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ABSTRACT. In this paper, we complete the classification of quasi-alternating
Montesinos links. We show that the quasi-alternating Montesinos links are pre-
cisely those identified independently by Qazagzeh-Chbili-Qublan and
Champanerkar-Ording. A consequence of our proof is that a Montesinos link
L is quasi-alternating if and only if its double branched cover is an L-space,
and bounds both a positive definite and a negative definite 4-manifold with
vanishing first homology.

1. INTRODUCTION

Quasi-alternating links were defined by Ozsvéth-Szabd [OS05), Definition 3.1] as
a natural generalisation of the class of alternating links.

Definition 1. The set Q of quasi-alternating links is the smallest set of links
satisfying the following:
e The unknot U belongs to Q.
e If L is a link with a diagram containing a crossing ¢ such that
(1) both smoothings Ly and L, of the link L at the crossing ¢, as in Figure
[, belong to Q,
(2) det(Lg),det(Ly) > 1, and
(3) det(L) = det(Lg) + det(Ly),
then L is in Q. The crossing c is called a quasi-alternating crossing.
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FIGURE 1. L and its two resolutions Ly and L; in a neighbourhood
of ¢

Ozsvath-Szab6 showed that the class of nonsplit alternating links is contained
in @ [OS05, Lemma 3.2]. Moreover, quasi-alternating links share a number of
properties with alternating links; we list a few of these. For a quasi-alternating link
L:
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(i) L is homologically thin for both Khovanov homology and knot Floer ho-
mology [MOOS].
(ii) The double branched cover X(L) of L is an L-space [OS05, Proposition 3.3].
(iii) The 3-manifold (L) bounds a smooth negative definite 4-manifold W with
H, (W) = 0 [OS05], Proof of Lemma 3.6].

For some further properties see [LO15], [QC15], [Terls] and [ORST3| Remark after
Proposition 5.2].

Due to their recursive definition, it is difficult in general to determine whether
or not a link is quasi-alternating. For example, there still remain examples of
12-crossing knots with unknown quasi-alternating status [Jabl4]. Champanerkar-
Kofman [CK09] showed that the quasi-alternating property is preserved by replac-
ing a quasi-alternating crossing with an alternating rational tangle. They used this
to determine an infinite family of quasi-alternating pretzel links, which Greene later
showed is the complete set of quasi-alternating pretzel links [Grel0].

Qazaqzeh-Chbili-Qublan [QCQ15] and Champanerkar-Ording [CO15|] indepen-
dently generalised the sufficient conditions on pretzel links to obtain an infinite
family of quasi-alternating Montesinos links. This family includes all examples
of quasi-alternating Montesinos links found by Widmer [Wid09]. Furthermore, it
was conjectured by Qazaqzeh-Chbili-Qublan that this family is the complete set of
quasi-alternating Montesinos links. We mention that Watson [Watll] gave an iter-
ative surgical construction for constructing all quasi-alternating Montesinos links.

Some necessary conditions to be quasi-alternating in terms of the rational pa-
rameters of a Montesinos link were obtained in [QCQI5] and [COI5|] based on
the fact that a quasi-alternating link is homologically thin. Further conditions
are described in [COI15| coming from the fact that the double branched cover of
a quasi-alternating link is an L-space. Some additional restrictions were found in
[QC15].

Our main result is the following theorem which states that the quasi-alternating
Montesinos links are precisely those found by Qazaqzeh-Chbili-Qublan [QCQ15]
and Champanerkar-Ording [CO15].

Theorem 1. Let L = M(e;tq,...,t,) be a Montesinos link in standard form, that
is, where t; = % > 1 and «;,B; > 0 are coprime for alli = 1,...,p. Then L is
quasi-alternating if and only if

(1) e<1, or
(2) e=1and ;% > g—; for some i,j with i # j, or
(3) e>p—1, or
4)

(

As a corollary of our proof we obtain the following characterisation of the Mon-
tesinos links L which are quasi-alternating in terms of their double branched covers
Y(L).

(673

e=p—1and g < Z—j for some i,j with i # j.

Corollary 1. A Montesinos link L is quasi-alternating if and only if
(1) X(L) is an L-space, and
(2) there exist a smooth negative definite 4-manifold Wi and a smooth positive
definite 4-manifold Wy with OW; = X(L) and Hy(W;) =0 fori=1,2.

Note that in Corollary [l and throughout, we assume all homology groups have
Z coefficients.
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In light of this corollary, Theorem [2] can also be seen as a classification of the L-
space Seifert fibered spaces over S? which bound both positive and negative definite
4-manifolds with vanishing first homology. To what extent Corollary [l generalises
to non-Montesinos links remains an interesting question.

This work also gives a classification of the Seifert fibered space formal L-spaces.
The notion of a formal L-space was defined by Greene and Levine [GL16] as a 3-
manifold analogue of quasi-alternating links. In fact, the double branched cover of
a quasi-alternating link is an example of a formal L-space. In [LS17], Lidman and
Sivek classified the quasi-alternating links of determinant at most 7. In fact, they
showed that the formal L-spaces M?® with |H;(M)| < 7 are precisely the double
branched covers of quasi-alternating links with determinant at most 7. In this same
direction, as a consequence of Corollary [Il we have the following.

Corollary 2. A Seifert fibered space over S? is a formal L-space if and only if it
is the double branched cover of a quasi-alternating link.

Corollary [T also seems significant given the recent independent characterisations
of alternating knots by Greene [Grel7] and Howie [Howl7]. A nonsplit link is
alternating if and only if it bounds negative definite and positive definite spanning
surfaces (which are the checkerboard surfaces). The double branched cover of B*
over such a surface is a definite 4-manifold of the appropriate sign. Generalising
this, a quasi-alternating link has the property that it bounds a pair of surfaces
in B* with double branched covers a positive definite and a negative definite 4-
manifold (these surfaces cannot be embedded in S® in general). Corollary [] shows
that among Montesinos links with double branched covers which are L-spaces, this
property characterises those which are quasi-alternating.

Our approach to proving Theorem [2] follows that of Greene [GrelQ] on the de-
termination of quasi-alternating pretzel links. One of Greene’s main strategies is
as follows. Suppose L is a quasi-alternating Montesinos link such that (L) is the
oriented boundary of the standard negative definite plumbing X*. Since the prop-
erty of being quasi-alternating is closed under reflection, by property (i) above,
—¥(L) = %(L) bounds a negative definite 4-manifold W with H; (W) = 0. By Don-
aldson’s theorem [Don87], the smooth closed negative definite 4-manifold X U W
has diagonalisable intersection form. Hence, Hs(X)/Tors — Ho(X U W)/ Tors is
an embedding of the intersection lattice of X into the standard negative diagonal
lattice. Moreover, using the fact that Hy (W) is torsion free, it is shown that if A
is a matrix representing the lattice embedding, then A7 must be surjective.

When L is a pretzel link of a certain form, Greene analyses the possible embed-
dings of the intersection lattice of X into a negative diagonal lattice and shows that
the aforementioned surjectivity condition cannot hold, and hence the link cannot
be quasi-alternating. Our main contribution is to argue for more general Mon-
tesinos links L that there is no lattice embedding for which AT is surjective. Key
to our argument are some results on lattice embeddings by Lecuona-Lisca [LLI11].
The condition we obtain combined with an obstruction based on (L) being an
L-space leads to the precise necessary conditions to complete the determination of
quasi-alternating Montesinos links.

2. PRELIMINARIES

We briefly recall some material on Montesinos links and plumbings. See [CO15]
or [BZH14] for further detail on Montesinos links and [NR78]| for more on plumbings.
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The Montesinos link M (e; t1,...,tp), wheret; = g € Q with a; > 1 and B; coprime
integers, and e is an integer, is given by the diagram in Figure[2l In the figure, each
box labelled t; represents the corresponding rational tangle. The 0 rational tangle
is shown in Figure Bl Introducing an additional positive (resp., negative) half-twist
to the bottom of an a/b rational tangle produces a rational tangle represented by
a/b+1 (resp., a/b—1); see Figure[Bl Rotating (in either direction) a rational tangle
represented by t € QU{1/0} by 90 degrees produces the rational tangle represented
by —1/t. The rational tangle represented by any a/b € Q U {1/0} can be obtained
from the 0 rational tangle by a sequence of these two operations. See [Cro04] for
a more thorough treatment of rational links. Note, however, that an a/b rational
tangle with our conventions corresponds to a b/a rational tangle in [Cro04].

We also note that with our conventions for a Montesinos link M (e;t1,...,%p),
the integer e has opposite sign to that used by Champanerkar-Ording [CO15] and
agrees with that of Qazaqzeh-Chbili-Qublan [QCQI5] and Greene [Grel0].

L N Ve

e<0(e=-3)

AN

le| crossings

FIGURE 2. The Montesinos link M(e;t1,...,t,), where a box la-
belled t¢; represents a rational tangle corresponding to ¢;. The
crossing type of the |e| crossings depends on the sign of e, with the
two possibilities shown on the left.
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F1GURE 3. From left to right: the O rational tangle, an abstract
representation of a a/b rational tangle, the ¢ + 1 rational tangle,
and the —b/a rational tangle.

Montesinos link M (e;tq,...,t,) isisotopic to M (e4+1;t1, ..., ti—1, 8}, tit1,- -+, tp),
where t; = , and is also isotopic to M (e —1;t1,...,t;—1,t;, tit1,...,tp), where

ﬁ+
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th = ﬁ,‘(iiai' Hence, a Montesinos link is isotopic to one in standard form, that is,
of the form M(e;tq, ..., tp) where t; > 1 for all 4.

Let L = M(e;tq,...,t,) where t; < —1 for all . Note that any Montesinos link
can be put into this form. For each 4, there is a unique continued fraction expansion

ti:[a’iv'-wal}‘”] ::ail_ ! 1 s
a —
i 1
a’hifl - a;'q

where h; > 1 and az» < —2forall j€{l,...,h}.

1 2 p
ap, @, .o ap,

FIGURE 4. The weighted star-shaped plumbing graph I"

The double branched cover (L) of L is the oriented boundary of the 4-dimen-
sional plumbing Xr of D2-bundles over S? described by the weighted star-shaped
graph I" shown in Figure @l We call T the standard star-shaped plumbing graph
for L. The ith leg of I' corresponding to t¢; is the linear subgraph generated by
the vertices labelled with weights at,. .., azi. The degree p vertex labelled with
weight e is called the central vertex. Denote the vertices of I' by v, ve,...,v;. The
zero-sections of the D?-bundles over S? corresponding to each of vy, ..., v; in the
plumbing together form a natural spherical basis for Hy(Xr). With respect to this
basis, the intersection form of Xt is given by the weighted adjacency matrix Qr
with entries Q;5, 1 <4, < k, given by

W(vi)u ifi= j7
Qij =141, if v; and v; are connected by an edge,
0, otherwise,

where w(v;) is the weight of vertex v;. We call (Z¥, Qr) the intersection lattice of
Xr (or of T).
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3. RESULTS

Equivalent sufficient conditions for a Montesinos link to be quasi-alternating
were given in [COI15, Theorem 5.3] and [QCQ15, Theorem 3.5]. The goal of this
section is to prove Theorem [2] which states that these sufficient conditions for a
Montesinos link to be quasi-alternating are also necessary conditions.

Lemma 1. Let L = M(e;tq,...,t,), p > 3, be a Montesinos link in standard form,

[e3

i.e., where t; = 5> 1 and ay, B; > 0 are coprime for all i. Suppose that e < p — 2

and e — Y8, tl > 0 (in particular e > 1). Then X(L) is not an L-space, and
therefore L is not quasi-alternating.
Proof. The reflection of L is given by L = M(e’;t},... ) = M(—e;—t1, ..., —tp).

The space X(L) is the oriented boundary of a plumbing X1 corresponding to the
standard star-shaped plumbing graph I for L. Since e'=Y " | & = — (e -3 ti)
< 0, by [NR78, Theorem 5.2], Xt has negative definite intersection form.

Since Xt is negative definite and T" is almost-rational, by [Ném05, Theorem 6.3]
we have that Y(L) is an L-space if and only if Xr is a rational surface singularity
(more generally, see [Ném15]). Note that I' is almost-rational since by sufficiently
decreasing the weight of the central vertex we obtain a plumbing graph satisfying
—w(v) > deg(v) for all vertices v, where w(v) denotes the weight of v, and that
such a graph is rational (for details see [Ném05, Example 8.2(3)]).

Laufer’s algorithm [Lau72, Section 4] can be used to determine whether the
negative definite plumbing Xr is a rational surface singularity as follows. Let
v1,...,V be the vertices of T', and for i € {1,...,k} let [X,,] € Ha(Xr) be the
spherical class naturally associated to v;. The algorithm is as follows (see [Sti08]
Section 3] for a similar formulation):

(1) Let Ko = 31, [20,] € Ha(Xr).

(2) In the ith step, consider the pairings (PD[K;], [%,,]), for j € {1,... k}.
Note that these pairings may be evaluated using the adjacency matrix Q. If
for some j the pairing is at least 2, then the algorithm stops and Xt is not
a rational surface singularity. If for some j the pairing is equal to 1, then
set K1 = K; + [ZUJ] and go to the next step. Otherwise all pairings are
nonpositive, the algorithm stops, and Xt is a rational surface singularity.

Applying Laufer’s algorithm to X, we claim that the algorithm terminates at the
Oth step. To see this, note that for v the central vertex of ', (PD[Ky], [S,]) = p—e
(each vertex adjacent to v contributes 1 and the central vertex contributes —e).
By assumption e < p — 2, so (PD[Ky],[2,]) = p — e > 2. Hence, the algorithm
terminates, and we conclude that X is not a rational surface singularity and hence

(L) is not an L-space. Therefore ¥(L) is not an L-space. 0

The following lemma will provide an obstruction to a Montesinos link being
quasi-alternating.

Lemma 2 (|Grel0l Lemma 2.1]). Suppose that X and W are a pair of 4-manifolds,
0X = —0W =Y is a rational homology sphere, and Hy (W) is torsion-free. Express
the map Ho(X)/Tors — Ha(X U W)/ Tors with respect to a pair of bases by the
matriz A. This map is an inclusion, and AT is surjective. In particular, if some k
rows of A contain all the nonzero entries of some k of its columns, then the induced
k x k minor has determinant £1.
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The following two technical lemmas will be useful when we apply the obstruction
to being quasi-alternating based on Lemma

Lemma 3 ([LLI1, Lemma 3.1]). Suppose —1/r=[aq,...,a,] and —=1/s=[by,...,bnm],
where r + s = 1. Consider a weighted linear graph ¥ having two connected compo-
nents, V1 and Vs, where Uy consists of n vertices vy, . .., v, with weights a1, ..., a,
and Yy of m vertices w1, ..., wy, with weights by,...,by,. Moreover, suppose that
there is an embedding of the lattice (Z"+™, Qg ) into (Z*, —Id), with basis ey, . .., ex.
For S a subset of vertices of ¥, define

Us ={ei|e;-v#0 for some v e S}

Suppose further that ey € U,, NUy, and Uy = {ey,...,ex}. Then Uy, = Uy, and
k=n+m.

Lemma 4 ([LL11l Lemma 3.2]). Let —1/r = [a1,...,a,] and —1/s = [b1,...,by]
be such that r + s > 1. Then there exists ng < n and mo < m such that —1/rq =
[a1,...,an,] and —1/sg = [b1, ..., bm,] satisfy ro + so = 1.
Theorem 2. Let L = M(e;t1,...,t,) be a Montesinos link in standard form, that
is, where t; = g— > 1 and «;,8; > 0 are coprime for all i = 1,...,p. Then L is
quasi-alternating if and only if

(1) e<1, or

Ao > g—j for some i,j with i # j, or

(2)
()e>p—1 or
4) e <Z—jforsomei,j with i # j.

Proof. If one of the conditions (1)—(4) is satisfied, then L is quasi-alternating by
either of [CO15, Theorem 5.3] or [QCQI5, Theorem 3.5]. Thus it suffices to show
that if none of the conditions are satisfied, then L is not quasi-alternating. Thus,
assume none of the conditions are satisfied, in particular p > 2.

By [Sav02] Section 1.2.3] (see also [CO15, Proposition 4.1]), we have that

p .
o1 ..oy <e—2%> .

If p = 2, since none of the conditions are satisfied we must have e = 1 and 51 =
% Hence, det(L) = [ aa(1 - b _

det(L) =

- a—2)| =0, and so L is not qua51—alternat1ng (in
fact L must be the two component unlink). For the remainder of the argument we
assume that p > 3, and det(L) # 0, that is, e — .7 By

i=1 oy

First consider the case 1 < e < p — 1. The reflection of L is given by

_— oy ap) < oy a, )
L=M|-e——,...,—— | =M{[p—e, ey ,
< 51 Bp al_ﬂl O‘p_ﬁp

where the latter is written in standard form and 1 < p—e < p—1. Moreover, we

see that a reflection reverses the sign of e—>"r, —’, and thus by a reflection if

> 0. Then by Lemma [ 3(L) is not

necessary we may assume that e — ) . 1 o
an L-space, so L is not quasi—alternatmg

It remains to consider the cases e = 1 and e = p — 1. By a reflection if necessary
we may assume that e = 1. Note that conditions (2) and (4) are equivalent under
a reflection. We assume that condition (2) is not satisfied. We need to prove that
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this implies that L is not quasi-alternating. If e — le % > 0, then by Lemma[l]

(L) is not an L-space, and therefore L is not quasi-alternating.
Otherwise e — 7. 82 < 0. We have that

i=1 o

(651 Qg (05} Qayp
L=M|(1l,—,....,— | =M{1-p; A, ),
( B1 Bp) ( B1—a ﬂp_ap

where Biofa < —1 for all 1.

The double branched cover 3(L) of L is therefore the boundary of a plumbing
4-manifold X on the standard star-shaped planar graph I' with central vertex of
weight —(p — 1) and legs corresponding to the fractions ﬁ, ief{l,...,p}. Our
assumption that e — le % < 0 implies that X is negative definite [NR78 The-
orem 5.2]. Suppose for the sake of contradiction that L is quasi-alternating. Then
L is quasi-alternating and —¥(L) = (L) bounds a negative definite 4-manifold W
with H; (W) = 0 [OS05, Proof of Lemma 3.6]. By Donaldson’s theorem [Don87],
the smooth closed negative definite 4-manifold X U W has diagonalisable inter-
section form. Thus, the map Hy(Xr)/Tors «— Hao(Xr U W)/Tors induced by the
inclusion map is an embedding of the intersection lattice (Z*, Qr) of Xr into the
standard negative diagonal lattice (Z™, —Id) for some n. Denote by eq,...,e, a
basis for (Z™, —1d).

We use the lattice embedding to identify elements of (Z*, Qr) with their image
in (Z",—1d). For convenience, we will not distinguish between a vertex of I" and
the vector it corresponds to in the lattice. The central vertex v of I' has weight
—(p—1), and so v -e; # 0 for at most p — 1 values of i € {1,...,n}. Thus, by
applying an automorphism if necessary, we may assume that v pairs nontrivially
with precisely eq, ..., ey, where m < p—1. Since there are p legs, by the pigeonhole
principle there must exist some e;, where j € {1,...,m}, and two distinct vertices
v1,v2 adjacent to v with v; - e; # 0 and vy - e; # 0. Without loss of generality we
assume that 7 = 1 and that for i € {1,2}, the vertex v; belongs to the ith leg of T',

i.e., corresponding to the fraction ﬁ‘ofa, .

Since we are assuming condition (2) does not hold, we have that —* 7 < %
i—Bi }

for all 4,5 with ¢ £ j. In particular, we have aloilﬂl < % Rearranging this gives

% + g—z < 1. Note that the two legs correspond to the fractions —1/r := — al"jﬁl =
[a},...,a; ] and —1/s := —aiy = [a?,...,aj_], where r,s € Q, and where our

notation is as in Section2l Thus, we have that r+s = 2— 5—11 — 5—2 > 1. Sincer+s >
1, by Lemma [ there exist Ay < hy and h < hy such that —1/r¢ = [al,.. '7“}11’1]
and —1/s9 = [a3,.. .,ai,z] with 7o + so = 1.

Let ¥ be the union of the linear graph containing the first h} vertices of the first
leg (where we count vertices in a leg starting away from the central vertex) and
the linear graph containing the first hf vertices of the second leg. By restricting
our embedding of (Z*, Qr), we have an embedding of the sublattice corresponding
to U into (Z",—Id). The image of this embedding is contained in a sublattice
(Z,-1d) of (Z™,—1d) spanned by {e; € Z" | ¢; - v # 0 for some vertex v of U}.
Hence Uy consists of d elements (see Lemma [B] for definition of Uy). Let vy, w; be
the two vertices of ¥ adjacent to the central vertex in I'. By our choice of the two
legs of I' which contain the vertices of ¥, we know that e; € U,, N U,, for some
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j €{1,...,n}. This shows that the hypotheses of Lemma [B] are satisfied, hence we
conclude that d = h) + hj.

Let A be the matrix representing the embedding (Z*, Qr) into (Z", —Id). Then
the h} + h% columns of A corresponding to the vertices of ¥ are supported in
d = h} + hf, rows of A corresponding to the d-dimensional sublattice of (Z™, —Id).
Denote this d x d minor by B. Then —BT B is a matrix for the intersection form
of the plumbing corresponding to ¥. Hence —BT B is a presentation matrix for
H,(Y), where Y is the boundary of the (disconnected) plumbing corresponding
to U. The 3-manifold Y is the disjoint union of two lens spaces, each given by
surgery on the unknot with framings —1/rq < —1 and —1/s9 < —1, respectively.
Therefore |det(B)|? = |H1(Y)| > 1, contradicting Lemma 2 Thus, L is not quasi-
alternating. O

Corollary 1. A Montesinos link L is quasi-alternating if and only if
(1) (L) is an L-space, and
(2) there exist a smooth negative definite 4-manifold Wy and a smooth positive
definite 4-manifold Wy with OWy = X(L) and Hi(W;) =0 fori=1,2.

Proof. This is a corollary of the proof of Theorem [2I Suppose first that L is quasi-
alternating. By [OS05, Proposition 3.3], ¥(L) is an L-space. Furthermore, (L)
must bound a negative definite 4-manifold Wy with H; (W;) = 0 [OS05, Proof of
Lemma 3.6]. Applying this to the reflection of L which is also quasi-alternating, we
get that X(L) also bounds a positive definite 4-manifold Wy with Hy(W3) = 0. For
the converse, note that these two necessary conditions are the only conditions used
to obstruct a Montesinos link from being quasi-alternating in the proof of Theorem
O

As a consequence, we obtain a classification of the Seifert fibered spaces which
are formal L-spaces. Before stating it, we recall the definition of a formal L-space.
We say that a triple (Y7, Y2, Y3) of closed, oriented 3-manifolds forms a triad if there
is a 3-manifold M with torus boundary, and three oriented curves 1, 72,73 C OM
at pairwise distance 1, such that Y; is the result of Dehn filling M along -;, for
1=1,2,3.

Definition 2. The set F of formal L-spaces is the smallest set of rational homology
3-spheres such that

(1) S3 € F and

(2) if (Y,Y0, Y1) is a triad with Yp,Y; € F and

|H1(Y)| = [H1(Yo)| + [Hi (Y1)l
then Y € F.

Corollary 2. A Seifert fibered space over S? is a formal L-space if and only if it
is the double branched cover of a quasi-alternating link.

Proof. Let L be a quasi-alternating Montesinos link. Then the double branched
cover of L is a Seifert fibered space over S2. Ozsvath and Szabé show that the
double branched cover of a quasi-alternating link is an L-space [OS05] Proposition
3.3]. Their proof in fact shows that the double branched cover of a quasi-alternating

link is a formal L-space. Hence ¥(L) is a formal L-space Seifert fibered space over
S2.
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Now let M be a formal L-space Seifert fibered space over S2. Then M is the
double branched cover of a Montesinos link L. Ozsvath and Szabé in [OS05], Proof
of Lemma 3.6] show that the double branched cover of a quasi-alternating link
bounds both a positive definite and a negative definite 4-manifold with vanishing
first homology. However, their proof in fact shows this for all formal L-spaces.
Hence M = (L) is a formal L-space bounding positive and negative definite 4-
manifolds with vanishing first homology. Thus, Corollary [[limplies that L is quasi-
alternating. ([l
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