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Abstract. In this article, we derive off-diagonal estimates of the Bergman
kernel associated to tensor-powers of the cotangent line bundle defined over a
hyperbolic Riemann surface of finite volume.

1. Introduction

In this article, we derive off-diagonal quantitative estimates of the Bergman
kernel associated to tensor-powers of the cotangent bundle defined on a hyperbolic
Riemann surface of finite volume.

Estimates of Bergman kernels associated to high tensor-powers of holomorphic
line bundles defined on complex manifolds has been an object of study for a long
time. Tian, Zelditch, Demailly, Marinsecu, Ma et al. have done seminal work in
this field.

In this article, we derive estimates of the Bergman kernel associated to tensor-
powers of the cotangent bundle defined over a hyperbolic Riemann surface of finite
volume, away from the diagonal, both in the compact and in the noncompact
setting. Our estimates depend only on the injectivity radius of the hyperbolic
Riemann surface, and tensor-powers of the cotangent bundle.

Results from literature. We now briefly discuss the history behind the problem,
before we state our main theorem. In [Chr91], Christ has derived an estimate of
the Bergman kernel associated to the trivial line bundle defined over C, away from
the diagonal. In [Del98], Delin has derived a similar estimate for the C1-seminorm
of the Bergman kernel associated to the trivial line bundle defined over C

n, away
from the diagonal.

Let X be a compact Kähler manifold, and let L be a positive line bundle defined
over X. Then, for any k ∈ N, an off-diagonal estimate of the Bergman kernel
associated to L⊗k, is derived by Christ in [Chr13].

Let X be a compact sympletic manifold of real dimension-2n. Then, in [DLM06],
Dai, Liu, and Ma have derived off-diagonal asymptotic expansion for the Bergman
kernel of the spinc Dirac operator associated to high tensor-powers of a positive
line bundle. In particular, they derived estimates of the Bergman kernel along the
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diagonal. They also extended their estimates to compact sympletic orbifolds in the
same article.

Let X be a complete, sympletic manifold of real dimension-2n with bounded
geometry, and let L and F be a positive line bundle and a vector bundle defined
over X, respectively. In [MM15], for n, k ∈ N, Ma and Marinescu have derived
estimates of Cn-norms of the Bergman kernel associated to the vector bundle L⊗k⊗
F , away from the diagonal. At any z, w ∈ X, the estimates derived in [MM15] are
very general, and unlike the estimates derived in [Chr13], they do not impose any
restriction on the geodesic distance between the points z and w.

When X is a compact hyperbolic Riemann surface, in [CF16], Chen and Fu have
derived an estimate of the Bergman kernel associated to the cotangent bundle along
the diagonal. In [ABMS16], the authors have derived an estimate of the Bergman
kernel associated to tensor-powers of the line bundle of holomorphic cusp forms
of weight-2, along the diagonal. As the line bundle of holomorphic cusp forms of
weight-2 is isometric to the cotangent bundle, the estimate computed in [ABMS16]
can also be viewed as an estimate of the Bergman kernel associated to tensor-powers
of the cotangent bundle. The estimates derived in [CF16] and [ABMS16] are stable
in covers of compact hyperbolic Riemann surfaces.

When X is a noncompact hyperbolic Riemann surface of finite volume, an es-
timate of the Bergman kernel associated to tensor-powers of the line bundle of
holomorphic cusp forms of weight-2 is obtained in [FJK16], which is also stable in
covers.

Let X be a noncompact Riemann surface, whose natural metric has singularities
of Poincaré type at a finite set. Let L be a holomorphic line bundle whose curvature
form is a scalar multiple of the hyperbolic metric outside a compact subset of X. In
[AMM16a], Auvray, Ma, and Marinescu have derived optimal estimates of Cn-norms
of the Bergman kernel associated of tensor-powers of L, along the diagonal. Their
estimates in the setting of hyperbolic Riemann surfaces of finite volume coincide
and are more explicit than the ones derived in [FJK16]. The estimates derived in
[AMM16a] easily extend to the setting of Riemann orbifolds.

Furthermore, in [AMM16b], Auvray, Ma, and Marinescu have derived optimal
estimates of Cn-norms of the Bergman kernel associated to tensor-powers of L,
both along the diagonal, and away from the diagonal. The estimates derived in
[AMM16b] easily extend to the setting of Riemann orbifolds.

The estimates derived in [AMM16a] and [AMM16b] also remain stable in covers
of Riemann surfaces.

Statement of the main theorem. We now state the main theorem of the article.

Main theorem. Let X be a hyperbolic Riemann surface of finite volume, and
for any k ∈ N, let Bk

ΩX
denote the Bergman kernel associated to Ω⊗k

X , where ΩX

denotes the cotangent bundle of X. Let ‖ · ‖hyp denote the Hermitian metric on

Ω⊗k
X . For any k ≥ 3, and δ ≥ rX , let z = x + iy, w = u + iv ∈ X (identifying

X with its universal cover H) with dhyp(z, w) ≥ δ, where dhyp(z, w) denotes the
geodesic distance between the points z and w on X. When X is compact, we have
the following estimate:

(1) ‖Bk
ΩX

‖hyp(z, w) ≤ CX ;
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when X is noncompact, without loss of generality, we assume that i∞ is the only
puncture of X (identifying X with its universal cover H). Then, we have the fol-
lowing estimate:

‖Bk
ΩX

‖hyp(z, w) ≤ CX +
2k − 1

4π cosh2k(δ/2)
+

(4yv)k

(y + v)2k−1
·
(2k − 1)Γ

(
k − 1/2

)
2
√
πΓ(k)

,(2)

where

CX :=
(2k − 1) sinh(δ + rX )

4π cosh2k
(
(δ − rX )/2

)
sinh(rX )

+
(2k − 1) sinh(δ)

2π cosh2k(δ/2)
· cosh(rX /4)

sinh(rX /4)

+
2k − 1

2π(2k − 2) cosh2k−2(δ/2)

(
2 +

1

sinh2(rX /4)

)
(3)

+
2k − 1

π(2k − 4) cosh2k−4(δ/2)
· 1

sinh2(rX /4)
.

Here rX denotes the injectivity radius of X, which is as defined in equations (4)
and (5), for compact and noncompact hyperbolic Riemann surfaces, respectively.

Remark 1.1. Although, we assume that i∞ is the only puncture of X, our estimate
(2) easily extends to the case of multiple punctures.

Similar to the estimates of the Bergman kernel derived in [CF16], [ABMS16],
[FJK16], [AMM16a], and [AMM16b], it is easy to show that our estimates (1) and
(2) are stable in covers of Riemann surfaces, by following similar arguments as in
[ABMS16] (see Remark 3.3).

It is also not difficult to extend estimates (1) and (2) to hyperbolic Riemann
orbisurfaces of finite volume. Furthermore, in certain cases, our estimate (1) is
slightly stronger than the more general estimate derived in [MM15] (see Remark
3.1).

For k sufficiently large, and for a fixed w ∈ X, as z ∈ X approaches a puncture of
X, estimate (2) gives a slightly stronger estimate than the one derived in [AMM16b]
(see Remark 3.2). However, unlike our estimates, the estimates derived in [MM15],
[AMM16a], and [AMM16b] have no restriction on the geodesic distance between z
and w, and are also uniform in z and w.

Although we impose the condition that k ≥ 3, one can easily derive similar
estimates for the cases k = 1 and k = 2, by employing similar techniques.

2. Background material

In this section, we set up the notation and recall the background details needed
for the proofs of the main theorem.

Let X denote a hyperbolic Riemann surface of finite volume. By uniformization
theorem from complex analysis, X can be realized as the quotient space Γ \H,
where Γ ⊂ PSL2(R) is a cofinite Fuchsian subgroup, and H is the complex upper
half-plane. Locally, we identify X with its universal cover H, and hence, for brevity
of notation, we denote the points on X by the same letter as the points on H. Let
XΓ denote a fundamental domain for Γ.

When X is a noncompact hyperbolic Riemann surface of finite volume, without
loss of generality, we assume that the point i∞ is the only puncture of X, which
we denote by ∞.
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Let μhyp denote the natural hyperbolic metric on H, which is of constant neg-
ative curvature −1. The natural metric on X is induced by the hyperbolic metric
μhyp, which we again denote by μhyp. For any z, w ∈ H, let dhyp(z, w) denote
the hyperbolic distance on H, which is the natural distance function on H, coming
from the hyperbolic metric μhyp. Locally, for any z, w ∈ X, the geodesic distance
between the points z and w on X is given by dhyp(z, w).

The injectivity radius of a compact hyperbolic Riemann surface X is given by
the following formula:

rX := inf
{
dhyp(z, γz)| z ∈ H, γ ∈ Γ\{Id}

}
;(4)

when X is a noncompact hyperbolic Riemann surface of finite volume, we define
the injectivity radius of X by the following formula:

rX := inf
{
dhyp(z, γz)| z ∈ H, γ ∈ Γ\Γ∞},(5)

where Γ∞ is the stabilizer of the cusp ∞.
Let ΩX denote the cotangent bundle of holomorphic differential 1-forms on X.

The global sections of this line bundle are of the form f(z)dz, where f(z) is a
holomorphic modular form of weight-2 with respect to Γ. For any k ∈ N, let
ω ∈ H0(X,Ω⊗k

X ) be a global differential k-form. Then, locally, at any z ∈ X,
ω(z) = f(z)dz⊗k, where f is a weight-2k modular form with respect to Γ.

Furthermore, there exists a point-wise metric on H0(X,Ω⊗k
X ), which is denoted

by ‖ · ‖hyp, and locally, at the point z = x + iy ∈ H, it is given by the following
formula:

‖ω‖hyp(z) = yk|f(z)|.
Let

H0
(2)

(
X,Ω⊗k

X

)
:=

{
ω ∈ H0

(
X,Ω⊗k

X

)∣∣∣∣
∫
XΓ

‖ω‖2hyp(z)μhyp(z)

=

∫
XΓ

y2k|f(z)|2 μhyp(z) < ∞
}

denote the space of L2-global holomorphic sections of ΩX .
For any ω(z) = f(z)dz⊗k, η(z) = g(z)dz⊗k ∈ H0

(2)(X,Ω⊗k
X ), the L2-metric in-

duced by ‖·‖hyp onH0
(2)(X,Ω⊗k

X ) is denoted by 〈·, ·〉hyp, and is given by the following

formula:

〈ω, η〉hyp =

∫
XΓ

y2kf(z)g(z)μhyp(z).

The space H0
(2)(X,ΩX ) can be identified with S2(Γ), the complex vector-space of

weight-2 cusp forms, and for any k ∈ N, we can identify H0
(2)(X,Ω⊗k

X ) with S2k (Γ)

as complex vector-spaces.
Let {ω1, . . . , ωjk } denote a set of orthonormal basis of H0

(2)(X,Ω⊗k
X ) with respect

to the L2-metric 〈·, ·〉hyp. Then, locally, for any z, w ∈ X, the Bergman kernel

Bk
ΩX

(z, w) associated to the line bundle Ω⊗k
X is given by the following formula:

Bk
ΩX

(z, w) =

jk∑
i=1

ωi(z)ωi(w).
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It is easy to show that the Bergman kernel is independent of the choice of orthonor-
mal bases for H0

(2)(X,Ω⊗k
X ).

We now describe the Bergman kernel associated to S2k (Γ), the vector-space of
weight-2k cusp forms. For f ∈ S2k (Γ), we have the following point-wise metric at
z = x+ iy ∈ H:

‖f‖pet(z) := yk|f(z)|,

which induces an L2-metric on S2k (Γ), which is also known as the Petersson inner-
product. For any f, g ∈ S2k (Γ), the Petersson inner-product is given by the follow-
ing formula:

〈f, g〉pet :=
∫
XΓ

y2kf(z)g(z)μhyp(z).

Let {f1, . . . , fjk} denote an orthonormal basis for S2k (Γ) with respect to the Peters-
son inner-product. Then, for any z = x+ iy, w = u+ iv ∈ H, the Bergman kernel
associated to the complex vector-space S2k (Γ) is given by the following formula:

B2k
X (z, w) :=

jk∑
i=1

fi(z)fi(w).

The Bergman kernel B2k
X (z, w) is a holomorphic cusp form of weight-2k in z, and

an anti-holomorphic cusp form of weight-2k in w. It can also be defined by the
following infinite series (see Proposition 1.3 on p. 77 in [Fre90]):

B2k
X (z, w) =

(2k − 1)(2i)2k

4π

∑
γ∈Γ

1

(γz − w)2k
· 1

j(γ, z)2k
,

where for any γ =

(
a b
c d

)
∈ Γ, j(γ, z) = cz + d.

Remark 2.1. The expression for the Bergman kernel B2k
X (z, w) given in [Fre90] is

missing a factor of (2i)2k, which is taken into account in the above formula.

As H0
(2)(X,Ω⊗k

X ) ∼= S2k (Γ) as complex vector-spaces, locally, we have the follow-

ing relation of Bergman kernels:

Bk
ΩX

(z, w) = B2k
X (z, w)

(
dz⊗k ∧ dw⊗k

)
,

and the point-wise metric on Ω⊗k
X induces the following point-wise metric on

Bk
ΩX

(z, w):

‖Bk
ΩX

‖hyp(z, w) =
(2k − 1)(4yv)k

4π
·
∣∣∣∣∣
∑
γ∈Γ

1

(γz − w)2k
· 1

j(γ, z)2k

∣∣∣∣∣.(6)

Recall that for any z = x+ iy, w = u+ iv ∈ H, we have the following formula:

cosh2
(
dhyp(z, w)/2

)
=

|z − w|2
4yv

.
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Using the above relation and equation (6), we derive the following inequality:

‖Bk
ΩX

‖hyp(z, w) ≤
2k − 1

4π

∑
γ∈Γ

∣∣∣∣∣ (4yv)k

(γz − w)2kj(γ, z)2k

∣∣∣∣∣
=

2k − 1

4π

∑
γ∈Γ

(
4 Im(γz)v

)k∣∣γz − w
∣∣2k =

2k − 1

4π

∑
γ∈Γ

1

cosh2k
(
dhyp(γz, w)/2

) .(7)

For a hyperbolic Riemann surface of finite volume, we now state an inequality from
[JR95], which is adapted to our setting. The inequality gives us an estimate for
the number of elements in Γ or Γ \Γ∞, depending on whether X is compact or
noncompact, respectively.

For any positive, smooth, real-valued, and decreasing function f defined on R≥0,
and for any δ > rX /2, and z, w ∈ H, we have the following inequality:∫ ∞

0

f(ρ)dNΓ(z, w; ρ) ≤
∫ δ

0

f(ρ)dNΓ(z, w; ρ) + f(δ)
2 cosh(rX /4) sinh(δ)

sinh(rX /4)

+
1

2 sinh2(rX /4)

∫ ∞

δ

f(ρ) sinh(ρ+ rX /2)dρ,

(8)

where NΓ(z, w; ρ) := card {γ| γ ∈ Γ \Γ∞, dhyp(γz, w) ≤ ρ}.

From arguments similar to the ones used in deriving inequality (8) in [JR95], for
any δ > 0, and z, w ∈ H, we have the following inequality:

NΓ(z, w; δ) ≤
sinh(δ + rX )

sinh(rX )
.(9)

The above inequality has already been used in the above form in [JK06]. Notice
that our definition for injectivity radius is two times the injectivity radius in [JR95],
and both our inequalities, (8) and (9) take this fact into account.

Here it is understood that, when X is compact, Γ∞ = ∅. So inequalities (8) and
(9) also hold true in the compact setting.

3. Proof of the main theorem

Proof of estimate (1). We state that X = Γ \H is a compact hyperbolic Riemann
surface with injectivity radius rX , and δ ≥ rX . Furthermore, Bk

ΩX
(z, w) is the

Bergman kernel for the line bundle Ω⊗k
X . Combining inequalities (7) and (8), for

any k ≥ 3, and z, w ∈ X with dhyp(z, w) ≥ δ, we find

‖Bk
ΩX

‖hyp(z, w) ≤
2k − 1

4π

∑
γ∈Γ

1

cosh2k
(
dhyp(γz, w)/2

)
=

2k − 1

4π

∫ δ

0

dNΓ(z, w; ρ)

cosh2k
(
dhyp(γz, w)/2

) +
(2k − 1) sinh(δ)

2π cosh2k(δ/2)
· cosh(rX /4)

sinh(rX /4)

+
2k − 1

8π sinh2(rX /4)

∫ ∞

δ

sinh(ρ+ rX /2)dρ

cosh2k(ρ/2)
.(10)

We now estimate the first term on the right-hand side of the equality in the
above inequality. For γ ∈ Γ, and z, w ∈ H with dhyp(z, w) ≥ δ, using triangular
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inequality, we derive

dhyp(z, γz) + dhyp(γz, w) ≥ dhyp(z, w) ≥ δ.

Using which, we compute

inf
γ∈Γ \{Id}

(
dhyp(z, γz) + dhyp(γz, w)

)
= rX + inf

γ∈Γ \{Id}
dhyp(γz, w) ≥ δ,

which implies that for any γ ∈ Γ, we have

dhyp(γz, w) ≥ δ − rX ≥ 0 =⇒ 1

cosh2k
(
(δ − rX )/2

) ≥ 1

cosh2k
(
dhyp(γz, w)/2

) .
So, combining the above inequality with inequality (9), we arrive at the following
inequality:

∫ δ

0

dNΓ(z, w; ρ)

cosh2k
(
dhyp(γz, w)/2

)
≤

(
NΓ(z, w; δ)

)
· sup
γ∈SΓ(z,w;ρ)

(
1

cosh2k
(
dhyp(γz, w)/2

))

≤ sinh(δ + rX )

cosh2k
(
(δ − rX )/2

)
sinh(rX )

,

which implies that we have the following estimate for the first term on the right-
hand side of the equality in (10):

2k − 1

4π

∫ δ

0

dNΓ(z, w; ρ)

cosh2k
(
dhyp(γz, w)/2

) ≤ (2k − 1) sinh(δ + rX )

4π cosh2k
(
(δ − rX )/2

)
sinh(rX )

.(11)

We now estimate the third term on the right-hand side of the equality in (10).
For any ρ ≥ δ, observe that

sinh(ρ+ rX /2) = sinh(ρ) cosh(rX /2) + cosh(ρ) sinh(rX /2)

≤ sinh(ρ) cosh(rX /2) + cosh(ρ) sinh(ρ)

= 2 sinh(ρ/2) cosh(ρ/2)
(
cosh(rX /2) + cosh(ρ)

)
≤ 2 sinh(ρ/2) cosh(ρ/2)

(
cosh(rX /2) + 2 cosh2(ρ/2)

)
.

Using which, we derive that

∫ ∞

δ

sinh(ρ+ rX /2)dρ

cosh2k(ρ/2)
≤ cosh(rX /2)

∫ ∞

δ

2 sinh(ρ/2)dρ

cosh2k−1(ρ/2)
+

∫ ∞

δ

4 sinh(ρ/2)dρ

cosh2k−3(ρ/2)

=
4 cosh(rX /2)

(2k − 2) cosh2k−2(δ/2)
+

8

(2k − 4) cosh2k−4(δ/2)
.
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Hence, we have the following estimate for the third term on the right-hand side
of the equality in (10):

(12)

2k − 1

8π sinh2(rX /4)

∫ ∞

δ

sinh(ρ+ rX /2)dρ

cosh2k(ρ/2)

≤ (2k − 1)

2π(2k − 2) cosh2k−2(δ/2)
· cosh(rX /2)

sinh2(rX /4)

+
2k − 1

π(2k − 4) cosh2k−4(δ/2)
· 1

sinh2(rX /4)

=
(2k − 1)

2π(2k − 2) cosh2k−2(δ/2)

(
2 +

1

sinh2(rX /4)

)

+
2k − 1

π(2k − 4) cosh2k−4(δ/2)
· 1

sinh2(rX /4)
.

The proof of estimate (1) follows from combining estimates (10), (11), and (12).
�

Proof of estimate (2). Now, let X be a noncompact hyperbolic Riemann surface of
finite volume. For any k ≥ 3, and z, w ∈ X with dhyp(z, w) ≥ δ, from inequality
(7), we have

(13)

‖Bk
ΩX

‖hyp(z, w) ≤
2k − 1

4π

∑
γ∈Γ \Γ∞

1

cosh2k(dhyp(γz, w)/2)

+
2k − 1

4π

∑
γ∈Γ∞

1

cosh2k
(
dhyp(γz, w)/2

) .

From similar arguments as in the proof of estimate (1), we have the following
estimate for the first term on the right-hand side of the above inequality:

2k − 1

4π

∑
γ∈Γ \Γ∞

1

cosh2k(dhyp(γz, w)/2)
≤ CX ,(14)

where CX is as in equation (3).
We now estimate the second term on the right-hand side of inequality (13).

Without loss of generality, we assume that

Γ∞ :=

{ (
1 n
0 1

) ∣∣n ∈ Z

}
.
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This implies that for z = x+ iy, w = u+ iv ∈ H, we have

(15)

∑
γ∈Γ∞

1

cosh2k
(
dhyp(γz, w)/2

)
=

1

cosh2k
(
dhyp(z, w)/2

) +
∑

n∈Z\{0}

(4yv)k(
(x+ n− u)2 + (y + v)2

)k
≤ 1

cosh2k(δ/2)
+

∫ ∞

0

(4yv)k

(y + v)2k
· dα((

α+x−u
y+v

)2

+ 1

)k

+

∫ ∞

0

(4yv)k

(y + v)2k
· dα((

α+u−x
y+v

)2

+ 1

)k
.

Making the substitution (α+x−u)/(y+v) = θ, and using formula 3.251.2 from
[GR15], we arrive at the following estimate for the second term on the right-hand
side of inequality (15):∫ ∞

0

(4yv)k

(y + v)2k
· dα((

α+x−u
y+v

)2

+ 1

)k
≤ (4yv)k

(y + v)2k−1
·
∫ ∞

−∞

dθ(
θ2 + 1

)k

=
(4yv)k

(y + v)2k−1
·
√
π Γ

(
k − 1/2

)
Γ(k)

.(16)

Following similar arguments, we have the following estimate for the third term
on the right-hand side of inequality (15):∫ ∞

0

(4yv)k

(y + v)2k
· dα((

α+u−x
y+v

)2

+ 1

)k
≤ (4yv)k

(y + v)2k−1
·
√
π Γ

(
k − 1/2

)
Γ(k)

.(17)

Combining inequalities (15), (16), and (17), we arrive at the following estimate
for the second term on the right-hand side of inequality (13):

2k − 1

4π

∑
γ∈Γ∞

1

cosh2k
(
dhyp(γz, w)/2

)(18)

≤ 2k − 1

4π cosh2k(δ/2)
+

(4yv)k

(y + v)2k−1
·
(2k − 1)Γ

(
k − 1/2

)
2
√
πΓ(k)

.

Combining estimates (13), (14), and (18) completes the proof of estimate (2), and
also the proof of the main theorem. �

Remark 3.1. When X is compact, for any k ≥ 3, δ ≥ rX , and z, w ∈ X with
dhyp(z, w) ≥ δ, a careful analysis of each of the terms comprising the constant CX
given in equation (3), leads us to the conclusion that

CX = OX

(
k

cosh2k−4
(
(δ − rX )/2

))
.
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Using the fact that cosh(u) ≥ eu/2, for all u ≥ 0, we observe that

CX = OX

(
k · 22k−4

e(k−2)(δ−rX )

)
= OX

(
ke−(k−2)

(
δ−rX −2 ln 2

))
.

For k sufficiently large, and for z, w ∈ X with dhyp(z, w) > (rX +2 ln 2), estimate (1)
is a slightly stronger estimate than the more general estimates derived in [MM15]
and [Chr13].

Remark 3.2. WhenX is noncompact, for any k ≥ 3, and z, w ∈ X with dhyp(z, w) ≥
rX , substituting δ = dhyp(z, w) in estimate (14), and from Remark 3.1, we have

2k − 1

4π

∑
γ∈Γ\Γ∞

1

cosh2k
(
dhyp(γz, w)/2

)
≤ CX = OX

(
k

cosh2k−4
(
(dhyp(z, w)− rX )/2

))
.

Furthermore, for any z = x+ iy, w = u+ iv ∈ H, we find

1

cosh2k−4
(
dhyp(z, w)/2

)(19)

=

(
4yv

(x− u)2 + (y + v)2

)k−2

≤
(

(4yv)

(y + v)2

)k−2

≤
(
4v

y

)k−2

.

Hence, for any k ≥ 3, and for a fixed w ∈ H, as z ∈ H approaches i∞, we can
conclude that

2k − 1

4π

∑
γ∈Γ\Γ∞

1

cosh2k
(
dhyp(γz, w)/2

)
= OX

(
ke(k rX )/2

cosh2k−4
(
dhyp(z, w)/2

))
= OX,w

(
ke(k rX )/2

yk−2

)
.

The coordinate function in the neighborhood of the puncture ∞ is given by
q(z) := e2πiz, which implies that in local coordinates, we have the following esti-
mate:

2k − 1

4π

∑
γ∈Γ\Γ∞

1

cosh2k
(
dhyp(γz, w)/2

) = OX,w

(
ke(k rX )/2∣∣ log |q(z)|∣∣k−2

)
.(20)

Similarly, for any k ≥ 3, and for a fixed w ∈ H, as z ∈ H approaches i∞,
substituting δ = dhyp(z, w) in estimate (18) and combining it with estimate (19),
we have

2k − 1

4π

∑
γ∈Γ∞

1

cosh2k
(
dhyp(γz, w)/2

)
≤ 2k − 1

4π

(
4v

y

)k

+
(4v)k

yk−1
·
(2k − 1) Γ

(
k − 1/2

)
2
√
π Γ(k)

.
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Furthermore, for any k > 0, from the asymptotics of the Gamma function, we
have the following estimate:

(2k − 1)Γ
(
k − 1/2

)
2
√
πΓ(k)

= O
(√

k
)

=⇒ 2k − 1

4π

∑
γ∈Γ∞

1

cosh2k
(
dhyp(γz, w)/2

) = Ow

(
k

yk−1

)
(21)

= Ow

(
k∣∣ log |q(z)|∣∣k−1

)
.

So, for any k ≥ 3, and a fixed w ∈ X, as z ∈ X approaches the puncture ∞,
combining estimates (20) and (21), we deduce that

‖Bk
ΩX

‖hyp(z, w) = OX,w

(
ke(k rX )/2∣∣ log |q(z)|∣∣k−2

)
.

For k sufficiently large, in the case of w being fixed, and z approaching the puncture,
the above estimate is a slightly stronger estimate than the one derived in Theorem
6.1 in [AMM16b]. However, the estimate derived in Theroem 6.1 in [AMM16b] is
a more general estimate, and has no restriction on the distance between the two
points z and w, and is also uniform in z and w.

Remark 3.3. Let X1 = Γ1 \H, X0 = Γ0 \H be two compact hyperbolic Riemann
surfaces. Let X1 be a finite cover of X0, which implies that Γ1 is a finite index
subgroup of Γ0. So, for any k ≥ 3, and z, w ∈ X1 with dhyp(z, w) ≥ δ, from
estimates (7) and (1), we find that

‖Bk
ΩX1

‖hyp(z, w) ≤
2k − 1

4π

∑
γ∈Γ1

1

cosh2k
(
dhyp(γz, w)/2

)
≤ 2k − 1

4π

∑
γ∈Γ0

1

cosh2k
(
dhyp(γz, w)/2

) ≤ CX0
.

This implies that our estimate (1) is stable in covers of compact hyperbolic
Riemann surfaces. Following the same argument, we can conclude that our estimate
(2) is also stable in covers of noncompact hyperbolic Riemann surfaces of finite
volume.
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