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ON THE Lr-OPERATORS PENALIZED BY (r + 1)-MEAN
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(Communicated by Michael Wolf)

Abstract. In this paper, we establish the non-positivity of the second eigen-
value of the Schrödinger operator −div

(
Pr∇·

)
−W 2

r on a closed hypersurface

Σn of R
n+1, where Wr is a power of the (r + 1)-th mean curvature of Σn,

which we will ask to be positive. If this eigenvalue is null, we will have a
characterization of the sphere. This theorem generalizes the result of Harrell
and Loss proved to the Laplace-Beltrame operator penalized by the square of
the mean curvature.

1. Introduction

This work is based on the ideas presented by Harrell and Loss in [4]. We obtain
an elegant and more simplified proof that allowed us to generalize their results to
a more general class of operators, Lr, penalized by a power of (r + 1)-th mean
curvature. In 1997, Harrell and Loss obtained the following rigidity result.

Theorem 1.1. Let Ω be a smooth compact oriented hypersurface of dimension d
immersed in R

d+1; in particular self-intersections are allowed. The metric on that
surface is the standard Euclidean metric inherited from R

d+1. Then the second
eigenvalue λ2 of the operator

H = −Δ− 1

d
h2

is strictly negative unless Ω is a sphere, in which case λ2 equals zero.

Here h is the mean curvature of the immersion. In particular, when d = 2
the previous result gives a proof for a conjecture of Alikakos and Fusco about
hypersurfaces embedded in R

3.
The aim of this paper is to extend this result for a more general class of ellip-

tic geometric operators. To present our main result, we need to introduce some
definitions and notation.

Let φ : Mn → M
n+1

be an isometric immersion, and denote by A the second
fundamental form associated to φ. It is known that A has n-geometric invariants.
They are given by the elementary symmetric functions Sr of the principal curvatures
κ1, . . . , κn as follows:

Sr :=
∑

i1<···<ir

κi1 . . . κir (1 ≤ r ≤ n).
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The r-curvature Hr of φ is then defined by

Hr :=
Sr(
n
r

) .
Notice that H1 corresponds to the mean curvature and Hn to the Gauss-Kronecker
curvature of φ. Newton’s transformations of φ are the operators Pr defined induc-
tively by

P0 = I,

Pr = SrI −APr−1.

The so-called Lr-operators are defined by Lr := div
(
Pr∇ ·

)
. It is known that if

every Hr is positive, then Lr is elliptic by Proposition 3.2 in [3].
Let Σ be a compact hypersurface of Rn+1 with the operator Lr being elliptic.

We have that −Lr is a positive, unbounded, self-adjoint operator with the spectrum
formed only by eigenvalues

σ(−Lr) = {0 = λ1(−Lr) < λ2(−Lr) ≤ . . .}.

We consider the following class of Schrödinger operators:

Lr := −Lr −W 2
r ,

where the potential Wr =
(
cr H

r+2
r+1

r+1

)1/2
and cr = (n− r)

(
n
r

)
, with 0 ≤ r ≤ n− 1.

Now we can present the main result of this article.

Theorem 1.2. Let Σ be an n-dimensional closed hypersurface embedded in R
n+1.

Assume that Hr+1 > 0. Then the second eigenvalue of Lr, λ2(Lr), is strictly
negative unless Σ is a sphere; in this case λ2(Lr) equals zero.

Note that the potential W 2
r has dimension (vol. Σ)−(r+2), the same as the dif-

ferential operator Lr. The implies that the number of negative eigenvalues is inde-
pendent of the volume of the hypersurface.

The proof is based on the following principle:

Lemma 1.3 (Birman-Schwinger’s principle). Let L = div(A(x)∇.), where A(x) is
a matrix uniformly elliptic and L : H2(Ω) → L2(Ω), for Ω a bounded domain.

Consider the self-adjoint operator −L−W 2(x), where W 2 is relatively bounded
with respect to −L (i.e., Dom(−L) ⊂ Dom(W 2) and there exist constants a, b ≥ 0
such that

‖W 2u‖2 ≤ a‖u‖2 + b‖ − Lu‖2, for all u ∈ Dom(−L)).

A number −μ < 0 is an eigenvalue of −L−W 2 if and only if 1 is an eigenvalue of
the bounded positive operator

Kμ := W (−L+ μ)−1W.

This result can be obtained as a corollary of a more general principle demon-
strated by Klaus in the paper [5].
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2. Proof of Theorem 1.2

For the above proof, the following lemma will be used.

Lemma 2.1. Let Σ be an n-dimensional closed hypersurface embedded in R
n+1

with Hr+1 > 0 and consider the operator Lr = −Lr −W 2
r . Suppose there exists

f ∈ L2(Σ) satisfying:
(1) 〈f,Wr〉 = 0;
(2) 〈R0(Wrf),Wrf〉 > ‖f‖22, where 〈 , 〉 is the inner product in L2(Σ), R0 =

(−Lr|[1]⊥)−1, and

[1]⊥ = {u ∈ L2(Σ); 〈u, 1〉 = 0}.
Then the operator Lr has two negative eigenvalues.

Proof. The proof is herein presented in the three following steps:
Recall that for μ > 0 the resolvent operator Rμ = (−Lr + μ)−1 is a bounded

operator in L2(Σ).

Step 1. For g ∈ L2(Σ) with
∫
Σ
g dΣ = 0, we have

lim
μ→0

‖R0g − Rμg‖2 = 0.

In fact, if

(2.1) (−Lr + μ)−1g = ϕ,

then

(2.2) −Lrϕ+ μϕ = g.

Therefore
∫
Σ
ϕdΣ = 0 since

∫
Σ
LrϕdΣ = 0. The last integral follows from the

divergence theorem. Applying (−Lr)
−1 in equation (2.2), we obtain that

ϕ+ μ(−Lr)
−1ϕ = (−Lr)

−1g

and therefore

‖R0g −Rμg‖2 = ‖(−Lr)
−1g − (−Lr + μ)−1g‖2 = ‖μ(−Lr)

−1ϕ‖2
≤ μ‖−Lr

−1‖‖ϕ‖2
= μ‖−Lr

−1‖‖(−Lr + μ)−1g‖2.(2.3)

Now in order to estimate the norm ‖(−Lr+μ)−1g‖2, we will multiply the two sides
of (2.2) by ϕ and apply the divergence theorem to obtain

(2.4)

∫
Σ

〈Pr∇ϕ,∇ϕ〉dΣ+ μ

∫
Σ

ϕ2dΣ =

∫
Σ

ϕgdΣ.

Since ϕ has zero mean using the characterization of the Min-Max Principle λ2(−Lr),
we obtain

λ2(−Lr)

∫
Σ

ϕ2dΣ ≤
∫
Σ

〈Pr∇ϕ,∇ϕ〉dΣ.

On the other hand, the arithmetic-geometric mean inequality gives us∫
Σ

ϕgdΣ ≤
(

1

4ε

∫
Σ

g2dΣ+ ε

∫
Σ

ϕ2dΣ

)
.

Thus for ε = (λ2(−Lr) + μ)/2 we have∫
Σ

ϕ2dΣ ≤ 1

(λ2(−Lr) + μ)2

∫
Σ

g2dΣ.
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Therefore,

‖Rμg‖2 ≤ 1

(λ2(−Lr) + μ)
‖g‖2.

From the estimate above, it follows that

‖Rμg −Rγg‖2 ≤ |μ− γ|‖g‖2
(λ2(−Lr) + μ)(λ2(−Lr) + γ)

.

Set Kμ := Wr(−Lr + μ)−1Wr. Now for μ positive and sufficiently small, Kμ has
an eigenvalue greater than 1.

Step 2. There exists −μ1 < 0 such that ‖Kμ1
|[Wr ]⊥‖ > 1.

The operatorKμ|[Wr ]⊥ is compact, symmetric, and positive; therefore ‖Kμ|[Wr ]
⊥‖

is an eigenvalue of Kμ|[Wr]⊥ .
We know from (2) that

〈R0(Wrf),Wrf〉 > ‖f‖22
and Kμ → K0 in B([Wr]

⊥) when μ → 0 with K0 = WrR0Wr. Then we have
‖K0|[Wr ]⊥‖ > 1, so there exists −μ1 < 0 such that ‖Kμ1

|[Wr ]⊥‖ > 1.

Step 3. Step 2 implies the lemma.
Since Kμ is positive, we have ‖Kμ‖ is the largest eigenvalue of Kμ. Furthermore,

(2.5) ‖Kμ‖ ≤ 1

λ2(−Lr|H2(Σ)∩[1]⊥) + μ
‖Wr‖2∞.

Thus, the eigenvalue ‖Kμ‖ → 0 when μ → ∞. Therefore, there is −μ2 < 0 such
that ‖Kμ2

‖ < 1.
Hence, we show that there exist μ2 and μ1 constants such that

‖Kμ2
‖ < 1 < ‖Kμ1

‖,
and μ �→ ‖Kμ‖ is continuous. By the Intermediate Value Theorem, there exists
−μ0 such that ‖Kμ0

‖ = 1.
Thus by Birman-Schwinger’s principle, we have that −μ0 < 0 is an eigenvalue

of Lr = Lr|[1]⊥ ; i.e., there exists a non-zero function f ∈ H2(Σ) ∩ [1]⊥ such that

Lrf = −μ0f . Thus −μ0 is also an eigenvalue of the operator Lr.
Suppose by contradiction that −μ0 is the only negative eigenvalue of Lr.
In this case, −μ0 would be the first eigenvalue with a first self-space given by

[f ] = {c f ; c ∈ R}, and Lr restricted to the subspace [f ]⊥ should be a positive
operator. On the other hand, we have f ∈ [1]⊥. Thus, the constant function
1 ∈ [f ]⊥, implying that 〈Lr1, 1〉2 ≥ 0, a contradiction.

Hence the operator Lr has more than one negative eigenvalue if there is f ∈ L2(Σ)
satisfying (1) and (2). �

Now we present the proof of Theorem 1.2.

Proof. Let φ : Σn → R
n+1 be an isometric immersion. By [1], we have the following

equation satisfied:

(2.6) −Lrφ = crHr+1N,

where N is the normal vector of the surface. Thus each coordinate satisfies

(2.7) −Lrφi = crHr+1Ni,
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with i ∈ {1, . . . , n+ 1}.
Denote

(φi)Σ :=
1

vol. Σ

∫
Σ

φidΣ

and (φ)Σ := ((φ1)Σ, . . . , (φn+1)Σ).
Choosing fi so that

(2.8) fiWr = crHr+1Ni,

we have

(2.9) fi = (crH
r

r+1

r+1 )
1
2Ni

and 〈fi,Wr〉 = 0, by (2.7).
Observe that

R0(Wrfi) = R0(crHr+1Ni) = R0(−Lr(φi − (φi)Σ)) = φi − (φi)Σ.

By multiplying both sides equal to Wrfi and using the divergence theorem, we
conclude that

〈R0(Wrfi),Wrfi〉2 = 〈Pr∇φi,∇φi〉2 =

∫
Σ

crHr+1(φi − (φi)Σ)NidΣ.

Summing up both sides with i varying from 1 to n+ 1, we have

n+1∑
i=1

〈R0(Wrfi),Wrfi〉2 =
n+1∑
i=1

〈Pr∇φi,∇φi〉2 =

∫
Σ

crHr+1〈φ− (φ)Σ, N〉dΣ.

We know from Minkowski’s integral formula that

∫
Σ

HrdΣ−
∫
Σ

Hr+1〈φ− (φ)Σ, N〉dΣ = 0.

Thus, replacing the previous expression, we have

n+1∑
i=1

〈R0(Wrfi),Wrfi〉2 =
n+1∑
i=1

〈Pr∇φi,∇φi〉2 =

∫
Σ

crHrdΣ.

By [1], using the classical inequality H
1
r
r ≥ H

1
r+1

r+1 , for r ≥ 1, we have

n+1∑
i=1

〈R0(Wrfi),Wrfi〉2 =

∫
Σ

crHrdΣ ≥
∫
Σ

crH
r

r+1

r+1 dΣ =

n+1∑
i=1

∫
Σ

crH
r

r+1

r+1N
2
i dΣ

=

n+1∑
i=1

‖fi‖22.

Remark 2.2. If r = 0, we have written the sums above as being identical, and the
only step that does not appear is the gap between the bends. However it is easy to
see that the rest of the argument follows analogously to other cases.

Define di = 〈R0(Wrfi),Wrfi〉2 − ‖fi‖22. Thus
n+1∑
i=1

di ≥ 0, and then two possibil-

ities may occur:
(i) There is i ∈ {1, . . . , n+ 1} such that di > 0;
(ii) di = 0, for all i ∈ {1, . . . , n+ 1}.
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If (i) occurs, we have that fi satisfies the hypotheses (1) and (2) of Lemma 2.1
and therefore

λ2(Lr) < 0.

If (ii) occurs, we have all the di void. In this case we use Lagrange multipliers.
Now consider the functionals Ψ,Φ : L2(Σ) → R given by

Ψ(f) = 〈R0(Wrf),Wrf〉 − ‖f‖22, Φ(f) = 〈Wr, f〉2,
and the set of constraints

S = {f ∈ L2(Σ); Φ(f) = 〈Wr, f〉2 = 0}.
We have to study two possibilities:

(a) inf{Ψ(f); f ∈ S} < 0 or
(b) inf{Ψ(f); f ∈ S} = 0.
In the first case, there is a function f ∈ S such that Ψ(f) < 0 and f is a critical

function for Ψ on S. Then the method of Lagrange multipliers exists for Γ ∈ R,
such that

Ψ′(f) = ΓΦ′(f),

which results in the Euler-Lagrange equation

WrR0(Wrf)− f = ΓWr.

Multiplying both sides of the above equation by f and integrating, we have

0 = Γ〈Wr, f〉 = 〈R0(Wrf),Wrf〉 − ‖f‖22 < 0.

This is a contradiction, and the case (a) does not occur. In the second case, we
have seen that each fi ∈ S and Ψ(fi) = inf{Ψ(f); f ∈ S} = 0. By the Method of
Lagrange Multipliers, there exists Γ ∈ R such that Ψ′(fi) = ΓΦ′(fi). Hence, we
obtain that each fi satisfies the following Euler-Lagrange equation:

WrR0(Wrfi) = fi + ΓWr.

Therefore we conclude that

Wr(R0(Wrfi)− Γ) = fi,

Wr(φi − (φi)Σ − Γ) = fi;

then

φi − (φi)Σ − Γ =
fi
Wr

= H
1

r+1

r+1Ni.

Thus, we have its version vector

φ− (φ)Σ − Γ = H
1

r+1

r+1N.

Differentiating the above expression along any curve Σ, we conclude that the de-

rivative of H
1

r+1

r+1 is zero, so Hr+1 is constant. Then Σ is a sphere by Alexandrov’s
Theorem in [6].

In fact in this case we have λ2(Lr) = 0, as we have

Wr(φi − (φi)Σ − Γ) = fi,

and multiplying both sides by the expression Wr, we obtain

W 2
r (φi − (φi)Σ − Γ) = Wrfi = −Lr(φi − (φi)Σ − Γ).

Thus ψ = φi − (φi)Σ − Γ is the second eigenfunction of Lr = −Lr − W 2
r , and

Lrψ = 0. �
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Finally, we observe that the result obtained is also valid for the operator

Tr = −Lr − cr‖A‖r+2.

Corollary 2.3. Under the same conditions of Theorem 1.2, λ2(Tr) ≤ 0 with equal-
ity if and only if Σ is a sphere.

The proof of the corollary follows immediately from Jensen’s inequality and the
min-max principle. This finishes the proof. �
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encouragement and support.

References

[1] Hilário Alencar, Manfredo do Carmo, and Harold Rosenberg, On the first eigenvalue of the
linearized operator of the rth mean curvature of a hypersurface, Ann. Global Anal. Geom. 11
(1993), no. 4, 387–395. MR1246197
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