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UNIVERSALITY AT AN ENDPOINT FOR ORTHOGONAL

POLYNOMIALS WITH GERONIMUS-TYPE WEIGHTS

BRIAN SIMANEK

(Communicated by Mourad Ismail)

Abstract. We provide a new closed form expression for the Geronimus poly-
nomials on the unit circle and use it to obtain new results and formulas. Among
our results is a universality result at an endpoint of an arc for polynomials or-
thogonal with respect to a Geronimus-type weight on an arc of the unit circle.
The key tool is a formula of McLaughlin for the nth power of a 2× 2 matrix,
which we use to derive convenient formulas for Geronimus polynomials.

1. Introduction

Let μ be a probability measure whose support is an infinite and compact subset
of the unit circle ∂D in the complex plane. Let {Φn(z;μ)}∞n=0 be the sequence
of monic orthogonal polynomials for the measure μ and let {ϕn(z;μ)}∞n=0 be the
sequence of orthonormal polynomials. It is well known that corresponding to this
measure is a sequence of Verblunsky coefficients {αn}∞n=0 ∈ DN0 so that

Φn+1(z;μ) = zΦn(z;μ)− ᾱnΦ
∗
n(z;μ), n ∈ N0,(1)

where Φ∗
n(z;μ) := znΦn(1/z̄;μ). The formula (1) is often called the Szegő recursion

(see [26, Section 1.5]). The relationship between infinitely supported probability
measures on the unit circle and sequences of Verblunsky coefficients is a bijection
(see [26, Section 1.7]) and there is a substantial literature describing the relationship
between the sequence and the corresponding measure (see [26,27] and the references
therein).

Our focus in this work will be on the so-called Geronimus polynomials, which are
orthogonal with respect to the measure corresponding to the sequence of Verblun-
sky coefficients {α, α, α, . . .} for some α ∈ D. The measure of orthogonality in this
case is supported on an arc of the unit circle whose length depends on α and pos-
sibly a mass point outside this arc, whose weight depends on α. The Geronimus
polynomials have been studied before (see [3, 8–11, 21, 22]) and there is a known
closed form expression for them (see also [26, Section 1.6]). This formula was later
used by Lubinsky and Nguyen in [18] to obtain a universality result for certain
polynomial reproducing kernels at an interior point of the arc supporting the mea-
sure of orthogonality. Our goal will be to provide a new closed form expression for
the Geronimus polynomials, which will enable us to prove several new results and
formulas, including a universality result at the endpoint of the arc supporting the
measure of orthogonality.
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The key tool in our analysis comes from matrix theory. The Szegő recursion can
be written (

Φn+1(z;μ)
Φ∗

n+1(z;μ)

)
=

(
z −ᾱn

−αnz 1

)(
Φn(z;μ)
Φ∗

n(z;μ)

)
;

(see [26, Section 3.2]). The 2 × 2 matrix in this relation is called the nth transfer
matrix for μ. If the Verblunsky coefficients form a constant sequence, then one can
recover the polynomial Φn(z;μ) in a straightforward way by using the following
formula for the nth power of a 2× 2 matrix.

Theorem 1.1 (Mc Laughlin, [20]). Let A be a 2× 2 matrix given by

A =

(
a b
c d

)
.

If R denotes the trace of A and D denotes its determinant, then

An =

(
yn − dyn−1 byn−1

cyn−1 yn − ayn−1

)
,

where

yn =

�n
2 �∑

m=0

(
n−m

m

)
Rn−2m(−D)m.(2)

This simple result is all that we require to prove our new formula, which appears
as Theorem 3.1. Before we can state our results and formulas in Section 3, we
review some notation and terminology in the next section. Finally, in Section 4, we
state and prove our universality result.

2. Preliminaries

In this section we discuss some notation, formulas, and terminology that we will
use throughout Sections 3 and 4. Many of the topics we discuss here are part of a
rich theory that is too long to discuss in full detail. Therefore, we will focus only
on the specific formulas that we will need for our proofs.

2.1. Chebyshev polynomials. The formula that we will obtain for the Geron-
imus polynomials involves the Chebyshev polynomials of the second kind, which are
orthonormal with respect to the measure 2

π

√
1− x2dx on the interval [−1, 1]. We

denote this sequence of polynomials by {Un}∞n=0 and note that these polynomials
are given by the formula

(3) Un(x) =

�n
2 �∑

j=0

(−1)j
(
n− j

j

)
(2x)n−2j

(see [1, page 37]). We also recall from [1, page 37] that

(4) Un(x) =
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

2
√
x2 − 1

.

We will make one use of the Chebyshev polynomials of the first kind, which are
orthogonal with respect to the measure 1

π
√
1−x2

dx on the interval [−1, 1]. We will

denote this sequence of polynomials by {Tn}∞n=0 and define them by the formula

(5) Tn(x) = Un(x)− xUn−1(x)
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(see [1, page 37]).

2.2. Second kind polynomials. We have already mentioned that to every se-
quence of complex numbers {α0, α1, α2, . . .} ∈ DN0 there corresponds a unique
probability measure μ on the unit circle having infinite support. The sequence
{αn}∞n=0 generates the sequence of orthogonal polynomials {Φn(z;μ)}∞n=0 via the
Szegő recursion. One can similarly generate a sequence of monic polynomials from
the Szegő recursion using the sequence {−α0,−α1,−α2, . . .}, and the resulting poly-
nomials are what we call the second kind polynomials for the measure μ and we
denote them by {Ψn(z;μ)}∞n=0 as in [26, 27]. The polynomials {Ψn(z;μ)}∞n=0 are
also orthogonal with respect to a probability measure on the unit circle, which is
in the family of Aleksandrov measures for the measure μ. We will not make use of
this particular fact, so we refer the reader to [26, Section 1.3.9] for details.

2.3. Wall polynomials. Corresponding to every probability measure on the unit
circle is a Schur function f , which maps D to itself. When the support of μ is finite,
this map is a Blaschke product, but when the support is infinite, there is a canonical
pair of sequences of polynomials {An}∞n=0 and {Bn}∞n=0 such that An/Bn converges
to f uniformly on compact subsets of D as n → ∞ (see [26, Section 1.3.8]). These
polynomials are called theWall polynomials for the measure μ and the Pintér-Nevai
formulas (see [26, Theorem 3.2.10] or [23]) tell us that

An(z) =
Ψ∗

n+1(z;μ)− Φ∗
n+1(z;μ)

2z
,

Bn(z) =
Ψ∗

n+1(z;μ) + Φ∗
n+1(z;μ)

2
.

2.4. Paraorthogonal polynomials. Suppose μ is a probability measure on the
unit circle having {Φn(z;μ)}∞n=0 as its monic orthogonal polynomials. For each

β ∈ ∂D and each n ∈ N0, one defines the paraorthogonal polynomial Φ
(β)
n+1(z;μ) by

Φ
(β)
n+1(z;μ) := zΦn(z;μ)− β̄Φ∗

n(z;μ).

We also define

Ψ
(β)
n+1(z;μ) := zΨn(z;μ)− β̄Ψ∗

n(z;μ)

for each n ∈ N0. Paraorthogonal polynomials were introduced in [13] and have the
property that all of their zeros are simple and lie on the unit circle. Paraorthogonal
polynomials arising from Geronimus polynomials have been previously considered
in [4].

2.5. Regularity. If μ is a probability measure on the unit circle with orthonormal
polynomials {ϕn(z;μ)}∞n=0, let κn denote the leading coefficient of ϕn. Following
the terminology from [29], we will say that the measure μ is regular if

lim
n→∞

κ1/n
n =

1

cap(supp(μ))
,

where cap(K) is the logarithmic capacity of the compact set K. Regularity is a
complicated notion and we will not discuss the technical details here. We mention
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that a measure μ whose support is an arc Γ of the unit circle is regular if and only
if

(6) lim
n→∞

⎛
⎝ sup

deg(P )≤n
P �≡0

[‖P‖L∞(Γ)

‖P‖L2(μ)

]1/n⎞⎠ = 1

(see [29, Theorem 3.2.3(v)]). Regularity indicates that the measure μ has sufficient
density that a polynomial cannot have an exponentially small L2-norm without
having an exponentially small L∞-norm.

With these preliminaries in hand, we can now proceed to state and prove our
new results.

3. Geronimus polynomials

For any α ∈ D, let ρ =
√
1− |α|2, and let μα be the probability measure on

the unit circle whose Verblunsky coefficients satisfy αn = α for all n ∈ N0. This
measure is supported on the arc {eiθ : 2 arcsin(|α|) ≤ θ ≤ 2π − 2 arcsin(|α|)} and
possibly one point outside this arc (see [26, Section 1.6]). Our first result is a new
formula for the polynomials ϕn(z;μα) and ϕ∗

n(z;μα).

Theorem 3.1. For any α ∈ D and n ∈ N0, it holds that

ϕn(z;μα) = zn/2
(
Un

(
z + 1

2ρ
√
z

)
− 1 + ᾱ

ρ
√
z
Un−1

(
z + 1

2ρ
√
z

))
,

ϕ∗
n(z;μα) = zn/2

(
Un

(
z + 1

2ρ
√
z

)
−

√
z(1 + α)

ρ
Un−1

(
z + 1

2ρ
√
z

))
,

where U−1 = 0.

Proof. Since the Verblunsky coefficients for the Geronimus polynomials are all the
same, we have (

Φn(z;μα)
Φ∗

n(z;μα)

)
=

(
z −ᾱ

−αz 1

)n (
1
1

)
,

Therefore, Theorem 1.1 implies

Φn(z;μα) = yn − (1 + ᾱ)yn−1,(7)

Φ∗
n(z;μα) = yn − z(1 + α)yn−1,(8)

where for any choice of
√
z we have

yn(z) =

�n
2 �∑

m=0

(
n−m

m

)
(z + 1)n−2m(−ρ2z)m = ρnzn/2Un

(
z + 1

2ρ
√
z

)
.

If we plug this into (7) and (8) and note that the leading coefficient of ϕn is ρ−n

(see [26, Equation 1.5.22]), we get the desired formulas. �
Let us explore some elementary consequences of Theorem 3.1. First notice that

we can find the generating function for the polynomials {ϕn(z;μα)}∞n=0.

Corollary 3.2. The polynomials {ϕn(z;μα)}∞n=0 satisfy
∞∑

n=0

ϕn(z;μα)t
n =

ρ− t− tᾱ

ρ− t(z + 1) + ρzt2

whenever this series converges.
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Remark. For a related result, see [3, Section 2].

Proof. This is an immediate consequence of Theorem 3.1 and the fact that
∞∑

n=0

Un(x)t
n =

1

1− 2xt+ t2

whenever this series converges (see [12, Equation 4.5.23]). �

As a second application, we can use Theorem 3.1 to find convenient formulas for
the Wall polynomials for the measure μα.

Corollary 3.3. For all n ∈ N, the Wall polynomials An and Bn for the measure
μα are given by

An(z) = αρnzn/2Un

(
z + 1

2ρ
√
z

)
,

Bn(z) = ρn+1z(n+1)/2

[
Un+1

(
z + 1

2ρ
√
z

)
−

√
z

ρ
Un

(
z + 1

2ρ
√
z

)]
.

Proof. This is an immediate consequence of Theorem 3.1 and the Pintér-Nevai
formulas. �

As an additional application, we have the following relation for the first and
second kind paraorthogonal polynomials.

Corollary 3.4. For every α ∈ D and every n ∈ N it holds that

Φ(1)
n (1;μα) + Ψ(1)

n (1;μα) = 0.

We can also use Theorem 3.1 to provide new proofs of some existing results. For
instance, we can apply Corollary 3.3 and send n → ∞ to find the Schur function
for the measure μα. Indeed, by [25, Theorem 1], we know that

(9) lim
n→∞

Un+1(x)

Un(x)
= x+

√
x2 − 1, x 
∈ [−1, 1].

If we apply Corollary 3.3 and (9) with x = z+1
2ρ

√
z
we conclude

lim
n→∞

An(z)

Bn(z)
=

2α

1− z +
√
(z + 1)2 − 4ρ2z

, |z| < 1,

which agrees with the formula given for f in [26, Section 1.6]. We can also use
Theorem 3.1 to deduce the ratio asymptotic behavior of the orthonormal Geronimus
polynomials. If we apply the formula from Theorem 3.1 and (9) with x = z+1

2ρ
√
z
, we

see that

lim
n→∞

ϕn+1(z;μα)

ϕn(z;μα)
=

z + 1 +
√
(z + 1)2 − 4ρ2z

2ρ
, z 
∈ supp(μα).

This result is not new and follows from the stronger results in [11, Theorem 1], but
Theorem 3.1 provides us with an easy proof.

Theorem 3.1 also provides a new proof of the following fact, which appears in
[7, Equation 5]. To state it, we recall the polynomials {Tn}n∈N from Section 2.1.

Corollary 3.5. The pair (X,Y ) = (Tn(z), Un−1(z)) solves the Pell equation

X2 − (z2 − 1)Y 2 = 1.
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Proof. We recall [26, Proposition 3.2.2], which tells us that for any measure μ with
Verblunsky coefficients {αj}∞j=0 it holds that

Ψ∗
n(z;μ)Φn(z;μ) + Φ∗

n(z;μ)Ψn(z;μ) = 2zn
n−1∏
j=0

(1− |αj |2).

Applying this formula with μ = μα, we find

Un

(
z + 1

2ρ
√
z

)2

+ Un−1

(
z + 1

2ρ
√
z

)2

− z + 1

ρ
√
z
Un

(
z + 1

2ρ
√
z

)
Un−1

(
z + 1

2ρ
√
z

)
= 1.

Therefore, by invoking (5) we find that for any w ∈ C it holds that

Tn(w)
2 + Un−1(w)

2 = (Un(w)− wUn−1(w))
2 + Un−1(w)

2 = 1 + w2Un−1(w)
2

as desired. �

One can also use Theorem 3.1 to prove more substantial new results that require
more detailed calculation and analysis. The next section is devoted to just such
a result, namely, a universality result at the endpoint of the arc supporting the
measure of orthogonality.

4. Universality

Let μ be a probability measure with infinite support on the unit circle. The
degree n polynomial reproducing kernel Kn(z, w;μ) is given by

Kn(z, w;μ) :=

n∑
m=0

ϕm(z;μ)ϕm(w;μ)

and is the reproducing kernel for the space of polynomials of degree at most n in
L2(μ). One is often interested in calculating the following limit (if it exists):

lim
n→∞

Kn(z0 + σ1(n), z0 + σ2(n);μ)

Kn(z0, z0;μ)
,(10)

where σj(n) → 0 as n → ∞ in a specific way for j = 1, 2. If this limit exists and
is the same for a large class of measures μ, then we call the corresponding result
a universality result. Some universality results when the point z0 is the endpoint
of an interval supporting the measure of orthogonality can be found in [5, 15–17],
but all of these results assume that the measure is supported on a compact subset
of the real line. Our main result in this section is Theorem 4.1, which considers
measures supported on an arc of the unit circle. Before we can state it, we need to
define some notation. If Js denotes the Bessel function of the first kind of order s,
then we set

J
∗
1/2(a, b) :=

⎧⎨
⎩

J1/2(
√
a)

√
bJ′

1/2(
√
b)−J1/2(

√
b)
√
aJ′

1/2(
√
a)

2a1/4b1/4(a−b)
, a 
= b,

1
4
√
a

(
J2
1/2(

√
a)− J3/2(

√
a)J−1/2(

√
a)
)

a = b,

as in [5, 16, 17]. As noted in [16], the function J∗1/2 is entire. Now we can state our

main result about universality after recalling the notion of regularity from Section
2.5. For the remainder of this section, we identify the unit circle with the interval
[0, 2π).
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Theorem 4.1. Fix α ∈ (−1, 0) and let μ be a probability measure on the arc
{eiθ : 2 arcsin(|α|) ≤ θ ≤ 2π − 2 arcsin(|α|)} of the form h(θ)w(θ) dθ2π + dμ̃ where

supp(μ̃) ⊆ [2 arcsin(|α|) + ε̃, 2π − 2 arcsin(|α|)]
for some ε̃ > 0 and

w(θ) =

{√
1−α2−cos2(θ/2)

(1+α) sin(θ/2) , 2 arcsin(|α|) < θ < 2π − 2 arcsin(|α|),
0, o.w.,

and h(θ) is continuous at 2 arcsin(|α|) and h(2 arcsin(|α|)) > 0. Assume also that
μ is regular. Then uniformly for a, b in compact subsets of the complex plane, it
holds that

lim
n→∞

Kn(e
i(θα− a

n2 ), ei(θα− b
n2 );μ)

Kn(eiθα , eiθα ;μ)
=

J∗1/2(
αa
ρ , αb̄

ρ )

J∗1/2(0, 0)
,

where θα = 2arcsin(|α|) and ρ =
√
1− α2.

Remark. Notice that the limiting kernel in Theorem 4.1 is the same as in the real
line case from [5, Theorem 1.4].

Before we proceed with the proof of Theorem 4.1, we present a proof of the
following fact about the kernel J∗1/2.

Proposition 4.2. The function J∗1/2(t, t̄) is non-vanishing as a function of t ∈ C.

Proof. When t is real, we use the fact that

J1/2(z) =

√
2 sin(z)√

πz
, J−1/2(z) =

√
2 cos(z)√

πz
,

J3/2(z) =

√
2(sin(z)− z cos(z))√

πz3

(see [14, pages 16 & 17]) to see that

J
∗
1/2(t, t) =

1

2πt

(
1− sin(2

√
t)

2
√
t

)
, t ∈ R,

which is non-zero for all t ∈ R. Using similar formulas, we find that when t 
∈ R,
we have

(11) J
∗
1/2(t, t̄) =

cos(
√
t̄) sin(

√
t)√

t
− cos(

√
t) sin(

√
t̄)√

t̄

π(t− t̄)
=

Im cos(
√
t̄) sin(

√
t)√

t

π Im t
.

Since we are assuming t 
∈ R, we may assume Re[
√
t] 
= 0. We will show that (11)

is never zero when Re[
√
t] > 0, Im[

√
t] > 0 and the other cases can be deduced by

using the symmetry of this expression.

Suppose
√
t = 1

2 (x+ iy) and
√
t̄ = 1

2 (x− iy) (our choice of
√
t̄ does not matter

because the cosine function and the sinc function are both even). Using basic
trigonometric identities, we can rewrite the numerator of (11) as

(12) Im

[
sin(x) + i sinh(y)

x+ iy

]
=

x sinh(y)− y sin(x)

x2 + y2
.

If we assume that x > 0, then notice that the denominator of (12) is positive.
Furthermore, notice that the numerator of (12) is 0 when y = 0 and its partial
derivative with respect to y is positive. This shows that (12) is positive when x
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and y are positive. Similar calculations for negative values of x or y show (11) is
non-zero when t 
∈ R. �

The proof of Theorem 4.1 will follow the method pioneered by Lubinsky, which
consists of first proving the result in one particular case (when h ≡ 1 and μ̃ = 0)
and then using localization techniques and the assumed regularity of the measure
to prove the more general case (see [17]).

4.1. A model case. Fix α ∈ (−1, 0) and define θα = 2arcsin(|α|). The measure
μα from Section 3 is of the form given in Theorem 4.1 with h ≡ 1 and μ̃ = 0 (see
[26, Section 1.6]). Let us write z = eiw, where we allow w to be complex. Since Un

is even or odd (depending on the parity of n) our choice of
√
z will not effect our

calculations, so we will write
√
z = eiw/2. Theorem 3.1 then gives

ϕn(z;μα) = einw/2

(
Un

(
cos(w/2)

ρ

)
− 1 + ᾱ

ρeiw/2
Un−1

(
cos(w/2)

ρ

))
,(13)

ϕ∗
n(z;μα) = einw/2

(
Un

(
cos(w/2)

ρ

)
− eiw/2(1 + α)

ρ
Un−1

(
cos(w/2)

ρ

))
.(14)

We will apply (13) and (14) with w = θα + t/n2 for various values of t. We begin
with the following lemma.

Lemma 4.3. The collection of functions{
Kn(e

i(θα− a
n2 ), ei(θα− b

n2 );μα)

n3

}
n∈N

is a normal family on C2 in the variables a and b.

Proof. By Montel’s Theorem and the Cauchy-Schwarz inequality, it suffices to show
that the collection {

Kn(e
i(θα− a

n2 ), ei(θα− a
n2 );μα)

n3

}
n∈N

is uniformly bounded in compact subsets of C (as a function of a). To do so, we
use (4) to see that

Un

(
1

ρ
cos

(
θα
2

− a

2n2

))
= Un

(
1− αa

2ρn2
+ o(n−2)

)
= O(n)

as n → ∞ and hence (13) implies |ϕn(e
i(θα− a

n2 );μα)| = O(n) as n → ∞ uniformly
for a in compact subsets of C. It follows that

Kn(e
i(θα− a

n2 ), ei(θα− a
n2 );μα) = O

(
n∑

m=1

m2

)
= O(n3)

uniformly for a in compact subsets of C. This is the desired conclusion. �

To prove Theorem 4.1 in the case μ = μα for α ∈ (−1, 0), we take a 
= b̄ and
apply the Christoffel-Darboux formula

Kn(z, ζ;μ) =
ϕ∗
n+1(ζ;μ)ϕ

∗
n+1(z;μ)− ϕn+1(ζ;μ)ϕn+1(z;μ)

1− zζ̄
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(see [26, Theorem 2.2.7]). For ease of notation, we define θn(z) :=
1
2θα − z

2n2 for
all complex numbers z. Using Theorem 3.1, we find

Kn(e
i(θα− a

n2 ), ei(θα− b
n2 );μα) = (1− ei(b̄−a)/n2

)−1

×
[
ei(b̄−a)n+1

2n2

(
Un+1

(
cos (θn(a))

ρ

)
− eiθn(a)(1 + α)

ρ
Un

(
cos (θn(a))

ρ

))

×
(
Un+1

(
cos

(
θn(b̄)

)
ρ

)
− e−iθn(b̄)(1 + α)

ρ
Un

(
cos

(
θn(b̄)

)
ρ

))

− ei(b̄−a)n+1

2n2

(
Un+1

(
cos (θn(a))

ρ

)
− (1 + α)

ρeiθn(a)
Un

(
cos (θn(a))

ρ

))

×
(
Un+1

(
cos

(
θn(b̄)

)
ρ

)
− (1 + α)

ρe−iθn(b̄)
Un

(
cos

(
θn(b̄)

)
ρ

))]

=
2iei(b̄−a)n+1

2n2 (1 + α)

ρ(1− ei(b̄−a)/n2)

×
[
− Un+1

(
cos

(
θn(b̄)

)
ρ

)
Un

(
cos (θn(a))

ρ

)
sin (θn(a))

+ Un+1

(
cos (θn(a))

ρ

)
Un

(
cos

(
θn(b̄)

)
ρ

)
sin

(
θn(b̄)

)
(15)

+ Un

(
cos

(
θn(b̄)

)
ρ

)
Un

(
cos (θn(a))

ρ

)
1 + α

ρ
sin

(
b̄− a

2n2

)]
.

Using basic angle addition formulas, we find

1

ρ
cos

(
θα
2

+
t

2n2

)
= cos

(
t

2n2

)
+

α

ρ
sin

(
t

2n2

)
= 1 +

αt

2ρn2
+O(n−4)

sin

(
θα
2

+
t

2n2

)
= −α cos

(
t

2n2

)
+ ρ sin

(
t

2n2

)
= −α+

tρ

2n2
+O(n−4).

If μ∗ is the measure of orthogonality for the polynomials {Un}n≥0, then

Kn(x, y;μ
∗) =

Un(y)Un+1(x)− Un(x)Un+1(y)

2(x− ȳ)

(see [28, Section 3]). Letting x = 1
ρ cos

(
θα
2 − a

2n2

)
and y = 1

ρ cos
(
θα
2 − b

2n2

)
, we

find that the first two terms in (15) can be rewritten

2α

(
α(a− b̄)

2ρn2

)
Kn

(
1− αa(1 + o(1))

2ρn2
, 1− αb(1 + o(1))

2ρn2
;μ∗

)
(1 + o(1))

as n → ∞. By [5, Theorem 1.4], we see that we can rewrite this as

2α

(
α(a− b̄)

2ρn2

)
Kn (1, 1;μ

∗) (1 + o(1))
J∗1/2(

αa
ρ , αb̄ρ )

J∗1/2(0, 0)
(16)
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as n → ∞. Using the fact that Un(1) = n+1 (see [1, page 37]) we findKn(1, 1;μ
∗) =

1
6 (n+ 1)(n+ 2)(2n+ 3), so (16) simplifies to

n
α2(a− b̄)J∗1/2(

αa
ρ , αb̄

ρ )

3ρJ∗1/2(0, 0)
+ o(n)

as n → ∞.
To estimate the last term in (15), we use (4) as in the proof of Lemma 4.3 to see

that

Un

(
1

ρ
cos

(
θα
2

+
t

2n2

))
= Un

(
1 +

αt

2ρn2
+ o(n−2)

)
= O(n)

as n → ∞. Since sin
(

b̄−a
2n2

)
= O(n−2) as n → ∞, we see that the last term in (15)

is O(1) as n → ∞. Combining all that we have learned so far yields

Kn(e
i(θα− a

n2 ), ei(θα− b
n2 );μα) = o(n3) + n3

(
2(1 + α)α2J∗1/2(

αa
ρ , αb̄ρ )

3ρ2J∗1/2(0, 0)

)
(17)

as n → ∞ when a 
= b̄. By continuity and Lemma 4.3 we may extend this formula
to the case a = b̄ and deduce that the error term can be estimated uniformly for a
and b in compact subsets of C. Setting a = b = 0, we find

Kn(e
iθα , eiθα ;μα) = o(n3) + n3

(
2(1 + α)α2

3ρ2

)

as n → ∞ (see also [6, Theorem 1.2]). We have thus proven

lim
n→∞

Kn(e
i(θα− a

n2 ), ei(θα− b
n2 );μα)

Kn(eiθα , eiθα ;μα)
=

J∗1/2(
αa
ρ , αb̄ρ )

J∗1/2(0, 0)
,

where the convergence is uniform for a and b in compact subsets of C. This proves
the desired result in the case μ = μα when α ∈ (−1, 0).

4.2. The general case. To prove the general case, we will use the following theo-
rem, which is due to Bourgade and appears in a more general form as [2, Theorem
3.10].

Theorem 4.4 ([2]). Let μ be as in Theorem 4.1 and let μα be as in Section 4.1. If

(18) lim
r→0+

lim sup
n→∞

Kn(e
i(θα− t

n2 ), ei(θα− t
n2 );μα)

Kn−�rn	(e
i(θα− t

n2 ), ei(θα− t
n2 );μα)

= 1

uniformly for t in compact subsets of R, then uniformly for a and b in compact
subsets of (−∞, 0], it holds that

lim
n→∞

∣∣∣∣∣h(θα)Kn(e
i(θα− a

n2 ), ei(θα− b
n2 );μ)−Kn(e

i(θα− a
n2 ), ei(θα− b

n2 );μα)

Kn(e
i(θα− a

n2 ), ei(θα− a
n2 );μ)

∣∣∣∣∣ = 0.

Remark. Note that [2, Theorem 3.10] includes a mutual regularity condition for the
two measures in question, but the regularity of μ and μα immediately implies that
this condition is satisfied.
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The fact that μα satisfies the condition (18) is a direct consequence of the cal-
culations in Section 4.1. All that remains then is to show that the conclusion of
Theorem 4.4 gives us the conclusion that we want. For this purpose, the following
lemma is essential.

Lemma 4.5. Let μ be as in the statement of Theorem 4.1 and let μα be as in
Section 4.1. For any a ∈ C it holds that

lim
n→∞

Kn(e
i(θα− a

n2 ), ei(θα− a
n2 );μα)

Kn(e
i(θα− a

n2 ), ei(θα− a
n2 );μ)

= h(θα)

and the convergence is uniform for a in compact subsets of C.

The proof of Lemma 4.5 is very much analogous to the proof of [24, Lemma 2.8],
so we will not present the details here. It is based on Christoffel functions and relies
heavily on ideas from the proof of [19, Theorem 7].

Corollary 4.6. Let μ be as in the statement of Theorem 4.1. Then

(19) lim
n→∞

Kn(e
iθα , eiθα ;μ)

Kn(e
i(θα− a

n2 ), ei(θα− a
n2 );μ)

=
J∗1/2(0, 0)

J∗1/2(
αa
ρ , αā

ρ )
> 0

and the convergence is uniform on compact subsets of C. Furthermore, the collection{
Kn(e

i(θα− a
n2 ), ei(θα− b

n2 );μ)

Kn(eiθα , eiθα ;μ)

}
n∈N

is a normal family on C2 in the variables a and b.

Remark. By Proposition 4.2, the right-hand side of (19) is a well-defined positive
real number.

Proof. The limit (19) follows from Lemma 4.5 and the fact that the limit holds
when μ = μα. The statement about normality follows from Montel’s Theorem, the
Cauchy-Schwarz inequality, and the uniformity in the limit (19). �

Proof of Theorem 4.1. We have already seen that we may apply Theorem 4.4. By
applying Corollary 4.6, we may rewrite the conclusion of Theorem 4.4 as

lim
n→∞

∣∣∣∣∣Kn(e
i(θα− a

n2 ), ei(θα− b
n2 );μ)

Kn(eiθα , eiθα ;μ)
− Kn(e

i(θα− a
n2 ), ei(θα− b

n2 );μα)

h(θα)Kn(eiθα , eiθα ;μ)

∣∣∣∣∣ = 0.

By applying Lemma 4.5, we may rewrite this as

lim
n→∞

∣∣∣∣∣Kn(e
i(θα− a

n2 ), ei(θα− b
n2 );μ)

Kn(eiθα , eiθα ;μ)
− Kn(e

i(θα− a
n2 ), ei(θα− b

n2 );μα)

Kn(eiθα , eiθα ;μα)

∣∣∣∣∣ = 0,

and hence when a and b are real, the desired convergence follows from the calcu-
lations in Section 4.1. The desired uniform convergence on compact subsets of C2

follows from the statement about normal families in Corollary 4.6. �
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[1] Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts
in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR1367960

[2] P. Bourgade, On random matrices and L-functions, Ph.D. Thesis, New York University,
available at http://www.cims.nyu.edu/∼bourgade/papers/PhDThesis.pdf.
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