Expansive measures versus Lyapunov exponents
HTML articles powered by AMS MathViewer
- by Alma Armijo and Maria José Pacifico
- Proc. Amer. Math. Soc. 146 (2018), 3895-3906
- DOI: https://doi.org/10.1090/proc/14089
- Published electronically: June 1, 2018
- PDF | Request permission
Abstract:
In this paper we investigate the relation between measure-expansiveness and hyperbolicity. We prove that non-atomic invariant ergodic measures with all of their Lyapunov exponents positive are positively measure-expansive. We also prove that local diffeomorphisms robustly positively measure-expansive are expanding. Finally, we prove that a $C^1$-volume-preserving diffeomorphism that cannot be accumulated by positively measure-expansive diffeomorphisms has a dominated splitting.References
- Jiweon Ahn, Keonhee Lee, and Manseob Lee, Positively measure expansive and expanding, Commun. Korean Math. Soc. 29 (2014), no. 2, 345–349. MR 3206420, DOI 10.4134/CKMS.2014.29.2.345
- Alexander Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), no. 3-4, 801–807. MR 2860265, DOI 10.1007/s00209-010-0767-5
- A. Arbieto and C. A. Morales, Expansive measures, Publ. Mat. Urug. 14 (2013), 61–71. MR 3235344
- C. Bonatti, L. J. Díaz, and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), no. 2, 355–418 (English, with English and French summaries). MR 2018925, DOI 10.4007/annals.2003.158.355
- Jérôme Buzzi and Todd Fisher, Entropic stability beyond partial hyperbolicity, J. Mod. Dyn. 7 (2013), no. 4, 527–552. MR 3177771, DOI 10.3934/jmd.2013.7.527
- Albert Fathi, Expansiveness, hyperbolicity and Hausdorff dimension, Comm. Math. Phys. 126 (1989), no. 2, 249–262. MR 1027497, DOI 10.1007/BF02125125
- John Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301–308. MR 283812, DOI 10.1090/S0002-9947-1971-0283812-3
- Koichi Hiraide, Expansive homeomorphisms with the pseudo-orbit tracing property of $n$-tori, J. Math. Soc. Japan 41 (1989), no. 3, 357–389. MR 999503, DOI 10.2969/jmsj/04130357
- Keonhee Lee, Manseob Lee, Kazumine Moriyasu, and Kazuhiro Sakai, Positively measure-expansive differentiable maps, J. Math. Anal. Appl. 435 (2016), no. 1, 492–507. MR 3423410, DOI 10.1016/j.jmaa.2015.10.034
- Jorge Lewowicz, Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N.S.) 20 (1989), no. 1, 113–133. MR 1129082, DOI 10.1007/BF02585472
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- Carlos A. Morales and Víctor F. Sirvent, Expansive measures, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013. 29$^\textrm {o}$ Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium]. MR 3100422
- Krerley Oliveira, Every expanding measure has the nonuniform specification property, Proc. Amer. Math. Soc. 140 (2012), no. 4, 1309–1320. MR 2869114, DOI 10.1090/S0002-9939-2011-10985-7
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
- M. J. Pacifico and J. L. Vieitez, On measure expansive diffeomorphisms, Proc. Amer. Math. Soc. 143 (2015), no. 2, 811–819. MR 3283667, DOI 10.1090/S0002-9939-2014-12296-9
- Kazuhiro Sakai, Positively expansive differentiable maps, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 10, 1839–1846. MR 2718084, DOI 10.1007/s10114-010-9149-5
- Kazuhiro Sakai, Naoya Sumi, and Kenichiro Yamamoto, Measure-expansive diffeomorphisms, J. Math. Anal. Appl. 414 (2014), no. 2, 546–552. MR 3167979, DOI 10.1016/j.jmaa.2014.01.023
- W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769–774. MR 38022, DOI 10.1090/S0002-9939-1950-0038022-3
- José L. Vieitez, Lyapunov functions and expansive diffeomorphisms on 3D-manifolds, Ergodic Theory Dynam. Systems 22 (2002), no. 2, 601–632. MR 1898808, DOI 10.1017/S0143385702000305
Bibliographic Information
- Alma Armijo
- Affiliation: Departamento de Matemática, Universidad de las Américas and Universidad de Santiago de Chile, Santiago, Chile
- Email: almaarmijo@gmail.com
- Maria José Pacifico
- Affiliation: Instituto de Matemática, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, RJ, Brazil
- MR Author ID: 196844
- Email: pacifico@im.ufrj.br
- Received by editor(s): February 7, 2017
- Received by editor(s) in revised form: September 5, 2017, October 10, 2017, and November 26, 2017
- Published electronically: June 1, 2018
- Additional Notes: This work was partially supported by CAPES, CNPq, FAPERJ
- Communicated by: Nimish Shah
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 3895-3906
- MSC (2010): Primary 37C40
- DOI: https://doi.org/10.1090/proc/14089
- MathSciNet review: 3825843