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A MOIRÉ PATTERN ON SYMMETRIC SPACES

OF THE NONCOMPACT TYPE

ALEXANDRE AFGOUSTIDIS

(Communicated by Mourad E.H. Ismail)

Abstract. We prove that if X is a symmetric space of the noncompact type,
just as adding Helgason waves which propagate in all directions will yield an
elementary spherical function for X, a Helgason wave can be produced by
adding elementary spherical functions whose centers describe a horocycle in
X.

1. Introduction

A moiré pattern is a visual effect obtained by superimposing plane motifs which
are obtained from one another through small Euclidean motions. Moiré patterns
often occur in image processing (see [1, 7]), but they also appear in other con-
texts. Let us start by describing a possible use in neuroscience [11–13] which is the
motivation for this short paper.

1.1. On the way from the retina to the primary visual cortex, the visual information
is conveyed by the Lateral Geniculate Nucleus (hereafter abridged as LGN). The
specialization of neurons in either of these two areas can be described with the help
of a receptive profile: discarding many important details, one can roughly attach to
each neuron a function R on the visual plane V, with the property that if the input
image at time t is described as a function It, then the L2 scalar product between
R and I is a reasonable description of the electrical activity of the neuron shortly
after t.

It is well acknowledged that the receptive profiles of LGN cells have spherical
symmetry: to each cell is attached a point x0 of the visual plane, and the receptive
profile RLGN of that cell is a function of the distance to x0. In addition, as the
distance to x0 grows, RLGN decreases to zero, then becomes negative in a region in
which the presence of light therefore has an inhibitory effect on the cell, then grows
again, and tends to zero as the distance to x0 grows again. A famous suggestion
for RLGN is a mexican hat function, that is, the Laplacian of a Gaussian function.

In the primary visual cortex, however, the receptive profiles do not have spherical
symmetry: they have a preferred direction, and the natural candidates for the
receptive profiles are products of a plane wave with a function which decreases
with the distance to a preferred position (popular models include Gabor wavelets,
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products of a plane wave with a Gaussian envelope, or Marr wavelets, products of
a plane wave with a mexican hat function).

The transition from the LGN to V1 then involves a change in the symmetry of
the receptive profiles. What is the biological basis for this transition?

Hubel and Wiesel famously proposed that the answer lies in the wiring of neu-
rons: if a given V1 neuron receives inputs from LGN cells which have their centers
of symmetry aligned and close to one another, and if the combination of LGN in-
puts is a simple summation, then a directional preference can emerge through a
Moiré-like pattern (see Figure 1).

Figure 1. Hubel and Wiesel’s scenario for the transition between the
receptive profiles in the LGN and those in V1: if the electrical activity
of a neuron in V1 is close to the sum of activities exhibited by LGN
cells which have the centers of their receptive profiles distributed on a
small segment of the visual plane, the cortical neuron will have a clear
orientation preference.

1.2. It is possible to emphasize the role of symmetries in Hubel and Wiesel’s argu-
ment, by changing the models for the receptive profiles and relaxing the condition
that the receptive profiles decrease at infinity. In fact, if we drop that realistic but
symmetry-independent requirement, a natural mathematical counterpart to Hubel
and Wiesel’s argument sits inside the structure of the Euclidean group. We shall say
what the symmetry-based counterpart is first, and then indicate how it is related
to the structure of the Euclidean motion group.

As our translation-invariant receptive profile, choose a plane wave x �→ ei〈Ru,x〉,
where R is a positive number and u a unit vector in R2. As our rotation-invariant
receptive profile, choose the Bessel function JR := x �→

∫
S1
ei〈Ru,x〉du (here the

Haar measure on S1 is normalized so as to have total mass one).
We claim that a plane wave can be reconstructed by the constructive interefer-

ence of Bessel functions whose centers of symmetry are distributed on a straight
line whose direction is orthogonal to that of the wave’s propagation. Let us first
observe a picture of the constructive interference (Figure 2).

Now, suppose u⊥ is a unit vector orthogonal to u. We shall now indicate how
the elementary properties of the Fourier transform, in particular the fact that the
Fourier transform of the Dirac distribution on the line Ru is the Dirac distribution
on the orthogonal line Ru⊥, imply

(1)

∫
R

JR(x+ tu)dt =
2

R
cos

(
R〈x, u⊥〉

)
,

an apparently natural guess in view of Figure 2.
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Figure 2. On the left is a Bessel function; left to right are superposi-
tions of 3, 5, 11, 21 Bessel functions whose centers of symmetry lie along
the obvious line.

The equality cannot hold in the usual, strong sense: JR is not an integrable
function (if it were its Fourier transform would be continuous, whereas it is the
Dirac distribution on the circle of radius R), and the left-hand side of (1) is not
an absolutely convergent integral. The left-hand side does have a meaning as an
improper integral, because when x and u are fixed, we have

∫ A

−A

JR(x+ tu)dt =

∫
[−A,A]

dt

∫
S1

eiR〈x+tu,v〉dv =

∫
S1

eiR〈x,v〉
∫
[−A,A]

dteiR〈tu,v〉

= 2

∫
S1

eiR〈x,v〉 sin (AR〈u, v〉)
R〈u, v〉 dv,

which does have a limit as A goes to infinity; however, because of the stationary-
phase lemma (applicable here because v �→ 〈u, v〉 admits only two critical points on
S1, and that these are nondegenerate), there is a constant � such that∫ A

−A

JR(x+ tu)dt ∼
A→∞

�√
A
.

So the limit is zero.

1.3. If we are to interpret Figure 2 with the help of (1), we have to find a weaker
meaning for the left-hand side. We shall now argue that it is best to interpret (1)
as an equality of distributions.

When ψ is a Schwartz function on R2, we can write

(2)

∫
x+Ru

ψJR =

∫
(x+Ru)×S1

ψ(y)eRi〈y,v〉dydv =

∫
S1

F (ψδx+Ru) [Rv]dv,

where δx+Ru is the Dirac distribution on the line x + Ru and F is the Euclidean-
Fourier transform. We shall assume the position x and the direction u to be fixed
here.

Now choose a family (ϑε)ε>0 of Schwartz functions on R2 which, as ε goes to
zero, goes in the space S ′(R2) of tempered distributions on R2 to the Dirac dis-
tribution δx+Ru over the line D = x + Ru: one can for instance start from a
smooth, nonnegative-valued, compactly supported function � on R which is iden-
tically one in a neighborhood of the identity and has integral one, and then set

ϑε(y) =
1
ε�

(
d(y,D)

ε

)
� (εd(y, 0)), where d is the Euclidean distance in R2.

Then as ε goes to zero, the Fourier transform F (ϑε) goes to that of δx+Ru, which
is the product

(
ξ �→ ei〈ξ,x〉

)
δRu⊥ between a plane wave and the Dirac distribution

on Ru⊥.
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Assigning to a tempered distribution T on R2 the distribution on R+
� which sends

a smooth and compactly supported function α on R+
� to the number 〈T, α̃〉, where

α̃ is the radial function on R
2 built on α and the bracket is the duality bracket, we

obtain a map I from S ′(R2) to the space D′(R+
� ) of distributions on R+

� . Noticing
by a polar change of coordinates that R �→ R

(∫
S1
F (ϑε) [Rv]dv

)
is the image under

I of F(ϑε), and that I is continuous with respect to the natural topologies of S ′(R2)
and D′(R+

� ), we thus see that R �→
∫
S1
F (ϑε) [Rv]dv has a limit in D′(R+

� ) as ε
goes to zero. The previous calculation shows that the limit is in fact the continuous
map

R �→ 1

R

∫
S1

ei〈x,v〉δRu⊥ [Rv]dv =
1

R
ei〈x,Ru⊥〉 +

1

R
ei〈x,−Ru⊥〉 =

2

R
cos

(
R〈x, u⊥〉

)
.

We can thus interpret (1) as identifying the limit, in D′(R+
� ), of R �→

∫
R2 ϑεJR as

ε goes to zero in R and thus ϑε goes to δx+Ru in S ′(R2). This may seem far-fetched,
but Figure 2 is there to remind us that the interpretation can be rather convincing;
in addition, the fact that the biological receptive profiles RLGN do rapidly decrease
at infinity makes it all the more natural in our context to consider (2) before going
over to (1).

1.4. We alluded above to the fact that the plane waves and the Bessel function JR
sit inside the structure of the Euclidean motion group: if one starts with the space
of smooth (and, say, bounded) functions on R2, equipped with the natural action of
the Euclidean motion group, and if one looks for the invariant subspaces, the space
of functions whose Fourier transform is concentrated on a circle of radius R appears
as an irreducible invariant subspace (for details, see for instance the Introduction
of [9], especially Theorem 2.6). The above special functions are the only elements
in that space which are invariant under a one-dimensional Lie subgroup of the
Euclidean group: the plane wave x �→ ei〈Ru,x〉 is, along with its conjugate and
the linear combinations of the two, the only element invariant under Ru, and the
Bessel function x �→ JR(x− x0) is (up to a scalar multiplication) the only function
invariant under the subgroup of rotations around x0.

In this short paper, we show that the tools of noncommutative harmonic analysis
make it possible to exhibit a similar Moiré pattern on a special class of negatively-
curved homogeneous spaces–the symmetric spaces of noncompact type.

2. Notation

Suppose G is a real, connected, noncompact semisimple Lie group with finite
center.

2.1. We write g for the Lie algebra of G, fix a maximal compact subgroup K, and
choose Lie subgroups A and N (the Lie algebra of A will read a) so that G = KAN
is an Iwasawa decomposition of G. The choice of N comes with a choice of a positive
root system for the pair (g, a); we write ρ for the corresponding half-sum of positive
roots, and a�+ for the corresponding (open) positive Weyl chamber in the dual a�.

We write M for the centralizer of A within K, and B for the compact quotient
K/M . We assume the Haar meaure of K to be normalized in such a way that the
volume of B is one. We also assume G-invariant measures to have been chosen on
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G and the various subgroups and quotients in a coherent manner (see Helgason
[9]). The integrations to come will be performed with respect to these invariant
measures, lest some precision be given.

2.2. LetX be the Riemannian symmetric space (of the noncompact type)G/K. Let
us follow Helgason [10] in calling the orbit in X of any conjugate of N a horocycle.
If g = k0a0n0 is in G, the subgroup gNg−1 = k0Nk−1

0 depends only on the image
b0 = k0M of k0 in B; let us say that the orbits of gNg−1 in X have direction b0.

When x is in X and b is in B, let us write ξ(b, x) for the horocycle through x
with direction b; it is the orbit of x under the N -conjugate corresponding to b as
above.

Suppose b is in B and x = naK is in X; let us use the Iwasawa projection
A : G �→ a (defined as nak �→ logA(a)) and set Δ(b, x) = A(b−1x̃) ∈ a, where x̃ is
any lift of x in G. The element Δ(b, x) of a depends only on the horocycle ξ(b, x):
when ξ(b, x) and ξ(b′, x′) coincide, so do Δ(b, x) and Δ(b′, x′).

2.3. When G equals SU(1, 1) and acts through homographies on the open unit disk
D in C, the stabilizer for the origin 0 is a maximal compact subgroup K of G,
isomorphic to SO(2); the horocycles in D (whose above definition depends only on
the choice of K) are the circles which are tangent to D at a point of its boundary
(see Figure 3); it is then natural to identify the direction of a horocycle with the
tangency point.

Figure 3. A horocycle in D.

3. The Fourier-Helgason transform on X

3.1. Suppose λ is in a� and b is in B. Set

eλ,b : X →R

x �→e〈iλ+ρ | Δ(b,x)〉.

The function eλ,b takes a single value on each horocycle with direction b (see Figure
4). It is a building block for G-invariant harmonic analysis on X in much the same
way as plane waves are for Fourier analysis on Euclidean space.
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Figure 4. This is a plot of the phase levels of a Helgason wave
(the growth factor has been deleted).

3.2. When f is a map from X to C, the Fourier-Helgason transform of f is the map

f̂ : (λ ∈ a
�, b ∈ K/M) �→

∫
X

e−λ,b(x)f(x)dx,

defined on the subset of a� × K/M where the above integral converges; it is for
instance defined on all of a�×K/M if f is a smooth function with compact support.

When the hat is too short for the notation to be legible, we write F(f) instead of f̂ .
When f is an integrable function on X, it is no longer obvious that this integral

should converge for (λ, b) ∈ a� ×K/M ; yet one can show ([10], p. 209) that it does
converge for (λ, b) in a� ×B0, with B0 a full-measure subset of B.

3.3. In what follows, we will need an extension of the Fourier-Helgason transform to
distributions onX, and a non-Euclidean analogue of Schwartz-class functions and of
tempered distributions. In order to get to the point more quickly, the corresponding
definitions of S(X), S ′(X) and their counterparts over a×K/M have been relegated
to section 6 below (see [10], around p. 214). But even when f is only integrable,

when f̂ is integrable with respect to the measure
(
|c(λ)|−2dλ

)
⊗ db on a� ×K/M

(the measure features Harish-Chandra’s c-function), the following inversion formula
will hold for almost every x in X :

f(x) =
1

|W |

∫
a�×B

f̂(λ, b) eλ,b(x) |c(λ)|−2dλdb.

Here |W | is the order of the Weyl group W (g, a); the c-function is real-analytic on
the complement in a� of a finite union of hyperplanes, but we will not need the
details of its definition.

3.4. When shifting from Euclidean space to symmetric spaces of the noncompact
type, there are often ways to translate interesting questions about the usual Fourier
transform (like the Plancherel formula, the Paley-Wiener theorem, etc.) into ques-
tions on the Fourier-Helgason transform, and the answers often show some likeness
in spite of some important differences due to the curvature of X and the ensuing
growth at infinity of Helgason’s waves.
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4. Elementary spherical functions

4.1. Helgason’s waves eλ,b make G-invariant harmonic analysis on G/K, a subject
depicted in detail in his work, look familiar; before Helgason made it look so, the
fact that the function obtained by constructive interference from all Helgason waves
with frequency λ is the spherical function ϕλ had already proved to be a key point
in Harish-Chandra’s program for studying the representation theory of G (see [6]).

4.2. For each λ ∈ a�, the map

ϕλ : G → C

g �→
∫
B

eλ,b(gK) db

takes the value 1 at zero, is left-and-right K-invariant and is an eigenfunction for
all G-invariant differential operators on G: it is an elementary spherical function
of G. The only functions with the three properties in the previous sentence are the
ϕλ, λ ∈ a�, and two functions of this type are equal if and only if the elements of
a� defining them are on the same orbit for the action of the Weyl group on a�.

4.3. Let us recall that the K-invariant version of Fourier-Helgason analysis led
Harish-Chandra to define the c-function and opened the way towards the Plancherel
formula for G: if f is a smooth function on G which has compact support and is
K-bi-invariant, let us write f̃(λ) =

∫
G
f(g)ϕ−λ(g)dg for λ ∈ a�; then

f �→ f̃ extends to an isometry between L
2(K\G/K) and L

2
(
a
�
+, |c(λ)|−2dλ

)
.

5. A moiré pattern

5.1. In the next few paragraphs, we shall prove that a synthesis formula holds in
the opposite direction and that Helgason’s waves can be recovered by constructive
interference from spherical functions whose centers of symmetry cluster along a
horocycle.

To be precise, let us choose a “frequency” λ in a� and a point in the boundary–

say the identity coset b0 = 1KM in B. When y is in X, let us write ϕ
[y]
λ for the only

element in the eigenspace Eλ(X) from [10, chapter 6],1 which takes the value 1 at y
and is insensitive to left- and right-translations of the variable along an element of
the stabilizer of y in G. We are going to argue that for every x in X, the equality2

(3)

∫
ξ(b0,0)

ϕ
[y]
λ (x) dy =

|c(λ)|2
|W |

∑
w∈W

ewλ,b0(x)

holds in a weak sense analogous to (1): here is the statement of what we are actually
going to prove.

Choose a family (ϑε)ε>0 of Schwartz functions on X which, as ε goes to zero,
goes in S ′(X) to the Dirac distribution over the horocycle ξ(b0, x)–an example is

1This is the common eigenspace for G-invariant differential operators on X which contains ϕλ.
2In the right-hand side of (3), the averaging over W mirrors the appearance of an even,

real-valued cosine wave (rather than a complex-valued plane wave) in (1), and the presence of
the c-function mirrors the normalization coming from the polar change of coordinates used for
proving (1) (see section 4).
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ϑε(y) =
1

εdim(A)�
(

d(y,ξ(b0,x))
ε

)
�

(
εd(y, o)2

)
, where d is the Riemannian distance in

X and � is the bump function introduced above.

Proposition. When x is a point in X, the continuous function

λ ∈ a
� �→ |c(λ)|2

|W |
∑
w∈W

ewλ,b0(x)

is the limit, in D′(a�/W ), of λ �→
∫
ξ(b0,0)

ϑε(y)ϕ
[y]
λ (x) dy as ε goes to zero.

Note that for every ε > 0, λ �→
∫
ξ(b0,0)

ϑε(y)ϕ
[y]
λ (x) dy is a well defined, contin-

uous, W -invariant function of λ.

Figure 5. The left picture shows a sum of five, and the right pic-
ture the detail of a sum of sixty, spherical functions whose centers
of symmetry lie on the horocycle ξ(−1, 0).

5.2. If y ∈ X is where the origin o = eK in G/K is sent by gy ∈ G, then the function

ϕ
[y]
λ is none other than z �→ ϕλ(g

−1
y · z). When y is on the horocycle ξ(b0, o), the

element gy can be assumed to belong to N and g−1
y · x is on the horocycle ξ(b0, x).

So (3) is a weak version of

(4)

∫
ξ(b0,x)

ϕλ =
|c(λ)|2
|W |

∑
w∈W

ewλ,b0(x).

But disregarding the convergence questions for a few lines, the reconstruction for-
mula by Harish-Chandra cited above (see also [5]) formally yields :

(5)

∫
ξ(b0,x)

ϕλ =

∫
ξ(b0,x)

dy

∫
B

eλ,b(y)db.

5.3. If we swap the integrals in (5), we will end up with the integral over B of the
Fourier-Helgason transform of the characteristic function of the horocycle ξ(b0, x),
and this will bring us very close to the desired conclusion. But we will also end up
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with divergent integrals. Before we address this, we record the following lemma:

Lemma. The Helgason-Fourier transform of the Dirac distribution on the horocy-
cle ξ(b0, x) (viewed as a tempered distribution on a� ×B) is:

(6) [λ �→ eλ,b0(x)]⊗ δb=b0 .

This is an analogue of the projective property of the Fourier transform on Euclidean
space used in section 1 above, but it should be noted that the privileged direction
in the Helgason-Fourier transform is that of the horocycle itself rather than an
“orthogonal” one.

Proof. Let us write Tb0,x ∈ S ′(a� × B) for the distribution (6). What we have to
check is that for every ψ in S(X),

〈Tb0,x|ψ̂〉 =
∫
ξ(b0,x)

ψ,

in other words

(7)

∫
a�

eλ,b0(x)ψ̂(λ, b0)dλ =

∫
ξ(b0,x)

ψ.

Let us first assume ψ to have compact support and set out from the fact that

ψ̂(λ, b0) =
∫
X
e〈−iλ+ρ,A(y)〉ψ(y)dy. We now use the integration formula on p. 266

of [9]: if f lies in the space D(X) of smooth and compactly supported functions,
then ∫

X

f(y)dy =

∫
a

e−2〈ρ,H〉dH

∫
N

f(neH · o)dn.

Setting F (H) =
∫
N
ψ(neH · o)dn for H in a, we obtain

ψ̂(λ, b0) =

∫
a

e〈−iλ+ρ,H〉F (H)dH

(in other words, the Fourier transform of ψ is the Euclidean-Fourier transform on
a of its Radon transform over the family of horocycles with direction b). As a
consequence, we obtain

eλ,b0(x)ψ̂(λ, b0) =

∫
a

e〈iλ+ρ,A(x)−H〉F (A(x)−H)dH.

But this is the Euclidean-Fourier transform of the function

γ : H �→ e〈ρ, H〉 F (A(x) − H).

When we integrate eλ,b0(x)ψ̂(λ, b0) over a
� as we must in order to get (7), we can

use the ordinary Fourier inversion formula (applicable here because γ has compact
support and is smooth) and we obtain∫

a�

eλ,b0(x)ψ̂(λ, b0)dλ = γ(0) = F (A(x)) =

∫
N

ψ(neA(x) · o)dn,

but this is none other than
∫
ξ(b0,x)

ψ. Thus δξ(b,x) and F−1 ([λ �→ eλ,b0(x)]⊗ δb=b0),

both tempered distributions on X (see (A1) below), coincide over D(X); of course
then they do coincide as tempered distributions on X. Taking Fourier transforms
proves the lemma. �
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5.4. Let us come back to the moiré phenomenon (3). Remembering our initial wish
to swap the integrals in (5), let us use the fact that ϑε is rapidly decreasing for
every ε > 0 and write∫

X

ϑεϕλ =

∫
B

(∫
X

ϑεeλ,bdb

)
=

∫
B

ϑ̂ε(λ, b)db.

The right-hand side is W -invariant in λ (this is obvious from the fact that the
left-hand side is, but see also [4, Theorem 2], and [10, Lemma 1.2 p. 200]). We can
then rewrite the equality as∫

X

ϑεϕλ =
1

|W |
∑
w∈W

∫
B

ϑ̂ε(wλ, b)db.

Let us now have ε go to zero, so that in the space of tempered distributions
on X, ϑε goes to the Dirac distribution over ξ(b0, x). Because of the continuity
properties recalled below in (A1) and (A2), as ε goes to zero, there is a limit in
D′(a�/W ) to the family of distributions given by integration against

λ �→ |c(λ)|−2 1

|W |

∫
B

( ∑
w∈W

ϑ̂ε(wλ, b)

)
db

with respect to the measure on a� inherited from Lebesgue measure. We then see
that the distribution associated with integrating against λ �→ |c(λ)|−2

∫
X
ϑεϕλ goes,

in D′(a�/W ), to the distribution
∫
B
F
(
δξ(b0,x)

)
(precisely defined in section 6.2

below), of which the above Lemma says that it is associated with integrating against
the almost-everywhere-defined function λW �→ 1

|W |
∑

w∈W

ewλ,b0(x) with respect to

the Lebesgue-inherited measure.
After a very slight change notation for ϑ in order to revert back from (4) to (3), we

conclude that λW �→
∫
ξ(b0,0)

ϑ(y)ϕ
[y]
λ (x) dy goes, in D′(a�/W ), to the distribution

given by integration against λW �→ |c(λ)|2 1
|W |

∑
w∈W ewλ,b0(x) with respect to the

usual Lebesgue-inherited measure on a�/W : that was the weaker form of (3) aimed
at in this short paper, and the Proposition is now proven.

6. Appendix: Tempered distributions on X and their Fourier

transforms

6.1. Schwartz functions on X. Let us writeD(G) for the algebra of left-invariant
differential operators on G, and D̄(G) for the algebra of right-invariant differential
operators.

Recall that every element of G can be written as a product k1ak2 with k1, k2 in
K and a in A, and that two such decompositions have their a-part related by the
action of an element in the Weyl group. If we set |g| = | log(a)| (the right-hand side
refers to a Euclidean norm on a), we can make the following definition: a smooth
function f on G is rapidly decreasing (or Schwartz ) if for every � ∈ N, L ∈ D(G)
and R ∈ D̄(G),

(8) supg∈G

∣∣(1 + |g|)�Ξ(g)−1(LRf)(g)
∣∣ < ∞,

where the map Ξ is the spherical function ϕ0. In [6, Theorem 3], we find the
following estimate:

Ξ(g) ≤ c(1 + |g|)de−〈ρ| log a〉,
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where c is a positive real number and d a nonnegative integer.
The rapidly decreasing functions on G gather in the Schwartz space S(G); those

which are right-invariant under K gather in the Schwartz space S(X). The quan-
tities (8) provide natural seminorms turning S(X) into a Fréchet space; we write
S ′(X) for the topological dual S(X), the space of tempered distributions on X.

6.2. Schwartz functions on a� ×K/M and continuity of the Fourier trans-
form. When taking the Helgason-Fourier transform of a function in S(X), we get
a smooth function on a� ×K/M which satisfies ([10, chap. 3, thm 1.10]):

(9) For each P ∈ R[X,Y ] and every � ∈ N,

sup
λ,b

∣∣(1 + |λ|)�
(
P (ΔK/M ,Δa�) · g

)
(λ, b)

∣∣ < ∞

where ΔK/M , Δa� are the Laplace-Beltrami operators on B and a�.
Let us write S(a�×K/M) for the space of smooth functions on a�×B for which

(9) holds; as before it comes with natural seminorms which make it a Fréchet space;
taking Fourier-Helgason transforms of course defines a continuous, injective map
from S(X) into S(a� ×K/M).

Harish-Chandra and Helgason proved that this map defines a homeomorphism
between the subspaces gathering the K-invariants in both spaces ([10, th. 1.17]; see
also Anker [2]). Eguchi [3,4] proved (together with Okamoto) that the Fourier trans-
form of an element f of S(a�×K/M) satisfies some form of Weyl-group invariance

(see [4, Theorem 2]): the averages over B of b �→ f̂(λ, b) b �→ f̂(wλ, b) coincide for
every w in W . Writing S(a�×K/M)W for the space of Schwartz functions on a�×
K/M satisfying that Weyl-group invariance condition, Eguchi and Okamoto proved
that F induces a homeomorphism between S(X) and
S(a� ×K/M)W .

Now, define the space S ′(a� ×K/M) of tempered distributions on a� ×K/M as
the topological dual of S(a ×K/M)W , the space S ′(X) of tempered distributions
on X as the topological dual of S(X), and if T is a tempered distribution on X,

define T̂ as the distribution ψ = ϕ̂ ∈ S(a� ×B)W �→ 〈T | ϕ〉 on a� ×B. In section
5.3, we used the following fact:

(A1) T �→ T̂ defines a homeomorphism between S ′(X) and S ′(a� ×K/M).

To complete our list of disribution-theory-based ingredients for section 5, let us
record the following remark: if T is an element of S ′(a ×K/M), one can define a
distribution U on a� (“the integral of T over K/M”) by setting, for ζ in D(a�/W ),

〈U | ζ〉 = 〈T | ζ̃ ⊗ 1B〉 (where ζ̃ is the inflation of ζ to a�). Writing
∫
B
T for the

distribution U , we then of course have:

(A2) T �→
∫
B

T is continuous as a map from S ′(a� ×K/M) to D′(a�/W ).

We should point out here that an almost-everywhere defined and bounded func-
tion u on a� defines an element of S ′(a� ×K/M), but that given the form of the
Plancherel formula for the Helgason-Fourier transform (paragraph 4.3 above; see
[10, p. 203]), if the above definition of the Fourier transform of tempered distribu-
tions is to extend the Helgason-Fourier transform of smooth and rapidly decreasing
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functions, the distribution should be given by integration against

|c(λ)|−2 u(λ, b) dλ⊗ db

rather than against u(λ, b)dλ⊗ db.
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