1− x

)
satisfy the forth order partial differential equation

(3.5) L(Q(σ;λ)
n,k )(x, y) = η

(σ;λ)
n,k Q

(σ;λ)
n,k (x, y),

where L(f)(x, y) = L1(L2(f))(x, y), and

(3.6)

η
(σ;λ)
n,k =

β0 + 1

λ3

[
1 + (n− k)(n− k + βk)

λ3

β0 + 1

]

×
[
1 +

(
(n− k)(n− k + βk) + βn + 1

) λ3

β0 + 1

]
.

In order to prove this theorem, we are going to use a similar construction as in
[11] for finding a fourth order partial differential equation for Krall-type orthogonal
polynomials in two variables. Let us define the differential operators acting over
functions of one variable:

L1(f)(t) =
M

a+ 1

[
− (1− t) t f ′′(t) + (a+ 1) t f ′(t) +

a+ 1

M
f(t)

]
,

L2(f)(t) =− (1− t)t f ′′(t) + ((a+ 3)t− 2) f ′(t) + (M + 1)
a+ 1

M
f(t),

L3(f)(x, y) =
(1− x− y)y

(1− x)2
f ′′

( y

1− x

)
+

(β + 1)(1− x)− (β + γ + 2)y

1− x
f ′
( y

1− x

)
+ k(k + β + γ + 1)f

( y

1− x

)
.

Let us observe that L1(f) and L2(f) are univariate functions, but L3(f) is a bi-
variate function.

In [11], up to a change of variable, it was proved that

L1(P
(a,0)
n )(t) = P (a,0;M,0)

n (t),(3.7)

L2(P
(a,0;M,0)
n )(t) = η(a,0;M,0)

n P (a,0)
n (t),(3.8)

where

η(a,0;M,0)
n =

a+ 1

M

[
1 +M

n(n+ a)

a+ 1

][
1 +M

n(n+ a)

a+ 1
+M

2n+ a+ 1

a+ 1

]
.

Next, we relate these three operators with L1 and L2 in the following lemma,
which can be proved by straightforward computations.
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Lemma 3.4. Let f and g be real-valued functions of one variable, 2-times differ-
entiable, and let

h(x, y) = f(x)(1− x)kg
( y

1− x

)
.

Then, taking a = βk and M = Mk in the definitions of L1 and L2, the following
identities hold:

L1(h)(x, y) = L1(f)(x)(1− x)kg
( y

1− x

)
− λ3

β0 + 1
x f(x)(1− x)k−1L3(g)(x, y),

L2(h)(x, y) = L2(f)(x)(1− x)kg
( y

1− x

)
− x f(x)(1− x)k−1L3(g)(x, y).

Proof. Observe that

∂h

∂x
=f ′(x)(1− x)kg

( y

1− x

)
− kf(x)(1− x)k−1g

( y

1− x

)
+ f(x)y(1− x)k−2g′

( y

1− x

)
,

∂h

∂y
=f(x)(1− x)k−1g′

( y

1− x

)
,

and

∂2h

∂x2
=f ′′(x)(1− x)kg

( y

1− x

)
− 2kf ′(x)(1− x)k−1g

( y

1− x

)
+ 2f ′(x)y(1− x)k−2g′

( y

1− x

)
+ k(k − 1)f(x)(1− x)k−2g

( y

1− x

)
− (k − 2)f(x)y(1− x)k−3g

( y

1− x

)
− kf(x)y(1− x)k−3g′

( y

1− x

)
+ f(x)y2(1− x)k−4g′′

( y

1− x

)
,

∂2h

∂x∂y
=f ′(x)(1− x)k−1g′

( y

1− x

)
+ (1− k)f(x)(1− x)k−2g′

( y

1− x

)
+ f(x)y(1− x)k−3g′′

( y

1− x

)
,

∂2h

∂y2
=f(x)(1− x)k−2g′′

( y

1− x

)
.

Then, gathering the second order terms, we get

−(1− x)x
∂2h

∂x2
+ 2xy

∂2h

∂x∂y
− xy

∂2h

∂y2
= −(1− x)xf ′′(x)(1− x)kg

( y

1− x

)

+2kxf ′(x)(1− x)kg
( y

1− x

)
− xy(1− x− y)

(1− x)2
f(x)(1− x)k−1g′′

( y

1− x

)

+
xy(2− k)

1− x
f(x)(1− x)k−1g′

( y

1− x

)
− k(k − 1)xf(x)(1− x)k−1g

( y

1− x

)
+(k − 2)xyf(x)(1− x)k−2g

( y

1− x

)
.

We observe that the terms with f ′(x)g′(y/(1−x)) cancel, and adding the first order
terms in the definition of L1, the result follows.

The second identity can be obtained in the same way. �

Now, the proof of Theorem 3.3 is a direct consequence of the next proposition.
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Proposition 3.5. For 0 � k � n, Krall-type polynomials (3.4) satisfy

L1(P
(0,β,γ)
n,k )(x, y) = Q

(σ;λ)
n,k (x, y),

L2(Q
(σ;λ)
n,k )(x, y) = η

(σ;λ)
n,k P

(0,β,γ)
n,k (x, y),

where η
(σ;λ)
n,k is given in (3.6).

Proof. Evaluating on y
1−x the differential equation for Jacobi polynomials Pk =

P
(γ,β)
k , which reads as

(1− x− y)y

(1− x)2
P ′′
k

( y

1− x

)
+

(β + 1)(1− x)− (β + γ + 2)y

1− x
P ′
k

( y

1− x

)
+k(k + β + γ + 1)Pk

( y

1− x

)
= 0,

we get that L3(P
(γ,β)
k )(x, y) = 0. The result follows using the definition of classical

orthogonal polynomials on the triangle P
(0,β,γ)
n,k (x, y) given in (2.1), the explicit

expression (3.4) of Q
(σ;λ)
n,k (x, y), Lemma 3.4, and relations (3.7)–(3.8). �

We remark that we have obtained two partial differential operators D and L,
defined in (3.3) and (3.5), respectively, of order 2 and 4 for which the bivariate
orthogonal polynomials defined in (3.4) are eigenfunctions. The operators D and
L commute, they are algebraically independent, and they generate an algebra of
differential operators which have the orthogonal polynomials as eigenfunctions.

Next, we observe that the operator L contains terms without derivatives. Then,
the fourth order partial differential equation (3.5) can be written as

(3.9) L(λ3)(Q
(σ;λ)
n,k )(x, y) = η̂

(λ3)
n,k Q

(σ;λ)
n,k (x, y),

where L(λ3)(f)(x, y) = L1(L2(f))(x, y) − L1(L2(1)) f(x, y) is a partial differential
operator without zero order part, and the eigenvalue takes the form

(3.10) η̂
(λ3)
n,k = η

(σ;λ)
n,k − (β0 + 1)(λ3 + 1)

λ3
.

Now, we take limit when λ3 goes to 0, and define

L(0) = lim
λ3→0

L(λ3),

which is a second order partial differential operator such that the classical orthogo-
nal polynomials on the triangle (2.1) with α = 0, are eigenfunctions with eigenvalue

η̂
(0)
n,k = lim

λ3→0
η̂
(λ3)
n,k = 2[n(n+ β + γ + 2)− k(k + β + γ + 1)].

On the other hand, the second order partial differential operator D is indepen-
dent of λ3, and it also has the classical orthogonal polynomials on the triangle as
eigenfunctions, and the corresponding eigenvalues are the same as in (3.2).

Let us recall that classical orthogonal polynomials on the triangle are eigen-
functions of a second order partial differential operator (see [14]) with eigenvalue
independent of k, that is,

S(α,β,γ)(P
(α,β,γ)
n,k )(x, y) = −n(n+ α+ β + γ + 2)P

(α,β,γ)
n,k (x, y),
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where

S(α,β,γ) =x(1− x)
∂2

∂x2
− 2xy

∂2

∂x∂y
+ y(1− y)

∂2

∂y2

+ [(α+ 1)− (α+ β + γ + 3)x]
∂

∂x
+ [(β + 1)− (α+ β + γ + 3)y]

∂

∂y
.

In [10, p. 464], the author claims that the algebra A of all differential opera-
tors which have classical bivariate orthogonal polynomials on the triangle (2.1) as
eigenfunctions has algebraic dimension two. In fact, it is easy to see that

L(0) = 2(D − S(0,β,γ)),

that is, L(0) ∈ A, for α = 0.
In the more general case with λ3 > 0, we have found two algebraically inde-

pendent differential operators D and L(λ3) having orthogonal polynomials (3.4) as
eigenfunctions. However, it is not guaranteed that they generate the whole algebra
of partial differential operators having orthogonal polynomials (3.4) as eigenfunc-
tions. This will be the aim of further research.

Nevertheless, it can be easily checked that there is not a fourth order partial
differential operator in the algebra generated by D and L(λ3) with eigenvalues inde-
pendent of k. In [8], it was pointed out that in the multivariate case, to get fourth
order partial differential equations independent of k, we have to deal with Sobolev
inner products.
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