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EXPANSIVE MEASURES VERSUS LYAPUNOV EXPONENTS

ALMA ARMIJO AND MARIA JOSÉ PACIFICO

(Communicated by Nimish Shah)

Abstract. In this paper we investigate the relation between measure-expan-
siveness and hyperbolicity. We prove that non-atomic invariant ergodic mea-
sures with all of their Lyapunov exponents positive are positively measure-
expansive. We also prove that local diffeomorphisms robustly positively mea-
sure-expansive are expanding. Finally, we prove that a C1-volume-preserving
diffeomorphism that cannot be accumulated by positively measure-expansive
diffeomorphisms has a dominated splitting.

1. Introduction

The notion of expansiveness was introduced by Utz in the middle of the twenti-
eth century; see [18]. Roughly speaking, expansiveness means that orbits through
different points separate when time evolves. This notion is very important in the
context of the theory of dynamical systems and is shared by a large class of dynam-
ical systems exhibiting chaotic behavior. Nowadays there is an extensive literature
about these systems. See, for instance, [6, 8, 10, 19] and references therein. Ex-
amples of expansive systems are hyperbolic diffeomorphisms defined on compact
manifolds. This includes Anosov systems and the non-wandering set of Axiom A
diffeomorphisms.

Recently the notion of measure-expansiveness that generalizes the concept of
expansiveness was introduced in [12]. Roughly speaking, a system is measure-
expansive if the set of points whose orbit is near the orbit of a given point is
zero. There is already a consistent literature respecting measure-expansive systems,
relating this property with expansiveness, ergodicity, and some other properties
already established elsewhere. We refer to [3,5,15] and references therein for more
on this.

The purpose of this work is to exploit more this notion and establish some of
its relation with expansiveness, existence of some weak form of hyperbolicity, and
existence of positive Lyapunov exponents.

To announce precisely our results, let us introduce some definitions. To this end,
let (M,d) be a compact boundaryless Riemannian manifold and let Diff1

loc(M) be
the set of C1-local diffeomorphisms f : M → M . Let M(M) be the space of Borel
probability measures of M .
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Recall that μ ∈ M(M) is atomic if there is a point x ∈ M such that μ(x) > 0.
The set of atomic measures A(M) of M is dense in M(M). A measure μ is f -
invariant if μ(f−1(B)) = μ(B) for every measurable set B and μ is ergodic if the
measure of any invariant set is zero or one. We denote Mf (M) for the set of
f -invariant probability measures on M .

The classical Oseledets’s theorem [14] asserts that for any f -invariant measure
μ, there exist a Df -invariant (measurable) splitting

TxM = E1(x)⊕ · · · ⊕ Ek(x)(x)

and numbers λ1(x) < λ2(x) < · · · < λk(x)(x) so that for all v ∈ Ei(x)\{0}, it holds
that

λi(x) = lim
n→∞

1

n
log ‖Dfn(x)v‖

for μ-almost all x ∈ M. The numbers λi(x), 1 ≤ i ≤ k(x), are called the Lyapunov
exponents of f at x.

We say that f ∈ Diff1
loc(M) is positively measure-expansive for μ (or positively

μ-expansive for short) if there is a constant δ > 0 such that μ(Γ+
δ (f, x)) = 0 for all

x ∈ M , where

(1) Γ+
δ (f, x) ≡ {y ∈ M /d(fn(x), fn(y)) ≤ δ, for all n ∈ N}.

Note that every positively μ-expansive map is positively μ-expansive for any
μ ∈ M(M) \ A(M).

The first result in this paper establishes that local diffeomorphisms with positive
Lyapunov exponents are positively μ-expansive.

Theorem A. Let f ∈ Diff1
loc(M) and let μ ∈ Mf \A(M) be an ergodic probability

measure such that all of its Lyapunov exponents are positive. Then f is positively
μ-expansive.

An open class of dynamical systems such that every non-atomic measure is pos-
itively expansive is the class of expanding endomorphisms. Recall that a map
f ∈ Diff1

loc(M) is expanding if there exists β > 1 and K > 0 such that for every
x ∈ M we have

||Dfn(x)|| ≥ Kβn, n ∈ N.

Next we want to relate positive μ-expansiveness to expansiveness for maps f ∈
Diff1

loc(M). In this direction we point out that in [16] the author proved that the
C1-interior of the set of positively measure-expansive C1-diffeomorphisms coincides
with the interior of the set of C1-expansive diffeomorphisms. In [17] it is proved
that the interior of the set of measure-expansive diffeomorphisms coincides with the
interior of the expansive diffeomorphisms. More recently, in [9], the authors proved
that C1-generically, a differentiable map is positively μ-expansive if and only if it
is expanding. The next result is a version for local diffeomorphisms of [9, Theorem
A] and establishes that local diffeomorphisms C1 robustly positively μ-expansive
are expanding.

Theorem B. Let f ∈ Diff1
loc(M) and suppose that there is a C1-open neighborhood

U of f such that every g ∈ U is positively μ-expansive for all μ ∈ M(M) \ A(M).
Then f is expanding.
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To prove this last result, we first prove a perturbing lemma, Lemma A, that
has the same flavor as [7, Lemma (1.1)], establishing that if a map f has a non-
expanding periodic point p, then there is δ > 0 such that Γ+

δ (f, p) contains a
manifold S with dim(S) ≥ 1. The proof of the theorem follows by contradiction,
applying this lemma to a non-expanding periodic point. As another consequence
of Lemma A we get a similar result to [1, Theorem 1.1]:

Theorem 1. There exists an open and dense subset R ⊂ Diff1
loc(M) such that if

f ∈ R and f is positively μ-expansive, then f is expanding.

We can also ask if measure-expansiveness for only the invariant measures could
be enough for the map to have some hyperbolicity. Next, we give a partial answer
to this question in the conservative context. This means that the manifold is
endowed with a smooth volume form ω; then we can speak of conservative (i.e.,
volume-preserving) diffeomorphisms. In order to announce this last result, denote
by Diff1

ω(M) the set of C1 conservative diffeomorphisms and for easy notation set

PIM = {f ∈ Diff1(M); f is positively μ-expansive for allμ ∈ Mf (M) \ A(M)}.

Theorem C. Let f ∈ Diff1
ω(M) and assume there is an open neighborhood U(f)

such that U(f) ⊂ PIM∪ {f}. Then f has a dominated splitting.

This text is organized as follows. In Section 2 we give the basic definitions and
recall previous results proved elsewhere that will be used to obtain our main theo-
rems. In Section 3 we study positive measure-expansive maps and give a sufficient
condition for a measure-expansive map to be expanding and prove Theorem A. In
Section 4 we give a necessary condition for a local diffeomorphism to be measure-
expansive and prove Theorem B and Theorem 1. Finally in Section 5 we prove
Theorem C.

2. Preliminaries

In this section we set the notation and recall some definitions and results proved
elsewhere that we shall use to obtain our results. For this let M be a compact
boundaryless n-dimensional Riemannian manifold, n ≥ 2. As above Diff1

loc(M)
denotes the set of C1 local diffeomorphisms on M endowed with the C1-topology.
Denote by d the distance on M induced y the Riemannian metric || · || on the
tangent bundle TM .

Let f ∈ Diff1
loc(M) and p ∈ M . Recall that p is a periodic point if fn(p) = p for

some n ≥ 1. The minimal number n such that fn(p) = p is the period of p and is
denoted by τ (p). Given a periodic point p with period τ (p) we denote by O(p) the
orbit of p, i.e., O(p) = {p, f(p), . . . , fτ(p)−1(p)}. A periodic point p is hyperbolic if
the eigenvalues of Dfτ(p)(p) do not belong to the unit circle S1 and is expanding if
all the eigenvalues of Dfτ(p)(p) have absolute value greater than one.

The stable manifold of x ∈ M , W s(x), is defined as

W s(x) = {y|d(fn(y), fn(x)) → 0, n ∈ N}.
The unstable manifold of x, Wu(x), is defined as

Wu(x) = {y | d(f−n(y), f−n(x)) → 0, n ∈ N}.
A saddle point is a hyperbolic periodic point whose stable and unstable manifolds

have a positive dimension.
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A compact invariant set Λ of a diffeomorphism f is hyperbolic if there is a Df -
invariant continuous splitting TΛM = Es ⊕ Eu and constants C > 0 and κ < 1
such that for every x ∈ Λ and n ∈ N it holds that

||Df−n(x)|Eu
x
|| ≤ Cκn and ||Dfn(x)|Es

x
|| ≤ Cκn.

A compact f -invariant set Λ ⊂ M admits a dominated splitting if the tangent
bundle TΛM has a continuous Df -invariant splitting E1 ⊕ · · · ⊕Ek and there exist
constants C > 0, 0 < λ < 1, such that for all i < j, ∀x ∈ Λ, and n ≥ 0 it holds that

||Dfn|Ei(x)|| · ||Df−n|Ej(f
n(x))|| ≤ Cλn.

Let C1(M) be the set of C1 maps f : M → M , endowed with the C1-topology.
A subset R ⊂ C1(M) is a residual subset if it contains a countable intersection of
open and dense sets. The countable intersection of residual subsets is also a residual
subset.

A property (P) holds generically if there exists a residual subset R ⊂ C1(M)
such that any f ∈ R has the property (P).

We finish this section by stating a lemma, due to V. I. Pliss, whose proof can be
found in [11, Lemma 11.8, p. 276].

Lemma 2. Given A ≥ c2 > c1 > 0, let θ0 =
(c2 − c1)

(A− c1)
. Then, given any real

numbers a1, . . . , aN such that

N∑
j=1

aj ≥ c2N and aj ≤ A for every 1 ≤ j ≤ N,

there are l > θ0N and 1 < n1 < · · · < nl ≤ N so that

ni∑
j=n+1

aj ≥ c1(ni − n) for every 1 ≤ n ≤ ni and i = 1, . . . , l.

3. Proof of Theorem A

In this section we prove Theorem A. For this, first recall that a map f ∈
Diff1

loc(M) is asymptotically c-expanding at x ∈ M if (see [13, p. 1314])

(2) lim sup
n→∞

1

n

n−1∑
i=0

log ‖Df(f i(x))−1‖−1 > 4c .

Now, let μ be an invariant ergodic probability measure such that all of its Lya-
punov exponents are positive. By [13, Lemma 3.5] there exist c > 0 and l ∈ N such
that

(3)

∫
M

1

l
log(‖Df l(x)−1‖)dμ < −4c < 0.

For every l ∈ N define the set

Jl := {x ∈ M : f l is asymptotically c-expanding at x}.

Claim 1. The set Jl has total measure with respect to μ.
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In fact, since Jl is f l-invariant and μ is ergodic then the measure of Jl is null
or total. By contradiction, assume that the measure of Jl is null. By Birkhoff’s
Theorem, the limit in (2) defines a measurable and integrable map ϕ that satisfies∫

M

ϕdμ =

∫
M

log(‖Df l(x)−1‖−1)dμ.

So, ∫
M

log(‖Df l(x)−1‖−1)dμ =

∫
M

ϕdμ =

∫
Jl

ϕdμ+

∫
M\Jl

ϕdμ .

Since we are assuming μ(Jl) = 0 we have
∫
Jl

ϕdμ = 0 and thus∫
M

log(‖Df l(x)−1‖−1)dμ =

∫
M\Jl

ϕdμ ≥ −4c .

So, by (3), we get∫
M

log(‖Df l(x)−1‖)dμ < −4lc ≤ −4c ≤
∫
M

log(‖Df l(x)−1‖)dμ ,

a contradiction. Thus the measure of Jl is total and finishes the proof of Claim 1.
�

Now, define g := f l. Since g is a C1-local diffeomorphism, there exists an open
cover {Vi}i∈Λ of M such that g|Vi

: Vi → g(Vi) is a diffeomorphism. We can assume
that these sets Vi are connected, and by compactness of M there is δ′ > 0 such that

(4) dist(ξ, η) < δ′ implies that ξ, η ∈ Vi for some i ∈ Λ.

Moreover, by uniform continuity there exists δ̂ > 0 such that

(5) dist(x, y) < δ̂ implies that
‖Dg(x)−1‖
‖Dg(y)−1‖ > e−c/2.

Fix δ = min{δ̂, δ′} and consider Γ+
δ (f, x). Then, if y ∈ Γ+

δ (f, x) we have that

y ∈
⋂
j∈N

f−j(B(f j(x), δ)) ⊂
⋂
k∈N

g−k(B(gk(x), δ)).

Hence,

(6) dist(gk(x), gk(y)) < δ, ∀k ∈ N.

Pick a point x ∈ M satisfying condition (2) for g. Then

lim sup
n→∞

1

n

n−1∑
i=0

log ‖Dg(gi(x))−1‖−1 > 4c.

For N ∈ N sufficiently large we have

(7)
1

N

N∑
i=1

log ‖Dg(gi(x))−1‖−1 > 4c.

Applying Lemma 2 with

A = max
ξ∈M

log ‖Dg(ξ)−1‖−1, c2 = 4c, c1 = 2c, and θ0 =
2c

A− 2c
,
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we obtain that there are l ∈ N, with l > θ0N, and 1 < n1 < · · · < nl < N , with N
as in (7), such that

ni∑
j=n+1

log ‖Dg(gj(x))−1‖−1 > (ni−n)2c for every 1 ≤ n ≤ ni and i = 1, . . . , l.

Moreover, for all z satisfying d(z, gj(x)) < δ, for all j ∈ N, (5) implies that

‖Dg(gj(x))−1‖
‖Dg(z)−1‖ > e

−c
2 .

Then

(8) ‖Dg(z)−1‖ < e
c
2 ‖Dg(gj(x))−1‖.

By connectedness, (4), and the Mean Value Theorem applied to an inverse branch
g−1 which sends gn+1(x) to gn(x), for n = 0, . . . , ni, we get

dist(gn(x), gn(y)) = dist(g−1(gn+1(x)), g−1(gn+1(y)))

≤ ‖Dg(zn)
−1‖ dist(gn+1(x), gn+1(y)),

with dist(zn, g
n+1(x)) < δ. Thus, by (8) we get

dist(x, y) ≤
ni∏
n=1

‖Dg(gn(x))−1‖e c
2niδ

<
e−2c(ni−1)

‖Dg(g(x))−1‖e
c
2niδ

<
e

−3
2 c(ni− 4

3 )

‖Dg(g(x))−1‖δ.

Since Nθ0 < l < nl we obtain that

d(x, y) <
e

−3
2 c(Nθ0− 4

3 )

‖Dg(g(x))−1‖δ.

As N can be chosen arbitrarily large, we get dist(x, y) = 0. Thus Γ+
δ (g, x) = {x}

for μ-almost every x ∈ M . Therefore μ is positively expansive. This completes the
proof of Theorem A. �

4. Expanding properties and proof of Theorem B

We start observing that a necessary condition for a local diffeomorphism f to be
positively measure-expansive is that for all δ > 0 and all x ∈ M , Γ+

δ (f, x) doesn’t
contain any manifold of dimension greater than or equal to one.

In fact, assume that Γ+
δ (f, x) contains a manifold S, dim(S) ≥ 1. Let m be the

Lebesgue measure on S and let ν be the normalized Lebesgue measure on S; that
is, for any Borel set A ⊂ S,

ν(A) =
m(A)

m(S)
.

Define a measure μ on M in the following way: for any Borel set C of M we set

μ(C) = ν(C ∩ S).

Clearly μ is non-atomic and μ(Γ+
δ (f, x)) ≥ μ(S) = 1 > 0, which implies that f is

not positively measure-expansive. �
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4.1. Main Lemma. Recall that a periodic point p of f with period τ (p) is expand-
ing if all the eigenvalues of Dfτ(p)(p) have absolute value greater than one. The
next lemma shows that if there is a non-expanding periodic point p, then there is
δ > 0 such that Γ+

δ (f, p) contains a manifold S with dim(S) ≥ 1.

Lemma A (Main Lemma). Let g ∈ Diff1
loc(M), p ∈ Perτ(p)(g) be such that

Dgτ(p)(p) has at least one eigenvalue λ with |λ| ≤ 1, and let δ > 0. Then there

are h ∈ Diff1
loc(M) C1-closed to g such that h = g in O(p) and an hτ(p)-invariant

manifold Ip 
 p such that

(1) Ip ⊂ Γ+
δ (h, p).

(2) If Dgτ(p)(p) = idTpM , there exists μh ∈ Mh(M) such that μh(Ip) > 0.

Proof. We endow M with a Riemannian metric. By [7, Lemma (1.1)] there exists a
local C1-diffeomorphism h ε-closed to g in the C1-topology, such that Dhx = Dgx
for all x ∈ O(p). Moreover, there is an ε-neighborhood U of the O(p) such that

h|O(p)∪(M\U) = g|O(p)∪(M\U).

Furthermore, for all y ∈ U it holds that

(9) h(y) = expgi+1(p) ◦Dg(gi(p)) ◦ exp−1
gi(p)(y),

where exp is the exponential map.
As a consequence of (9) we have

d(h(y), gi+1(p)) = ||Dg(gi(p)) exp−1
gi(p)(y)||.

Hence, if N := max
y∈M

||Dg(y)||, then

(10) d(h(y), gi+1(p)) ≤ N || exp−1
gi(p)(y)|| = Nd(y, gi(p)).

We define εi :=
ε

(1 +N)τ(p)−i
, i = 0, . . . , τ (p) − 1. Note that Nεi−1 < εi < εi+1.

Let V := Bε0(p) and pick an arbitrary point x ∈ V .

Claim 2. Let d(hi(x), gi(p)) < εi for all i = 0, . . . , τ (p)− 1.

The proof goes by induction. For i = 0, by definition of V , it holds that d(x, p) <
ε0. Suppose it is true for 1 < i < τ (p)− 1. Then

d(hi(x), gi(p)) < εi, with εi < ε for 1 < i < τ (p)− 1 .

By (10) we get

d(hi+1(x), gi+1(p)) ≤ Nd(hi(x), gi(p)) < Nεi < εi+1,

completing the induction. This proves the claim. �
Since for any i = 0, . . . , τ (p)− 1 we have that d(hi(x), gi(p)) < ε, we can apply

(9) and get

h(x) = expg(p) ◦Dg(p) ◦ exp−1
p (x),

h2(x) = expg2(p) ◦Dg(g(p)) ◦ exp−1
g(p)(h(x)),

...

and

hτ(p)(x) = expgτ(p)(p) ◦Dg(gτ(p)−1(p)) ◦ exp−1
gτ(p)−1(p)

(hτ(p)−1(x)).
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Therefore, by the chain rule,

hi(x) = expgi(p) ◦Dgi(p) ◦ exp−1
p (x), ∀x ∈ V , i ∈ {0, . . . , τ (p)− 1}.

In particular,

(11) hτ(p)(x) = expp ◦Dgτ(p)(p) ◦ exp−1
p (x), ∀x ∈ V .

Now, let Ep be the direct sum of all eigenspaces of the eigenvalues λ, |λ| ≤ 1 of

Dgτ(p)(p) and define Ip as
Ip := expp(Ep) ∩ V.

Claim 3. Ip defined as above is hτ(p)-invariant.

For this, given x ∈ Ip we have x = expp(v) with v ∈ Ep and ‖v‖ < ε0, and so

hτ(p)(x) = hτ(p)(expp(v)) = expp ◦Dgτ(p)(p) ◦ exp−1
p (expp(v)) = expp ◦Dgτ(p)(p)v.

Modifying the Riemannian metric, if necessary, we can suppose that all the eigen-
spaces of the eigenvalues λ, with |λ| ≤ 1, are two by two orthogonal. In particular,
‖Dgτ(p)(p)v‖ ≤ ‖v‖, for all v ∈ Ep. Hence, we have that

d(hτ(p)(x), p) = ‖Dgτ(p)(p)v‖ ≤ ‖v‖ < ε0, and so hτ(p)(x) ∈ V.

Therefore hτ(p)(x) ∈ Ip because Ep is invariant by Dgτ(p)(p). This concludes the

proof that Ip is hτ(p)-invariant. �
Now we are ready to proof the lemma:

Proof of item (1). Given δ > 0 and taking ε < δ in the definition of Ip we get that

Γ+
δ (h, p) =

∞⋂
i=0

(hi)−1
(
Bδ

(
hi(p)

))

=

∞⋂
k=0

⎛
⎝τ(p)−1⋂

j=0

(
hkτ(p)+j

)−1 (
Bδ

(
hkτ(p)+j(p)

))⎞⎠

=

∞⋂
k=0

⎛
⎝τ(p)−1⋂

j=0

(
hkτ(p)

)−1 ((
hj
)−1 (

Bδ

(
hj(p)

)))⎞⎠.

By Claim 2, V ⊂
(
hj
)−1 (

Bεj

(
hj(p)

))
⊂

(
hj
)−1 (

Bδ

(
hj(p)

))
, and so

Γ+
δ (h, p) =

∞⋂
k=0

⎛
⎜⎜⎝

τ(p)−1⋂
j=0

(
hkτ(p)

)−1 ((
hj
)−1 (

Bδ

(
hj(p)

)))
︸ ︷︷ ︸

⊃V⊃Ip

⎞
⎟⎟⎠

⊃
∞⋂
k=0

((
hkτ(p)

)−1

(Ip)
)
.

But, since
hτ(p) (Ip) ⊂ Ip

we get (
hτ(p)

)−1

(Ip) ⊃ Ip.

Thus, Γ+
δ (h, p) ⊃ Ip, concluding the proof of item (1). �
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Proof of item (2). Observe that Ip = V because Ep = TpM , and so (11) implies
that

(12) hτ(p)|V = idV ,

and hence
(
hkτ(p)

)−1 |V = idV . Thus, for δ
′ < ε0, Γ

+
δ′(h, p) ⊂ V . In fact, we have

Γ+
δ′(h, p) =

∞⋂
k=0

(
hkτ(p)

)−1
τ(p)−1⋂
j=0

(
hj
)−1 (

Bδ′
(
hj(p)

))
︸ ︷︷ ︸

⊂Bε0
(p)=V

=

∞⋂
k=0

⎛
⎝τ(p)−1⋂

j=0

idV

((
hj
)−1 (

Bδ′
(
hj (p)

)))⎞⎠

=

∞⋂
k=0

τ(p)−1⋂
j=0

(
hj
)−1 (

Bδ′
(
hj (p)

))

=

τ(p)−1⋂
j=0

(
hj
)−1 (

Bδ′
(
hj (p)

))
.

Then Γ+
δ′ (h, p) =

∞⋂
i=0

(
hi
)−1 (

Bδ′
(
hi (p)

))
=

τ(p)−1⋂
j=0

(
hj
)−1 (

Bδ′
(
hj (p)

))
, which

is a finite intersection of open sets and so it is also an open set. Set V ′ := Γ+
δ′ (p).

Now, note that (12) implies that h (A) = A for all invariant sets A ⊂ V. In
particular, h (V ′) = V ′.

Next we construct a non-atomic f -invariant probability μh on M . For this, we
consider μ a non-atomic probability measure supported on Ip. To this end, given
a Borel set C ⊂ M , define the measure μh by

μh (C) =
1

τ (p)

τ(p)−1∑
i=0

μ
(
hi (C ∩ V ′)

)
μ (V ′)

.

Since h (V ′) = V ′, we obtain

μh (M) =
1

τ (p)

τ(p)−1∑
i=0

μ
(
hi (M ∩ V ′)

)
μ (V ′)

=
1

τ (p)

τ(p)−1∑
i=0

μ
(
hi (V ′)

)
μ (V ′)

=
1

τ (p)

τ(p)−1∑
i=0

μ (V ′)

μ (V ′)
=

τ (p)

τ (p)

μ (V ′)

μ (V ′)
= 1.

Hence, μh is a probability measure. Since

μh

(
h−1 (C)

)
=

1

τ (p)

τ(p)−1∑
i=0

μ
(
hi

(
h−1 (C) ∩ V ′))
μ (V ′)

=
1

τ (p)

τ(p)−1∑
i=0

μ
(
hi (C ∩ V ′)

)
μ (V ′)

= μh(C),
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we conclude that μh is h-invariant.
For Ip, we obtain

μh (Ip) =
1

τ (p)

τ(p)−1∑
i=0

μ
(
hi (Ip ∩ V ′)

)
μ (V ′)

=
1

τ (p)

τ(p)−1∑
i=0

μ
(
hi (Ip ∩ V ′)

)
μ (V ′)

≥ 1

τ (p)

μ (Ip ∩ V ′)

μ (V ′)

because Ip ∩ V ′ is in this case an open subset of V ′ ⊂ suppμ. Therefore, we have
μh (Ip) > 0, finishing the proof of item (2). All together this concludes the proof
of Lemma A. �

Corollary 3. Under the same hypotheses of the lemma, if p is a periodic hyper-
bolic saddle, then the statement of item (1) can be obtained for g itself without
perturbations.

Proof. Since p is a periodic hyperbolic saddle, the local stable manifold W s
ε (p, g)

is a C1-submanifold. We will denote it by Ig. Hence we can define μ = mIg as
the induced Lebesgue measure on it, and as before we get that μ = mIg is not
measure-expansive, leading to a contradiction. �

4.2. Proof of Theorem B. Let f be a local C1-diffeomorphism robustly positive
measure-expansive map. Then there exists a neighborhood U (f) such that all of its
elements are positive measure-expansive. Assume, by contradiction, that f is not
expanding. By [2, Theorem 1.3], there exists g ∈ U (f), with p ∈ Per (g) of period
τ (p), such that Dgτ(p) (p) has at least one eigenvalue with modulus less than or
equal to one.

By Lemma A(1), there are h near g, δ > 0, a submanifold Ip ⊂ Γ+
δ (h, p), and

a measure μ ∈ M (M) \ A (M) such that μ (Ip) > 0. This implies that h is not
measure-expansive. As h is near f , this contradicts that f is robustly positive
measure-expansive. This finishes the proof of Theorem B. �

4.3. Proof of Theorem 1. We use the same ideas as in [1, Theorem 1.1], but here

we consider a dense and open set R defined by R = H ∪Hc
, where H is the set

H = {g ∈ Diff1
loc (M) ; g has a saddle hyperbolic periodic point q}.

First, observe that H is open: given g ∈ H there exists a hyperbolic saddle
point q ∈ Perh (g). Then there is a neighborhood U of g in the C1-topology and a
continuous map p : U → M with p (g) = q such that for ϕ ∈ U , p (ϕ) is a hyperbolic
saddle point of ϕ. Since the map ϕ �→ Dϕτ(p(ϕ)) (p (ϕ)) is continuous there is a
neighborhood V ⊂ U of g such that all eigenvalues of Dϕτ(p(ϕ)) (p(ϕ)) do not belong
to the unit circle. Hence, for each ϕ ∈ V , p (ϕ) is a saddle hyperbolic point of ϕ.
Therefore, V ⊂ H, concluding that H is open.

Since H is open, we get that R defined above is open and dense on Diff1
loc (M).

Now we claim that if f ∈ R and f is μ-expansive for all μ ∈ M (M) \ A (M),
then f is expanding.

The proof goes by contradiction. Assume that f ∈ R, f is μ-expansive, and
f is not expanding. Then [2, Theorem 1.3] implies that there is a sequence {fn}
converging to f with periodic points pn for fn which have at least one eigenvalue
with modulus less than or equal to one. Then, by [7, Lemma (1.1)], we can find
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a sequence {gn} converging to f such that pn is a hyperbolic saddle for every n.

Hence f /∈ Hc
. Thus f ∈ H and so has a hyperbolic saddle periodic point p,

and by Corollary 3, there exists a measure supported in Ip which is not positively
expansive, leading to a contradiction. �

5. Proof of Theorem C

To prove Theorem C, recall that PIM is the set of C1-diffeomorphisms f on M
that are positively μ-expansive for every μ ∈ Mf (M) \ A (M), Mf (M) is the set
of f -invariant measures on M , and A (M) is the set of atomic measures on M .

The proof goes by contradiction. Let f ∈ Diff1
ω(M) and let U(f) be an open

neighborhood of f with U (f) ⊂ PIM ∪ {f} and assume that f has no domi-
nated splitting. By [4, Theorem 6], since f has no dominated splitting there are
a conservative diffeomorphism g in U (f) and a periodic point p of g such that
Dgτ(p) (p) = Id, where τ (p) is the period of p.

Applying Lemma A we conclude that there exists a local C1-diffeomorphism
h ∈ U (f) such that it coincides with g in the orbit of p and for every δ > 0 there
exists a submanifold Ip ⊂ Γ+

δ (h, p), Ip 
 p, and there is a probability h-invariant

measure μh over M such that μh (Ip) > 0. Therefore μh

(
Γ+
δ (h, p)

)
> 0 for δ

arbitrarily small, leading to a contradiction (because h ∈ PIM). This ends the
proof of Theorem C. �

Acknowledgments

The authors thank A. Arbieto for helpful conversations on this subject, and the
anonymous referee for comments and suggestions that certainly improved this text.

References

[1] Jiweon Ahn, Keonhee Lee, and Manseob Lee, Positively measure expansive and expanding,
Commun. Korean Math. Soc. 29 (2014), no. 2, 345–349. MR3206420

[2] Alexander Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), no. 3-4, 801–807.
MR2860265

[3] A. Arbieto and C. A. Morales, Expansive measures, Publ. Mat. Urug. 14 (2013), 61–71.
MR3235344

[4] C. Bonatti, L. J. Dı́az, and E. R. Pujals, A C1-generic dichotomy for diffeomorphisms: weak
forms of hyperbolicity or infinitely many sinks or sources (English, with English and French
summaries), Ann. of Math. (2) 158 (2003), no. 2, 355–418. MR2018925
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IMPA. [IMPA Mathematical Publications], 29o Colóquio Brasileiro de Matemática. [29th
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