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Abstract. In this paper, we complete the classification of quasi-alternating
Montesinos links. We show that the quasi-alternating Montesinos links are pre-
cisely those identified independently by Qazaqzeh-Chbili-Qublan and
Champanerkar-Ording. A consequence of our proof is that a Montesinos link
L is quasi-alternating if and only if its double branched cover is an L-space,
and bounds both a positive definite and a negative definite 4-manifold with

vanishing first homology.

1. Introduction

Quasi-alternating links were defined by Ozsváth-Szabó [OS05, Definition 3.1] as
a natural generalisation of the class of alternating links.

Definition 1. The set Q of quasi-alternating links is the smallest set of links
satisfying the following:

• The unknot U belongs to Q.
• If L is a link with a diagram containing a crossing c such that

(1) both smoothings L0 and L1 of the link L at the crossing c, as in Figure
1, belong to Q,

(2) det(L0), det(L1) ≥ 1, and
(3) det(L) = det(L0) + det(L1),
then L is in Q. The crossing c is called a quasi-alternating crossing.

L L0 L1

Figure 1. L and its two resolutions L0 and L1 in a neighbourhood
of c

Ozsváth-Szabó showed that the class of nonsplit alternating links is contained
in Q [OS05, Lemma 3.2]. Moreover, quasi-alternating links share a number of
properties with alternating links; we list a few of these. For a quasi-alternating link
L:
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(i) L is homologically thin for both Khovanov homology and knot Floer ho-
mology [MO08].

(ii) The double branched cover Σ(L) of L is an L-space [OS05, Proposition 3.3].
(iii) The 3-manifold Σ(L) bounds a smooth negative definite 4-manifold W with

H1(W ) = 0 [OS05, Proof of Lemma 3.6].

For some further properties see [LO15], [QC15], [Ter15] and [ORS13, Remark after
Proposition 5.2].

Due to their recursive definition, it is difficult in general to determine whether
or not a link is quasi-alternating. For example, there still remain examples of
12-crossing knots with unknown quasi-alternating status [Jab14]. Champanerkar-
Kofman [CK09] showed that the quasi-alternating property is preserved by replac-
ing a quasi-alternating crossing with an alternating rational tangle. They used this
to determine an infinite family of quasi-alternating pretzel links, which Greene later
showed is the complete set of quasi-alternating pretzel links [Gre10].

Qazaqzeh-Chbili-Qublan [QCQ15] and Champanerkar-Ording [CO15] indepen-
dently generalised the sufficient conditions on pretzel links to obtain an infinite
family of quasi-alternating Montesinos links. This family includes all examples
of quasi-alternating Montesinos links found by Widmer [Wid09]. Furthermore, it
was conjectured by Qazaqzeh-Chbili-Qublan that this family is the complete set of
quasi-alternating Montesinos links. We mention that Watson [Wat11] gave an iter-
ative surgical construction for constructing all quasi-alternating Montesinos links.

Some necessary conditions to be quasi-alternating in terms of the rational pa-
rameters of a Montesinos link were obtained in [QCQ15] and [CO15] based on
the fact that a quasi-alternating link is homologically thin. Further conditions
are described in [CO15] coming from the fact that the double branched cover of
a quasi-alternating link is an L-space. Some additional restrictions were found in
[QC15].

Our main result is the following theorem which states that the quasi-alternating
Montesinos links are precisely those found by Qazaqzeh-Chbili-Qublan [QCQ15]
and Champanerkar-Ording [CO15].

Theorem 1. Let L = M(e; t1, . . . , tp) be a Montesinos link in standard form, that
is, where ti =

αi

βi
> 1 and αi, βi > 0 are coprime for all i = 1, . . . , p. Then L is

quasi-alternating if and only if

(1) e < 1, or
(2) e = 1 and αi

αi−βi
>

αj

βj
for some i, j with i �= j, or

(3) e > p− 1, or
(4) e = p− 1 and αi

αi−βi
<

αj

βj
for some i, j with i �= j.

As a corollary of our proof we obtain the following characterisation of the Mon-
tesinos links L which are quasi-alternating in terms of their double branched covers
Σ(L).

Corollary 1. A Montesinos link L is quasi-alternating if and only if

(1) Σ(L) is an L-space, and
(2) there exist a smooth negative definite 4-manifold W1 and a smooth positive

definite 4-manifold W2 with ∂Wi = Σ(L) and H1(Wi) = 0 for i = 1, 2.

Note that in Corollary 1 and throughout, we assume all homology groups have
Z coefficients.
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In light of this corollary, Theorem 2 can also be seen as a classification of the L-
space Seifert fibered spaces over S2 which bound both positive and negative definite
4-manifolds with vanishing first homology. To what extent Corollary 1 generalises
to non-Montesinos links remains an interesting question.

This work also gives a classification of the Seifert fibered space formal L-spaces.
The notion of a formal L-space was defined by Greene and Levine [GL16] as a 3-
manifold analogue of quasi-alternating links. In fact, the double branched cover of
a quasi-alternating link is an example of a formal L-space. In [LS17], Lidman and
Sivek classified the quasi-alternating links of determinant at most 7. In fact, they
showed that the formal L-spaces M3 with |H1(M)| ≤ 7 are precisely the double
branched covers of quasi-alternating links with determinant at most 7. In this same
direction, as a consequence of Corollary 1, we have the following.

Corollary 2. A Seifert fibered space over S2 is a formal L-space if and only if it
is the double branched cover of a quasi-alternating link.

Corollary 1 also seems significant given the recent independent characterisations
of alternating knots by Greene [Gre17] and Howie [How17]. A nonsplit link is
alternating if and only if it bounds negative definite and positive definite spanning
surfaces (which are the checkerboard surfaces). The double branched cover of B4

over such a surface is a definite 4-manifold of the appropriate sign. Generalising
this, a quasi-alternating link has the property that it bounds a pair of surfaces
in B4 with double branched covers a positive definite and a negative definite 4-
manifold (these surfaces cannot be embedded in S3 in general). Corollary 1 shows
that among Montesinos links with double branched covers which are L-spaces, this
property characterises those which are quasi-alternating.

Our approach to proving Theorem 2 follows that of Greene [Gre10] on the de-
termination of quasi-alternating pretzel links. One of Greene’s main strategies is
as follows. Suppose L is a quasi-alternating Montesinos link such that Σ(L) is the
oriented boundary of the standard negative definite plumbing X4. Since the prop-
erty of being quasi-alternating is closed under reflection, by property (iii) above,
−Σ(L) = Σ(L) bounds a negative definite 4-manifold W with H1(W ) = 0. By Don-
aldson’s theorem [Don87], the smooth closed negative definite 4-manifold X ∪ W
has diagonalisable intersection form. Hence, H2(X)/Tors ↪→ H2(X ∪ W )/Tors is
an embedding of the intersection lattice of X into the standard negative diagonal
lattice. Moreover, using the fact that H1(W ) is torsion free, it is shown that if A
is a matrix representing the lattice embedding, then AT must be surjective.

When L is a pretzel link of a certain form, Greene analyses the possible embed-
dings of the intersection lattice of X into a negative diagonal lattice and shows that
the aforementioned surjectivity condition cannot hold, and hence the link cannot
be quasi-alternating. Our main contribution is to argue for more general Mon-
tesinos links L that there is no lattice embedding for which AT is surjective. Key
to our argument are some results on lattice embeddings by Lecuona-Lisca [LL11].
The condition we obtain combined with an obstruction based on Σ(L) being an
L-space leads to the precise necessary conditions to complete the determination of
quasi-alternating Montesinos links.

2. Preliminaries

We briefly recall some material on Montesinos links and plumbings. See [CO15]
or [BZH14] for further detail on Montesinos links and [NR78] for more on plumbings.
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The Montesinos linkM(e; t1, . . . , tp), where ti =
αi

βi
∈ Q with αi > 1 and βi coprime

integers, and e is an integer, is given by the diagram in Figure 2. In the figure, each
box labelled ti represents the corresponding rational tangle. The 0 rational tangle
is shown in Figure 3. Introducing an additional positive (resp., negative) half-twist
to the bottom of an a/b rational tangle produces a rational tangle represented by
a/b+1 (resp., a/b−1); see Figure 3. Rotating (in either direction) a rational tangle
represented by t ∈ Q∪{1/0} by 90 degrees produces the rational tangle represented
by −1/t. The rational tangle represented by any a/b ∈ Q ∪ {1/0} can be obtained
from the 0 rational tangle by a sequence of these two operations. See [Cro04] for
a more thorough treatment of rational links. Note, however, that an a/b rational
tangle with our conventions corresponds to a b/a rational tangle in [Cro04].

We also note that with our conventions for a Montesinos link M(e; t1, . . . , tp),
the integer e has opposite sign to that used by Champanerkar-Ording [CO15] and
agrees with that of Qazaqzeh-Chbili-Qublan [QCQ15] and Greene [Gre10].

{

|e| crossings
e < 0 (e = −3)

e > 0 (e = 3)

t1 t2 tp

Figure 2. The Montesinos link M(e; t1, . . . , tp), where a box la-
belled ti represents a rational tangle corresponding to ti. The
crossing type of the |e| crossings depends on the sign of e, with the
two possibilities shown on the left.

0 a/b

a/b

(a/b) + 1

a/b

−b/a

a
/
b

Figure 3. From left to right: the 0 rational tangle, an abstract
representation of a a/b rational tangle, the a

b + 1 rational tangle,
and the −b/a rational tangle.

Montesinos linkM(e; t1, . . . , tp) is isotopic toM(e+1; t1, . . . , ti−1, t
′
i, ti+1, . . . , tp),

where t′i =
αi

βi+αi
, and is also isotopic to M(e−1; t1, . . . , ti−1, t

′
i, ti+1, . . . , tp), where
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t′i =
αi

βi−αi
. Hence, a Montesinos link is isotopic to one in standard form, that is,

of the form M(e; t1, . . . , tp) where ti > 1 for all i.
Let L = M(e; t1, . . . , tp) where ti < −1 for all i. Note that any Montesinos link

can be put into this form. For each i, there is a unique continued fraction expansion

ti = [ai1, . . . , a
i
hi
] := ai1 −

1

ai2 −
1

. . .
aihi−1 −

1

aihi

,

where hi ≥ 1 and aij ≤ −2 for all j ∈ {1, . . . , hi}.

e

a11

a12

a1h1

a21

a22

a2h2

ap1

ap2

aphp

Figure 4. The weighted star-shaped plumbing graph Γ

The double branched cover Σ(L) of L is the oriented boundary of the 4-dimen-
sional plumbing XΓ of D2-bundles over S2 described by the weighted star-shaped
graph Γ shown in Figure 4. We call Γ the standard star-shaped plumbing graph
for L. The ith leg of Γ corresponding to ti is the linear subgraph generated by
the vertices labelled with weights ai1, . . . , a

i
hi
. The degree p vertex labelled with

weight e is called the central vertex. Denote the vertices of Γ by v1, v2, . . . , vk. The
zero-sections of the D2-bundles over S2 corresponding to each of v1, . . . , vk in the
plumbing together form a natural spherical basis for H2(XΓ). With respect to this
basis, the intersection form of XΓ is given by the weighted adjacency matrix QΓ

with entries Qij , 1 ≤ i, j ≤ k, given by

Qij =

⎧⎪⎨
⎪⎩
w(vi), if i = j,

1, if vi and vj are connected by an edge,

0, otherwise,

where w(vi) is the weight of vertex vi. We call (Zk, QΓ) the intersection lattice of
XΓ (or of Γ).
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3. Results

Equivalent sufficient conditions for a Montesinos link to be quasi-alternating
were given in [CO15, Theorem 5.3] and [QCQ15, Theorem 3.5]. The goal of this
section is to prove Theorem 2 which states that these sufficient conditions for a
Montesinos link to be quasi-alternating are also necessary conditions.

Lemma 1. Let L = M(e; t1, . . . , tp), p ≥ 3, be a Montesinos link in standard form,
i.e., where ti =

αi

βi
> 1 and αi, βi > 0 are coprime for all i. Suppose that e ≤ p− 2

and e −
∑p

i=1
1
ti

> 0 (in particular e ≥ 1). Then Σ(L) is not an L-space, and
therefore L is not quasi-alternating.

Proof. The reflection of L is given by L = M(e′; t′1, . . . , t
′
p) = M(−e;−t1, . . . ,−tp).

The space Σ(L) is the oriented boundary of a plumbing XΓ corresponding to the

standard star-shaped plumbing graph Γ for L. Since e′−
∑p

i=1
1
t′
i
= −

(
e−

∑p
i=1

1
ti

)
< 0, by [NR78, Theorem 5.2], XΓ has negative definite intersection form.

Since XΓ is negative definite and Γ is almost-rational, by [Ném05, Theorem 6.3]
we have that Σ(L) is an L-space if and only if XΓ is a rational surface singularity
(more generally, see [Ném15]). Note that Γ is almost-rational since by sufficiently
decreasing the weight of the central vertex we obtain a plumbing graph satisfying
−w(v) ≥ deg(v) for all vertices v, where w(v) denotes the weight of v, and that
such a graph is rational (for details see [Ném05, Example 8.2(3)]).

Laufer’s algorithm [Lau72, Section 4] can be used to determine whether the
negative definite plumbing XΓ is a rational surface singularity as follows. Let
v1, . . . , vk be the vertices of Γ, and for i ∈ {1, . . . , k} let [Σvi ] ∈ H2(XΓ) be the
spherical class naturally associated to vi. The algorithm is as follows (see [Sti08,
Section 3] for a similar formulation):

(1) Let K0 =
∑k

i=1[Σvi ] ∈ H2(XΓ).
(2) In the ith step, consider the pairings 〈PD[Ki], [Σvj ]〉, for j ∈ {1, . . . , k}.

Note that these pairings may be evaluated using the adjacency matrix Q. If
for some j the pairing is at least 2, then the algorithm stops and XΓ is not
a rational surface singularity. If for some j the pairing is equal to 1, then
set Ki+1 = Ki + [Σvj ] and go to the next step. Otherwise all pairings are
nonpositive, the algorithm stops, and XΓ is a rational surface singularity.

Applying Laufer’s algorithm toXΓ, we claim that the algorithm terminates at the
0th step. To see this, note that for v the central vertex of Γ, 〈PD[K0], [Σv]〉 = p−e
(each vertex adjacent to v contributes 1 and the central vertex contributes −e).
By assumption e ≤ p − 2, so 〈PD[K0], [Σv]〉 = p − e ≥ 2. Hence, the algorithm
terminates, and we conclude that XΓ is not a rational surface singularity and hence
Σ(L) is not an L-space. Therefore Σ(L) is not an L-space. �

The following lemma will provide an obstruction to a Montesinos link being
quasi-alternating.

Lemma 2 ([Gre10, Lemma 2.1]). Suppose that X and W are a pair of 4-manifolds,
∂X = −∂W = Y is a rational homology sphere, and H1(W ) is torsion-free. Express
the map H2(X)/Tors → H2(X ∪ W )/Tors with respect to a pair of bases by the
matrix A. This map is an inclusion, and AT is surjective. In particular, if some k
rows of A contain all the nonzero entries of some k of its columns, then the induced
k × k minor has determinant ±1.
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The following two technical lemmas will be useful when we apply the obstruction
to being quasi-alternating based on Lemma 2.

Lemma 3 ([LL11, Lemma 3.1]). Suppose −1/r=[a1, . . . , an] and −1/s=[b1, . . . , bm],
where r + s = 1. Consider a weighted linear graph Ψ having two connected compo-
nents, Ψ1 and Ψ2, where Ψ1 consists of n vertices v1, . . . , vn with weights a1, . . . , an
and Ψ2 of m vertices w1, . . . , wm with weights b1, . . . , bm. Moreover, suppose that
there is an embedding of the lattice (Zn+m, QΨ) into (Zk,−Id), with basis e1, . . . , ek.
For S a subset of vertices of Ψ, define

US = {ei | ei · v �= 0 for some v ∈ S}.
Suppose further that e1 ∈ Uv1 ∩ Uw1

and UΨ = {e1, . . . , ek}. Then UΨ1
= UΨ2

and
k = n+m.

Lemma 4 ([LL11, Lemma 3.2]). Let −1/r = [a1, . . . , an] and −1/s = [b1, . . . , bm]
be such that r + s ≥ 1. Then there exists n0 ≤ n and m0 ≤ m such that −1/r0 =
[a1, . . . , an0

] and −1/s0 = [b1, . . . , bm0
] satisfy r0 + s0 = 1.

Theorem 2. Let L = M(e; t1, . . . , tp) be a Montesinos link in standard form, that
is, where ti =

αi

βi
> 1 and αi, βi > 0 are coprime for all i = 1, . . . , p. Then L is

quasi-alternating if and only if

(1) e < 1, or
(2) e = 1 and αi

αi−βi
>

αj

βj
for some i, j with i �= j, or

(3) e > p− 1, or
(4) e = p− 1 and αi

αi−βi
<

αj

βj
for some i, j with i �= j.

Proof. If one of the conditions (1)–(4) is satisfied, then L is quasi-alternating by
either of [CO15, Theorem 5.3] or [QCQ15, Theorem 3.5]. Thus it suffices to show
that if none of the conditions are satisfied, then L is not quasi-alternating. Thus,
assume none of the conditions are satisfied, in particular p ≥ 2.

By [Sav02, Section 1.2.3] (see also [CO15, Proposition 4.1]), we have that

det(L) =

∣∣∣∣∣α1 . . . αp

(
e−

p∑
i=1

βi

αi

)∣∣∣∣∣ .
If p = 2, since none of the conditions are satisfied we must have e = 1 and α1

α1−β1
=

α2

β2
. Hence, det(L) = |α1α2(1− β1

α1
− β2

α2
)| = 0, and so L is not quasi-alternating (in

fact L must be the two component unlink). For the remainder of the argument we

assume that p ≥ 3, and det(L) �= 0, that is, e−
∑p

i=1
βi

αi
�= 0.

First consider the case 1 < e < p− 1. The reflection of L is given by

L = M

(
−e,−α1

β1
, . . . ,−αp

βp

)
= M

(
p− e,

α1

α1 − β1
, . . . ,

αp

αp − βp

)
,

where the latter is written in standard form and 1 < p− e < p− 1. Moreover, we
see that a reflection reverses the sign of e −

∑p
i=1

βi

αi
, and thus by a reflection if

necessary we may assume that e −
∑p

i=1
βi

αi
> 0. Then by Lemma 1, Σ(L) is not

an L-space, so L is not quasi-alternating.
It remains to consider the cases e = 1 and e = p− 1. By a reflection if necessary

we may assume that e = 1. Note that conditions (2) and (4) are equivalent under
a reflection. We assume that condition (2) is not satisfied. We need to prove that
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this implies that L is not quasi-alternating. If e−
∑p

i=1
βi

αi
> 0, then by Lemma 1,

Σ(L) is not an L-space, and therefore L is not quasi-alternating.

Otherwise e−
∑p

i=1
βi

αi
< 0. We have that

L = M

(
1;

α1

β1
, . . . ,

αp

βp

)
= M

(
1− p;

α1

β1 − α1
, . . . ,

αp

βp − αp

)
,

where αi

βi−αi
< −1 for all i.

The double branched cover Σ(L) of L is therefore the boundary of a plumbing
4-manifold XΓ on the standard star-shaped planar graph Γ with central vertex of
weight −(p− 1) and legs corresponding to the fractions αi

βi−αi
, i ∈ {1, . . . , p}. Our

assumption that e−
∑p

i=1
βi

αi
< 0 implies that XΓ is negative definite [NR78, The-

orem 5.2]. Suppose for the sake of contradiction that L is quasi-alternating. Then
L is quasi-alternating and −Σ(L) = Σ(L) bounds a negative definite 4-manifold W
with H1(W ) = 0 [OS05, Proof of Lemma 3.6]. By Donaldson’s theorem [Don87],
the smooth closed negative definite 4-manifold XΓ ∪ W has diagonalisable inter-
section form. Thus, the map H2(XΓ)/Tors ↪→ H2(XΓ ∪ W )/Tors induced by the
inclusion map is an embedding of the intersection lattice (Zk, QΓ) of XΓ into the
standard negative diagonal lattice (Zn,−Id) for some n. Denote by e1, . . . , en a
basis for (Zn,−Id).

We use the lattice embedding to identify elements of (Zk, QΓ) with their image
in (Zn,−Id). For convenience, we will not distinguish between a vertex of Γ and
the vector it corresponds to in the lattice. The central vertex v of Γ has weight
−(p − 1), and so v · ei �= 0 for at most p − 1 values of i ∈ {1, . . . , n}. Thus, by
applying an automorphism if necessary, we may assume that v pairs nontrivially
with precisely e1, . . . , em, where m ≤ p−1. Since there are p legs, by the pigeonhole
principle there must exist some ej , where j ∈ {1, . . . ,m}, and two distinct vertices
v1, v2 adjacent to v with v1 · ej �= 0 and v2 · ej �= 0. Without loss of generality we
assume that j = 1 and that for i ∈ {1, 2}, the vertex vi belongs to the ith leg of Γ,
i.e., corresponding to the fraction αi

βi−αi
.

Since we are assuming condition (2) does not hold, we have that αi

αi−βi
≤ αj

βj

for all i, j with i �= j. In particular, we have α1

α1−β1
≤ α2

β2
. Rearranging this gives

β1

α1
+ β2

α2
≤ 1. Note that the two legs correspond to the fractions −1/r := − α1

α1−β1
=

[a11, . . . , a
1
h1
] and −1/s := − α2

α2−β2
= [a21, . . . , a

2
h2
], where r, s ∈ Q, and where our

notation is as in Section 2. Thus, we have that r+s = 2− β1

α1
− β2

α2
≥ 1. Since r+s ≥

1, by Lemma 4 there exist h′
1 ≤ h1 and h′

2 ≤ h2 such that −1/r0 = [a11, . . . , a
1
h′
1
]

and −1/s0 = [a21, . . . , a
2
h′
2
] with r0 + s0 = 1.

Let Ψ be the union of the linear graph containing the first h′
1 vertices of the first

leg (where we count vertices in a leg starting away from the central vertex) and
the linear graph containing the first h′

2 vertices of the second leg. By restricting
our embedding of (Zk, QΓ), we have an embedding of the sublattice corresponding
to Ψ into (Zn,−Id). The image of this embedding is contained in a sublattice
(Zd,−Id) of (Zn,−Id) spanned by {ei ∈ Zn | ei · v �= 0 for some vertex v of Ψ}.
Hence UΨ consists of d elements (see Lemma 3 for definition of UΨ). Let v1, w1 be
the two vertices of Ψ adjacent to the central vertex in Γ. By our choice of the two
legs of Γ which contain the vertices of Ψ, we know that ej ∈ Uv1 ∩ Uw1

for some
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j ∈ {1, . . . , n}. This shows that the hypotheses of Lemma 3 are satisfied, hence we
conclude that d = h′

1 + h′
2.

Let A be the matrix representing the embedding (Zk, QΓ) into (Zn,−Id). Then
the h′

1 + h′
2 columns of A corresponding to the vertices of Ψ are supported in

d = h′
1 + h′

2 rows of A corresponding to the d-dimensional sublattice of (Zn,−Id).
Denote this d × d minor by B. Then −BTB is a matrix for the intersection form
of the plumbing corresponding to Ψ. Hence −BTB is a presentation matrix for
H1(Y ), where Y is the boundary of the (disconnected) plumbing corresponding
to Ψ. The 3-manifold Y is the disjoint union of two lens spaces, each given by
surgery on the unknot with framings −1/r0 < −1 and −1/s0 < −1, respectively.
Therefore |det(B)|2 = |H1(Y )| > 1, contradicting Lemma 2. Thus, L is not quasi-
alternating. �

Corollary 1. A Montesinos link L is quasi-alternating if and only if

(1) Σ(L) is an L-space, and
(2) there exist a smooth negative definite 4-manifold W1 and a smooth positive

definite 4-manifold W2 with ∂W1 = Σ(L) and H1(Wi) = 0 for i = 1, 2.

Proof. This is a corollary of the proof of Theorem 2. Suppose first that L is quasi-
alternating. By [OS05, Proposition 3.3], Σ(L) is an L-space. Furthermore, Σ(L)
must bound a negative definite 4-manifold W1 with H1(W1) = 0 [OS05, Proof of
Lemma 3.6]. Applying this to the reflection of L which is also quasi-alternating, we
get that Σ(L) also bounds a positive definite 4-manifold W2 with H1(W2) = 0. For
the converse, note that these two necessary conditions are the only conditions used
to obstruct a Montesinos link from being quasi-alternating in the proof of Theorem
2. �

As a consequence, we obtain a classification of the Seifert fibered spaces which
are formal L-spaces. Before stating it, we recall the definition of a formal L-space.
We say that a triple (Y1, Y2, Y3) of closed, oriented 3-manifolds forms a triad if there
is a 3-manifold M with torus boundary, and three oriented curves γ1, γ2, γ3 ⊂ ∂M
at pairwise distance 1, such that Yi is the result of Dehn filling M along γi, for
i = 1, 2, 3.

Definition 2. The set F of formal L-spaces is the smallest set of rational homology
3-spheres such that

(1) S3 ∈ F and
(2) if (Y, Y0, Y1) is a triad with Y0, Y1 ∈ F and

|H1(Y )| = |H1(Y0)|+ |H1(Y1)|,
then Y ∈ F .

Corollary 2. A Seifert fibered space over S2 is a formal L-space if and only if it
is the double branched cover of a quasi-alternating link.

Proof. Let L be a quasi-alternating Montesinos link. Then the double branched
cover of L is a Seifert fibered space over S2. Ozsváth and Szabó show that the
double branched cover of a quasi-alternating link is an L-space [OS05, Proposition
3.3]. Their proof in fact shows that the double branched cover of a quasi-alternating
link is a formal L-space. Hence Σ(L) is a formal L-space Seifert fibered space over
S2.
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Now let M be a formal L-space Seifert fibered space over S2. Then M is the
double branched cover of a Montesinos link L. Ozsváth and Szabó in [OS05, Proof
of Lemma 3.6] show that the double branched cover of a quasi-alternating link
bounds both a positive definite and a negative definite 4-manifold with vanishing
first homology. However, their proof in fact shows this for all formal L-spaces.
Hence M = Σ(L) is a formal L-space bounding positive and negative definite 4-
manifolds with vanishing first homology. Thus, Corollary 1 implies that L is quasi-
alternating. �
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