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Abstract. In this note we formulate a condition for complete non-compact
Riemannian manifolds, which implies no conjugate points in case that the
geodesic flow is Anosov with respect to the Sasaki metric.

In 1974 Klingenberg [6] proved, using Morse theory, that geodesic Anosov flows
on compact Riemannian manifolds do not have conjugate points. In 1987 Mané
[8] showed with the help of the Maslov index that geodesic flows on complete
Riemannian manifolds with finite volume have no conjugate points provided there
exists a continuous flow invariant Lagrangian section. Since the stable and unstable
bundles provide such invariant sections, geodesic Anosov flows on manifolds with
finite volume do not have conjugate points as well. In the same paper, Mané claimed
that any complete non-compact Riemannian manifold with lower curvature bound
has no conjugate points in case the geodesic flow is Anosov with respect to the
Sasaki metric. However, as we noticed in [7], the proof contains a mistake which
occurs in Proposition II.2 of his article.

This note was inspired by a question of the authors of [4], whether one could
prove Mané’s claim under certain extra geometric conditions. The positive answer
to this question would allow them to remove an assumption in their work. To
formulate this result, we start by introducing some notation and definitions.

In the following, (M, g) will denote a complete Riemannian manifold, π : TM →
M the tangent bundle with the canonical projection, and SM = {v ∈ TM | ‖v‖ =
1} the unit tangent bundle with respect to the Riemannian metric g. The tangent
space TvSM of SM at v ∈ SM is given by

{(x, y) | x, y ∈ Tπ(v)M, y ⊥ v},
where we use the splitting of TvTM into horizontal and vertical spaces. Using this
decomposition, the linearization

Dφt(v) : TπvM × TπvM → Tπφt(v)M × Tπφt(v)M

of the geodesic flow φt : SM → SM is given by Dφt(v)(x, y) = (J(t), J ′(t)), where
J(t) is the Jacobi field which is the solution of the Jacobi equation

J ′′(t) +R(J(t), φt(v))φt(v) = 0,
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along the geodesic cv(t) = π(φt(v)) with initial conditions J(0) = x, J ′(0) = y ⊥
v. Here J ′ = D

dtJ denotes the covariant derivative along cv and R(X,Y )Z the
Riemannian curvature tensor. There is a natural 1-form Θ on TM defined by

Θv(ξ) = 〈v, dπv(ξ)〉.
Using the decomposition of ξ = (x, y) into horizontal and vertical parts, introduced
above, we obtain

Θv(x, y) = 〈v, x〉.
The differential dΘ is the canonical symplectic form on TM and is given by

dΘv((x1, y1), (x2, y2)) = 〈y1, x2〉 − 〈y2, x1〉.
The canonical metric gS on TM given by

gS((x1, y1), (x2, y2)) = 〈x1, x2〉+ 〈y1, y2〉
for (x1, y1), (x2, y2) ∈ TvTM is called the Sasaki metric on TM . Denote by

Eφ(v) = {(λv, 0) | λ ∈ R}
the 1-dimensional space tangent to the geodesic flow at v ∈ SM . The orthogonal
complement

N(v) := Eφ(v)⊥

in TvSM with respect to the Sasaki metric defines a bundle N invariant under
the linearization of the geodesic flow. Furthermore, N is a symplectic bundle; i.e.,
the symplectic form restricted to N is non-degenerate. A Lagrangian subspace
L(v) ⊂ N(v) is called a Lagrangian graph if V (v) ∩ L(v) = ∅.

Lemma 1. If L(φt(v)) = Dφt(v)L(v) is a Lagrangian graph for all t ∈ [a, b], then
cv : [a, b] → M has no conjugate points.

Proof. For a proof see Lemma 2.7 in section 1.2 of [7]. �

Definition 2. Let (M, g) be a complete Riemannian manifold and let ‖ · ‖ be the
norm on TSM induced by the Sasaki metric. The geodesic flow φt : SM → SM is
called Anosov flow if there exist constants k, C > 0 and a splitting

TvSM = Es(v)⊕ Eu(v)⊕ Eφ(v)

such that Eφ(v) = span{XG(v)} and

‖Dφt(v)ξ‖ ≤ C · e−kt‖ξ‖
for all ξ ∈ Es(v), t ≥ 0, as well as

‖Dφ−t(v)ξ‖ ≤ Ce−kt‖ξ‖
for all ξ ∈ Eu(v), t ≥ 0.

Lemma 3. Let (M, g) be a complete Riemannian manifold with lower sectional
curvature bound −β2. If the geodesic flow is Anosov with constants k, C > 0 as in
Definition 2, there exists a constant σ = σ(β, k, C) with the following property. If

Es(v) ∩ V (v) �= {0},
then the geodesic cv has conjugate points on the interval [−1, σ].

Proof. For a proof see Lemma 3.5 in section 1.3 of [7]. �
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Remark. The lemma above is related to Proposition II.2 in Mané’s article [8]. In
this proposition he even claimed that cv(0) should be conjugated to cv(t0) for some
t0 > 0. However, the proof which is based on the index form needs information
about the geodesic on an interval containing 0 as an interior point.

The following theorem contains the main result of this paper.

Theorem 4. Let (M, g) be a complete, connected, and non-compact Riemannian
manifold with sectional curvature bounded from below by −β2 such that the geodesic
flow is Anosov with respect to the Sasaki metric with constants k, C as in Definition
2. Assume that the following three conditions are satisfied:

(1) For all v ∈ SM there exists an open neighborhood U(v) ⊂ SM such that
limt→∞ d(c(0), c(t)) = ∞ uniformly for all geodesic c : R → M with ċ(0) ∈
U(v).

(2) There exists a compact set K ⊂ M such that for all p ∈ M \ K and all
geodesics c with c(0) = p the segment c : [−1, σ] → M has no conjugate
points with σ = σ(β, k, C) as in Lemma 3.

(3) There exists at least one geodesic without conjugate points.

Then (M, g) has no conjugate points.

Remark. Note that the existence of a geodesic without conjugate points is guaran-
teed if their exists a geodesic cv which does not intersect K. Otherwise, by Lemma
1 there would exist t ∈ R such that Es(φt(v)) ∩ V (φt(v)) �= ∅ and from Lemma
3 follows that cv : [−1 + t, σ + t] → M has conjugate points contradicting the
assumption that cv is contained in the complement of K.

Proof. Consider the set

C(SM) = {v ∈ SM | cv : R → M has no conjugate points}.

It is known that C(SM) is closed. For a proof see [8]. Now we show that C(SM) is
open. To prove this, consider a sequence vn ∈ SM \C(SM) converging to v. Then
by Lemma 1 there is tn ∈ R such that Es(φtn(vn)) ∩ V (φtn(vn)) �= ∅. Lemma 3
implies that cvn : [−1 + tn, σ + tn] → M has conjugate points, and from condition
(2) we conclude that cvn(tn) ∈ K. By condition (1) there exist open neighborhoods
U(v), U(−v) ⊂ SM of v such that

lim
t→∞

d(cw(t), cw(0)) = ∞

uniformly for all w ∈ U(v) and w ∈ U(−v). This implies the existence of some
T > 0 such that for all n ∈ N with vn ∈ U(v) and −vn ∈ U(−v) we have |tn| ≤ T ,
and, therefore, cv : [−1− T, σ + T ] → M has conjugate points as well. This shows
that C(SM) is open, and since by condition (3) the set C(SM) is non-empty we
have C(SM) = SM . Hence (M, g) has no conjugate points. �

Corollary 5. Let (M, g) be a complete, connected, and non-compact Riemannian
manifold such that the sectional curvature is bounded from below by −β2 and such
that the geodesic flow is Anosov with respect to the Sasaki metric with constants
k, C as in Definition 2. Assume that the following three conditions are satisfied.
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(1) For all v ∈ SM there exists an open neighborhood U(v) ⊂ SM such that
limt→∞ d(c(0), c(t)) = ∞ uniformly for all geodesic c : R → M with ċ(0) ∈
U(v).

(2) There exists a geodesic ball B(p, r) of radius r about p such that the sectional
curvature on M \ B(p, r) is smaller than ( π

σ+1 )
2 with σ = σ(k, C, β) as in

Lemma 3.
(3) There exists a geodesic without conjugate points.

Then (M, g) has no conjugate points.

Proof. Consider r > 0 and B(p, r) such that the sectional curvature on M \B(p, r)
is smaller than ( π

σ+1 )
2. Then each geodesic c : [0, σ + 1] → M \ B(p, r) has no

conjugate points and the set K = B(p, r+1) fulfills the assumption in the theorem
above. In particular, (M, g) has no conjugate points. �

Remark. With the same argument as in the remark above a geodesic without con-
jugate points exists, provided there is a geodesic which does not intersect B(p, r).

We would like to close this note by providing a sufficient geometric condition
which implies the assumptions made in Theorem 4.

Proposition 6. Let (M, g0) be a Hadamard manifold of bounded sectional cur-
vature, i.e., a complete simply connected Riemannian manifold with bounded non-
positive sectional curvature. Furthermore, assume that there exists a geodesic ball
B(p, r) of some radius r about p ∈ M such that outside B(p, r) the sectional cur-
vature is bounded by a negative constant from above, while inside a smaller ball the
curvature is allowed to vanish. Then in the set of smooth metrics on M there is an
open C2-neigborhood of g0 such that the assumptions of Theorem 4 are satisfied.
In particular, these metrics can have open regions of positive sectional curvature.

Proof. Let (M, g0) be a Hadamard manifold fulfilling the assumption stated in the
proposition. Consider for v ∈ SM the stable and unstable subspaces

Es(v) = {(w, S(v)w) | w ⊥ v} and Eu(v) = {(w,U(v)w) | w ⊥ v}
of TvSM , where S(v) and U(v) denote the second fundamental form of the stable
and unstable horospheres (see e.g. [7] for more details). Then, Es(v) and Eu(v) are
transversal since otherwise there would exist a parallel orthogonal Jacobi field along
the geodesic cv contradicting our assumptions on (M, g0) which imply that cv has
to enter regions of negative curvature. From the continuity of S(v) and U(v) and
from the assumption that the curvature of M is negative outside B(p, r) we obtain
the existence of a constant a > 0 such that U(v)−S(v) ≥ a id. This yields that the
geodesic flow is Anosov with respect to the Sasaki metric (see [2], [3]). Then, for
a sufficiently small open C2-neighborhood of g0 the assumptions in Theorem 4 are
satisfied. The reason is that for such a neighborhood the corresponding geodesic
flows are C1 close to the geodesic flow of g0 and that the Anosov condition is open
in the C1-topology of vector fields. This can be proved using invariant cone families
(see e.g. [5] and [1] for the original approach). Hence, for any metric in a sufficiently
small C2-neighborhood of g0 the geodesic flow is still Anosov. Furthermore, one
can choose the neighborhood such that the curvature remains negative outside the
ball B(p, r) and that geodesics are escaping. Moreover, there are geodesics which
do not intersect B(p, r) and therefore do not have conjugate points. Nevertheless,
inside B(p, r) the curvature can be positive. �
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