Spectral bounds for singular indefinite Sturm-Liouville operators with $L^1$-potentials
HTML articles powered by AMS MathViewer
- by Jussi Behrndt, Philipp Schmitz and Carsten Trunk
- Proc. Amer. Math. Soc. 146 (2018), 3935-3942
- DOI: https://doi.org/10.1090/proc/14059
- Published electronically: April 18, 2018
- PDF | Request permission
Abstract:
The spectrum of the singular indefinite Sturm-Liouville operator \begin{equation*} A=\operatorname {sgn}(\cdot )\bigl (-\tfrac {d^2}{dx^2}+q\bigr ) \end{equation*} with a real potential $q\in L^1(\mathbb R)$ covers the whole real line, and, in addition, non-real eigenvalues may appear if the potential $q$ assumes negative values. A quantitative analysis of the non-real eigenvalues is a challenging problem, and so far only partial results in this direction have been obtained. In this paper the bound \begin{equation*} \vert \lambda \vert \leq \Vert q\Vert _{L^1}^2 \end{equation*} on the absolute values of the non-real eigenvalues $\lambda$ of $A$ is obtained. Furthermore, separate bounds on the imaginary parts and absolute values of these eigenvalues are proved in terms of the $L^1$-norm of the negative part of $q$.References
- A. A. Abramov, A. Aslanyan, and E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys. A 34 (2001), no. 1, 57–72. MR 1819914, DOI 10.1088/0305-4470/34/1/304
- Jussi Behrndt, Shaozhu Chen, Friedrich Philipp, and Jiangang Qi, Estimates on the non-real eigenvalues of regular indefinite Sturm-Liouville problems, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 6, 1113–1126. MR 3283062, DOI 10.1017/S0308210513001212
- Jussi Behrndt, Qutaibeh Katatbeh, and Carsten Trunk, Non-real eigenvalues of singular indefinite Sturm-Liouville operators, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3797–3806. MR 2529889, DOI 10.1090/S0002-9939-09-09964-X
- Jussi Behrndt and Friedrich Philipp, Spectral analysis of singular ordinary differential operators with indefinite weights, J. Differential Equations 248 (2010), no. 8, 2015–2037. MR 2595713, DOI 10.1016/j.jde.2009.11.026
- Jussi Behrndt, Friedrich Philipp, and Carsten Trunk, Bounds on the non-real spectrum of differential operators with indefinite weights, Math. Ann. 357 (2013), no. 1, 185–213. MR 3084346, DOI 10.1007/s00208-013-0904-7
- Jussi Behrndt, Philipp Schmitz, and Carsten Trunk, Bounds on the non-real spectrum of a singular indefinite Sturm-Liouville operator on $\mathbb R$, Proc. Appl. Math. Mech. 16 (2016), 881–882.
- Jussi Behrndt, Bernhard Gsell, Philipp Schmitz, and Carsten Trunk, An estimate on the non-real spectrum of a singular indefinite Sturm-Liouville operator, Proc. Appl. Math. Mech. 17 (2017), 859–860.
- B. M. Brown and M. S. P. Eastham, Analytic continuation and resonance-free regions for Sturm-Liouville potentials with power decay, J. Comput. Appl. Math. 148 (2002), no. 1, 49–63. On the occasion of the 65th birthday of Professor Michael Eastham. MR 1946186, DOI 10.1016/S0377-0427(02)00572-1
- Jiangang Qi and Shaozhu Chen, A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems, J. Spectr. Theory 4 (2014), no. 1, 53–63. MR 3181385, DOI 10.4171/JST/61
- Jiangang Qi, Bing Xie, and Shaozhu Chen, The upper and lower bounds on non-real eigenvalues of indefinite Sturm-Liouville problems, Proc. Amer. Math. Soc. 144 (2016), no. 2, 547–559. MR 3430833, DOI 10.1090/proc/12854
- Branko Ćurgus and Heinz Langer, A Kreĭn space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differential Equations 79 (1989), no. 1, 31–61. MR 997608, DOI 10.1016/0022-0396(89)90112-5
- E. Brian Davies, Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, vol. 106, Cambridge University Press, Cambridge, 2007. MR 2359869, DOI 10.1017/CBO9780511618864
- E. B. Davies and Jiban Nath, Schrödinger operators with slowly decaying potentials, J. Comput. Appl. Math. 148 (2002), no. 1, 1–28. On the occasion of the 65th birthday of Professor Michael Eastham. MR 1946184, DOI 10.1016/S0377-0427(02)00570-8
- Bing Xie, Huaqing Sun, and Xinwei Guo, Non-real eigenvalues of symmetric Sturm-Liouville problems with indefinite weight functions, Electron. J. Qual. Theory Differ. Equ. , posted on (2017), Paper No. 18, 14. MR 3633248, DOI 10.14232/ejqtde.2017.1.18
- Otto Haupt, Über eine Methode zum Beweise von Oszillationstheoremen, Math. Ann. 76 (1914), no. 1, 67–104 (German). MR 1511814, DOI 10.1007/BF01458673
- Illya Karabash and Carsten Trunk, Spectral properties of singular Sturm-Liouville operators with indefinite weight $\textrm {sgn}\, x$, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 3, 483–503. MR 2506783, DOI 10.1017/S0308210507000686
- Mervis Kikonko and Angelo B. Mingarelli, Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm-Liouville problem, J. Differential Equations 261 (2016), no. 11, 6221–6232. MR 3552563, DOI 10.1016/j.jde.2016.08.035
- Angelo B. Mingarelli, A survey of the regular weighted Sturm-Liouville problem—the nondefinite case, International workshop on applied differential equations (Beijing, 1985) World Sci. Publishing, Singapore, 1986, pp. 109–137. MR 901329
- Michael Levitin and Marcello Seri, Accumulation of complex eigenvalues of an indefinite Sturm-Liouville operator with a shifted Coulomb potential, Oper. Matrices 10 (2016), no. 1, 223–245. MR 3460063, DOI 10.7153/oam-10-14
- M. A. Naimark, Linear differential operators. Part I: Elementary theory of linear differential operators, Frederick Ungar Publishing Co., New York, 1967. MR 0216050
- Bing Xie and Jiangang Qi, Non-real eigenvalues of indefinite Sturm-Liouville problems, J. Differential Equations 255 (2013), no. 8, 2291–2301. MR 3082462, DOI 10.1016/j.jde.2013.06.013
- R. G. D. Richardson, Contributions to the Study of Oscillation Properties of the Solutions of Linear Differential Equations of the Second Order, Amer. J. Math. 40 (1918), no. 3, 283–316. MR 1506360, DOI 10.2307/2370485
- Gerald Teschl, Mathematical methods in quantum mechanics, Graduate Studies in Mathematics, vol. 99, American Mathematical Society, Providence, RI, 2009. With applications to Schrödinger operators. MR 2499016, DOI 10.1090/gsm/099
- Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320, DOI 10.1007/BFb0077960
- Joachim Weidmann, Lineare Operatoren in Hilberträumen. Teil II, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 2003 (German). Anwendungen. [Applications]. MR 2382320, DOI 10.1007/978-3-322-80095-4
- Anton Zettl, Sturm-Liouville theory, Mathematical Surveys and Monographs, vol. 121, American Mathematical Society, Providence, RI, 2005. MR 2170950, DOI 10.1090/surv/121
Bibliographic Information
- Jussi Behrndt
- Affiliation: Institut für Angewandte Mathematik, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria
- MR Author ID: 760074
- Email: behrndt@tugraz.at
- Philipp Schmitz
- Affiliation: Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany
- Email: philipp.schmitz@tu-ilmenau.de
- Carsten Trunk
- Affiliation: Institut für Mathematik, Technische Universität Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany – and – Instituto Argentino de Matemática “Alberto P. Calderón” (CONICET), Saavedra 15, (1083) Buenos Aires, Argentina
- MR Author ID: 700912
- Email: carsten.trunk@tu-ilmenau.de
- Received by editor(s): September 14, 2017
- Received by editor(s) in revised form: December 7, 2017
- Published electronically: April 18, 2018
- Communicated by: Wenxian Shen
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3935-3942
- MSC (2010): Primary 34L15, 47E05
- DOI: https://doi.org/10.1090/proc/14059
- MathSciNet review: 3825846