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Abstract. A generalized nth Riemann derivative of a real function f at x is
given by

lim
h→0

1

hn

m∑

i=1

Aif(x+ aih).

The above sum ΔA is called an nth generalized Riemann difference. The data
vector A = {A1, . . . , Am; a1, . . . , am} satisfies suitable conditions that make

the limit agree with f (n)(x) whenever this exists. We explain the underlying
reason for a surprising relationship between certain generalized nth Riemann
derivatives recently discovered by Ash, Catoiu, and Csörnyei. We character-
ize all pairs (ΔA,ΔB) of generalized Riemann differences of any orders for
which A-differentiability implies B-differentiability. Two generalized Riemann
derivatives A and B are equivalent if a function has a derivative in the sense
of A at a real number x if and only if it has a derivative in the sense of B
at x. We determine the equivalence classes for this equivalence relation. The
classification of these by now classical objects of real analysis was made pos-
sible by using a less known and less studied notion from algebra, the group
algebra of the multiplicative group R+ of the positive reals over the field R of
real numbers.

1. Introduction

At the dawn of calculus, Leibniz was denoting the nth derivative as dn

dxn , which
indicates that the nth derivative might be usefully thought of as a single limit pro-
cess applied to a fraction with an nth difference for a numerator. By the middle
of the nineteenth century, Riemann, Cantor, and Schwarz were well aware of the
pointwise difference between the Schwarz (second Riemann) derivative and the or-
dinary second derivative. Peano and de la Vallée-Poussin independently developed
another notion of generalized differentiation toward the end of that century. Several
other generalized derivatives are mentioned in [18]. In the 1930s generalized Rie-
mann derivatives were defined by A. Denjoy in [9]. In 1927, A. Khintchine showed
the symmetric derivative (first Riemann) and the ordinary first derivative to be a.e.
equivalent [13]. This was greatly extended by Marcinkiewicz and Zygmund in [14],
who showed the nth Peano derivative and the nth symmetric Riemann derivative
to be equivalent a.e. In the 1960s many more a.e. equivalences were discovered; see
[2].
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This paper revisits pointwise equivalence and asks the right question for point-
wise convergence: not whether some nth order generalized Riemann derivative’s
existence implies the existence of the ordinary or Peano derivative, but rather,
when does the existence of some nth order generalized Riemann derivative imply
the existence of some other nth order generalized Riemann derivative? In particu-
lar, this answers the question of when two distinct generalized Riemann derivatives
are pointwise equivalent.

1.1. Motivation. The nth Riemann difference of a function f is the difference

Δnf(x, h) =

n∑
k=0

(−1)k
(
n

k

)
f(x+ (n− k)h),

and the nth symmetric Riemann difference of f is

Δs
nf(x, h) =

n∑
k=0

(−1)k
(
n

k

)
f(x+ (

n

2
− k)h).

The function f is n times Riemann (resp. symmetric Riemann) differentiable at x
if the limit Rnf(x) = limh→0 Δnf(x, h)/h

n (resp. Rs
nf(x) = limh→0 Δ

s
nf(x, h)/h

n)
exists as a finite number. If f is n times differentiable at x, one can use its nth Taylor
polynomial about x to see that f is n times Riemann and symmetric Riemann
differentiable at x and Rnf(x) = Rs

nf(x) = f (n)(x). With the exception of the
n = 1 forward Riemann case, where the definition of Riemann differentiation is the
same as the one for ordinary differentiation, the converse of this is in general false.
If n ≥ 2, the function

f(x) =

{
0, if x ∈ Q,

x, if x /∈ Q

is n times Riemann differentiable at x = 0, without being first order differentiable
at zero. In the symmetric Riemann case, every discontinuous at zero odd function is
symmetric Riemann differentiable at zero of all even orders without necessarily be-
ing differentiable at zero of any order, and every discontinuous at zero even function
is symmetric Riemann differentiable at zero of all odd orders without necessarily
being differentiable at zero of any order. Moreover, symmetric Riemann differen-
tiability of a certain order does not imply symmetric Riemann differentiability of a
different order. For example, the function

f(x) =

{
0, if x /∈ Q,

1, if x ∈ Q

is symmetric Riemann differentiable at x = 0 of all odd orders, and it is not
symmetric Riemann differentiable of any even order. This example might lead one
to guess that in the symmetric Riemann case, higher order differentiability implies
lower order differentiability when the two orders have the same parity. This is
disproved in greater generality in Section 6.1, Corollary 2.

Riemann derivatives were generalized in [2]. Some general properties of ordinary
differentiation have been shown to hold to a certain extent for generalized Riemann
differentiation; see [7], [10], [11], [12], [17], [19], [20], and [21]. An application to con-
tinuity is given in [1]. Sufficient conditions that make certain first order generalized
Riemann differentiations imply ordinary first order differentiations for continuous
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or Lipschitz functions appeared in [16]. A survey of results on generalized Riemann
derivatives is given in [3].

A generalized nth Riemann difference of a function f is a difference of the form

(1.1) ΔAf(x, h) =
m∑
i=1

Aif(x+ aih),

where A = {A1, . . . , Am; a1, . . . , am} is a set of 2m parameters, with a1, . . . , am
distinct, whose elements satisfy the Vandermonde conditions

∑m
i=1 Aia

j
i = n! · δjn,

for j = 0, 1, . . . , n. The A-derivative of f at x is defined by the limit

DAf(x) = lim
h→0

ΔAf(x, h)

hn
.

For any A, the derivative associated with A is a generalized Riemann derivative.
Conversely, any generalized Riemann derivative is an A-derivative for some A. For
simplicity, we will use the notation A-derivative to mean both a particular and a
generalized Riemann derivative. Context will always make clear which is meant.
We have found this abuse of notation convenient. (For example, the A-derivatives
B = {1,−1; 1, 0} and C = {1,−1; 1/2,−1/2} are inequivalent, since |x| has a C-
derivative at x = 0 but not a B-derivative there.)

Most of the results for classical Riemann derivatives hold true for A-derivatives
of differentiable functions f . For example, it is true that

(1.2) ordinary nth derivative exists at x =⇒ every nth A-derivative exists at x,

and, as seen before, the converse of this is in general false for each n. By linear
algebra, the excess number e = m − (n+ 1) is non-negative. Some interesting
examples of A-derivatives with positive excess appear in numerical analysis; see [6]
and [8].

Our main motivation is the following theorem of [5], which, in the particular
case of n = 1, classifies all A-derivatives for which the converse of (1.2) is true.

Theorem 1.

(A) The first order A-derivatives which are dilates (h → sh, for some s �= 0) of

(1.3) lim
h→0

Af(x+ rh) +Af(x− rh)− 2Af(x) + f(x+ h)− f(x− h)

2h
,

where Ar �= 0 are equivalent to ordinary differentiation.
(B) Given any other A-derivative of any order n = 1, 2, . . . , there is a (Lebesgue)

measurable function f (x) such that DAf (0) exists, but the nth (Peano) de-
rivative fn (0) does not.

Remark 1. Part A of the above theorem displays some A-derivatives equivalent to
the ordinary first order derivative. Part B asserts that no first order A-derivative
that is not mentioned in Part A is equivalent to ordinary first order differentiation
and also that no higher order A-derivative is equivalent to ordinary differentiation
of the same order. This makes Theorem 1 the best possible result with regard
to reversing the implication in (1.2). On the other hand, since the first forward
Riemann derivative is the same as the first ordinary derivative, Theorem 1 classifies
all A-derivatives of order 1 that are equivalent to the Riemann derivative R1f(x) =

limh→0
f(x+h)−f(x)

h . This leads to the following more general problem: given any
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generalized Riemann derivative B, determine all generalized Riemann derivatives
A such that

(1.4) B-derivative exists at x ⇐⇒ A-derivative exists at x.

This is the main goal of the present work.

Remark 2. The terms of the numerator in (1.3) fall into two categories: the sum
of the first three terms is a scalar multiple of an r-dilate of the even difference
f(x + h) + f(x − h) − 2f(x), and the remaining two terms add up to the odd
difference f(x+ h)− f(x− h). This motivates us to expect that a classification of
A-derivatives given by the equivalence (1.4) will be stated in terms of dilates, even
differences, and odd differences.

1.2. Even and odd differences. A (not necessarily generalized Riemann) differ-
ence

ΔAf(x, h) =
∑

Aif(x+ aih)

(where A = {A1, . . . , Am; a1, . . . , am} is a set of 2m parameters with a1, . . . , am dis-
tinct) is even if ΔAf(x,−h) = ΔAf(x, h) and is odd if ΔAf(x,−h) = −ΔAf(x, h).
For example, the symmetric Riemann difference Δnf(x, h) is even when n is even
and is odd when n is odd, while ΔAf(x, h) = 2f(x+h)+f(x−h)−3f(x) is neither
even nor odd.

Each difference ΔA gives rise to an even difference Δev
A and an odd difference

Δodd
A , defined as

(1.5)
Δev

A f(x, h) =
ΔAf(x, h) + ΔAf(x,−h)

2
,

Δodd
A f(x, h) =

ΔAf(x, h)−ΔAf(x,−h)

2
.

The difference ΔA is even if and only if Δev
A = ΔA, and it is odd if and only if

Δodd
A = ΔA. In addition, we have

(1.6) ΔAf(x, h) = Δev
A f(x, h) + Δodd

A f(x, h).

Conversely, whenever ΔA is written as a sum ΔA = ΔB+ΔC of an even difference
ΔB and an odd difference ΔC , we must have ΔB = Δev

A and ΔC = Δodd
A . Relation

(1.6) is therefore the unique writing of ΔA as a sum of an even difference and an
odd difference, the components of ΔA.

1.3. Results. Our main result is the classification of all A-derivatives given by the
equivalence of generalized Riemann differentiation of (1.4). Its statement can be
written in a compact form by correlating parity of the order of the derivative and
the parity of the component differences. For this, we define two maps:

ε = ε(n) =

{
ev, if n even,

odd, if n odd,
and ε′ = ε′(n) =

{
odd, if n even,

ev, if n odd.

Given an nth generalized Riemann difference ΔBf(x, h), by the Vandermonde con-
ditions, the difference ΔBf(x, sh)/s

n is the only scalar multiple of its s-dilate that
is also an nth generalized Riemann difference. We call this a scaling of ΔBf(x, h).
We have found the following complete classification of A-derivatives.
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Theorem 2. Let A and B be generalized Riemann derivatives of orders m and n.
Then B is equivalent to A if and only if m = n and there are non-zero constants
A, r, and s so that

(1.7)
ΔBf (x, h)

hn
=

Δε
Af(x, sh) +AΔε′

Af(x, rh)

(sh)n
.

This means that Δε
Bf(x, h) is a scaling of Δε

Af(x, h) and Δε′

Bf(x, h) is a non-zero

scalar multiple of a dilate of Δε′

Af(x, h).

Example 1.
(i) Let ΔA = Δs

n be the nth symmetric Riemann difference. Theorem 2 says that
the only generalized derivatives that are equivalent to the nth symmetric Riemann
derivative Rs

n are the non-zero scalings of it.
(ii) By taking ΔAf(x, h) = Δ1f(x, h) = f(x + h) − f(x), the first (forward)

Riemann difference, the computation

Δε
Af(x, h) = Δodd

A f(x, h) = [f(x+h)−f(x)]−[f(x−h)−f(x)]
2 = f(x+h)−f(x−h)

2 ,

Δε′

Af(x, h) = Δev
A f(x, h) = [f(x+h)−f(x)]+[f(x−h)−f(x)]

2 = f(x+h)−2f(x)+f(x−h)
2

shows that the classification in Theorem 2 generalizes the one in Theorem 1.
(iii) The first order A-derivative with excess e = 1 given by

f∗ (x) = lim
h→0

(
1
2 − τ

)
f (x+ (τ + 1)h) + 2τf (x+ τh)−

(
1
2 + τ

)
f (x+ (τ − 1)h)

h
,

where τ = 1/
√
3, arises in numerical analysis; see [6], [8]. Theorem 2 asserts that

the most general first order A-derivative equivalent to f∗ (x) is of the form

lim
h→0

Δoddf (x, sh)

sh
+A

Δevf (x, rh)

h
,

where s, r, and A are non-zero constants and

Δoddf (x, h) =
(
1
2 − τ

) f(x+(τ+1)h)−f(x−(τ+1)h)
2 + 2τ f(x+τh)−f(x−τh)

2

−
(
1
2 + τ

) f(x+(τ−1)h)−f(x−(τ−1)h)
2 ,

Δevf (x, h) =
(
1
2 − τ

) f(x+(τ+1)h)+f(x−(τ+1)h)
2 + 2τ f(x+τh)+f(x−τh)

2

+
(
1
2 + τ

) f(x+(τ−1)h)+f(x−(τ−1)h)
2 .

In particular, f∗ is not equivalent to ordinary differentiation.

We actually have a much more general theorem. For a given generalized Riemann
derivative B, it classifies all generalized Riemann derivatives A such that

(1.8) B-derivative exists at x =⇒ A-derivative exists at x.

The result is as follows:

Theorem 3. Let A and B be generalized Riemann derivatives of orders m and n,
respectively. Then B-differentiation implies A-differentiation if and only if m = n
and, for every function f , Δε

Af(x, h) and Δε′

Af(x, h) are finite linear combinations

Δε
Af(x, h) =

∑
i

UiΔ
ε
Bf(x, uih), Δε′

Af(x, h) =
∑
i

ViΔ
ε′

Bf(x, vih)

of non-zero ui-dilates of Δε
Bf(x, h) and vi-dilates of Δε′

Bf(x, h).
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A basic fact about ordinary derivatives is that the existence of a lower order
derivative does not imply the existence of a higher order derivative. The same is
true about generalized Riemann derivatives. Specifically, the next example shows
that the existence of a generalized Riemann derivative of a certain order does not
imply the existence of any generalized Riemann derivative of higher order. This
rules out the case m > n in the above theorem.

Example 2. Fix A = {A1, . . . ; a1, . . .} of order m and B = {B1, . . . ; b1, . . .} of
order n, with m > n. We construct a function f which is B-differentiable at zero
and not A-differentiable at zero. Let K be the subfield of R generated over the
rationals by all ai’s and bi’s, and define

f(x) =

{
xm, if x ∈ K,

0, if x /∈ K.

Note that by the definitions of K and f , the operators limh→0,h∈K and limh→0,h/∈K

act independently. They are easy to compute when applied to the quotients
ΔAf(0, h)/h

m and ΔBf(0, h)/h
n. In the first case, these are the different num-

bers

lim
h→0
h∈K

ΔAf(0, h)

hm
=

dm(xm)

dxm
(0) = m! and lim

h→0
h/∈K

ΔAf(0, h)

hm
= 0,

so DAf(0) does not exist. In the second case, the limits

lim
h→0
h∈K

ΔBf(0, h)

hn
=

dn(xm)

dxn
(0) = 0 and lim

h→0
h/∈K

ΔBf(0, h)

hn
= 0

are equal, so DBf(0) exists. In both cases we used the fact that if the kth ordinary
derivative of a function exists, then any kth generalized Riemann derivative exists
and they are equal. Since K is countable, f is measurable.

Example 3.
(i) By taking ΔBf(x, h) = Δ1f(x, h) = f(x + h) − f(x), the first Riemann

difference we studied before, by Theorem 3 the first A-derivatives implied by R1

look like a first order linear combination of non-zero dilates of Rs
1 plus a linear

combination of dilates of Rs
2. It is not hard to see that all these form the class

of all first order A-derivatives. Indeed, we already know that “first order ordinary
differentiable implies A-differentiable, for every first order A-derivative.”

(ii) By Theorem 2, there are no even first order and no odd second order
A-derivatives. More generally, for each positive integer n, there are no nth A-
derivatives of opposite parity. By Theorem 3, the first symmetric Riemann de-
rivative Rs

1 implies all odd first order A-derivatives, and the second symmetric
Riemann derivative Rs

2 implies all even second order A-derivatives. As we shall
see next, these two implications do not extend to higher order symmetric Riemann
derivatives.

(iii) Consider the third difference ΔA = 1
2f(2h)− f(h) + f(−h)− 1

2f(−2h), and
let ΔB = Δs

3f(0, h) be the third symmetric Riemann difference. We claim that
ΔA is not a linear combination of dilates of ΔB to deduce, by Theorem 3, that the
generalized Riemann derivative corresponding to A is not implied by the symmetric
derivative Rs

3. To prove the claim, suppose ΔA is a linear combination of dilates of
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ΔB. We write

ΔA =

k∑
i=1

λiΔ
s
3f(0, rih) =

k∑
i=1

λi

[
f(

3

2
rih)− 3f(

1

2
rih) + 3f(−1

2
rih)− f(−3

2
rih)

]
,

where λi �= 0, for all i. Since Δs
3 is odd, all ri’s may be taken to be positive, say

0 < r1 < r2 < · · · < rk. Note that the terms of the form Af(rh) for the largest
(resp. smallest) positive r that appear in the expansions of both sides must be
identical. The largest of the dilates on each side appears only once, so 2 = 3

2rk;

similarly, each smallest positive dilate appears only once, so 1 = 1
2r1. In particular,

rk = 4
3 is smaller than r1 = 2, a contradiction.

More elegant equivalent formulations of the statements of Theorems 2 and 3 are
given in Theorem 5, using the language of ideals of the group algebra kG, where
the ground field k = R is the field of real numbers, and the group G = R× is the
multiplicative group of non-zero real numbers. Then both theorems are proved in
their reformulated forms.

A second kind of equivalence for generalized Riemann derivatives is a.e. equiva-
lence. Say that two nth order generalized Riemann derivatives are a.e. equivalent
if for every measurable function, the set of all real x where exactly one of them
exists has measure 0. In the 1930s, J. Marcinkiewicz and A. Zygmund proved that
the Riemann derivative and the symmetric Riemann derivative are a.e. equivalent;
see [14]. In 1967 it was shown that all nth order generalized Riemann derivatives
are a.e. equivalent; see [2]. This equivalence relation is as coarse as possible, having
only one class for each degree. Until recently, the authors believed that the equiv-
alence relation discussed in this paper was as fine as possible, each class consisting
only of the scalings of a single A-derivative. Theorem 1 corrected that false notion.
Theorem 2 gives the exact answer.

The results of this paper were recently extended to the complex domain in [4].

2. Orders of even and odd differences

Let ΔAf(x, h) =
∑m

i=1 Aif(x + aih) be an nth generalized Riemann difference
as defined in (1.1). By (1.5), the decomposition (1.6) can be written as

(2.1)

ΔAf(x, h) =
∑
i

Bi[f(x+ bih) + f(x− bih)− 2f(x)]

+
∑
i

Ci[f(x+ cih)− f(x− cih)],

where the bi’s and ci’s are all distinct and positive. The architecture of the above
brackets automatically implies the nth Vandermonde condition

∑
i Ai = 0 corre-

sponding to j = 0. The nth Vandermonde system then translates into the following:

(2.2)
∑
i

Bi[b
j
i + (−bi)

j ] +
∑
i

Ci[c
j
i − (−ci)

j ] = n!δnj , for j = 1, 2, . . . , n.

If S1(j) and S2(j) are the above left and right sums, an easy consequence of (2.2)
is that

(2.3) S1(j) = 0, if j is odd, and S2(j) = 0, if j is even.
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Assume that n is an even number. Then (2.2) and (2.3) imply that

(2.4) S1(j) = n!δnj , if j = 2, 4, . . . , n, and S2(j) = 0, if j = 1, 3, . . . , n− 1.

The systems (2.3) and (2.4) together say that Δev
A satisfies the Vandermonde equa-

tions of order n, for j = 1, 2, . . . , n, and Δodd
A satisfies Vandermonde equations of

order higher than n, for j = 1, 2, . . . , n. With the Vandermonde equation for j = 0
trivially satisfied for both component differences, we deduce that Δev

A is of order n
and Δodd

A is either zero or of order > n. A similar discussion is conducted when n
is an odd number.

Let ΔAf(x, h) =
∑m

i=1 Aif(x + aih) be a difference of a function f . By (1.6)

and the notation of Section 1, we write ΔAf(x, h) = Δε
Af(x, h) + Δε′

Af(x, h) as a
sum of its even and odd parts, where ε respects the parity of n and ε′ the opposite
parity.

Theorem 4. The difference ΔAf(x, h) =
∑m

i=1 Aif(x + aih) is a generalized nth
Riemann difference if and only if the following two conditions hold:

(i) Δε
Af(x, h) is a generalized Riemann difference of order n;

(ii) Δε′

Af(x, h) is a scalar multiple of a generalized Riemann difference of order
> n.

Proof. One implication is already proved above. Conversely, suppose conditions (i)
and (ii) are satisfied and that n is an even number. By (2.4), condition (i) translates
into the Vandermonde system∑

i

Ai
aki + (−ai)

k

2
= n!δnk, for k = 0, 1, . . . , n,

and condition (ii) translates into
∑
i

Ai
aki − (−ai)

k

2
= 0, for k = 0, 1, . . . , n. We

have∑
i

Aia
k
i =

∑
i

Ai
aki + (−ai)

k

2
+
∑
i

Ai
aki − (−ai)

k

2
= n!δnk + 0 = n!δnk,

for k = 0, 1, . . . , n, so ΔAf(x, h) is an nth Riemann difference. The case when n is
odd is treated in a similar manner. �

3. Dilations and the group algebra of R×

The dilation by a non-zero real number r of the difference ΔAf(x, h) is the
difference

ΔBf(x, h) =
∑

Aif(x+ airh).

We write this as xr ·ΔA = ΔB. Since x1 ·ΔA = ΔA and xrs ·ΔA = xr · (xs ·ΔA),
dilation is a group action of the multiplicative group of non-zero real numbers R×

on the real vector space of all differences of f . On the other hand, since a linear
combination with real coefficients of dilates of a difference is also a difference, this
gives an action of the real vector space spanR{xr | r ∈ R×} on the same space of
differences. For example, we have (3x2−ex√

3) ·ΔA = 3(x2 ·ΔA)−e(x√
3 ·ΔA). The

group action and the vector space action give an action of the group algebra kR× of
the multiplicative group of the real numbers over the field k = R. This is the space
A = kR× = spank{xr | r ∈ R×}, with the multiplication of basis elements given by
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xrxs = xrs, for all r, s ∈ R×. For example, in A we have (2x1 − 7x−5)(
√
2x3 −

xπ) = 2
√
2x3 − 7

√
2x−15 − 2xπ + 7x−5π.

The above discussion can be formalized by saying that the space D = D(f, x, h)
of all differences of a function f at x and h without h-constant term becomes an
A-module via the map A×D → D, given by

(xr, f(x+ ah)) 	→ xr · f(x+ ah) := f(x+ rah), for all r, a ∈ R×.

We observe that the unique linear map θ : A → D, defined by θ(xa) = f(x+ ah),
for all a ∈ R×, is actually an onto A-module map. Indeed, θ(xrxa) = θ(xra) =
f(x+ rah) = xr · f(x+ ah) = xr · θ(xa). An easy application of this is that

D = θ(A) = θ(Ax1) = A · θ(x1) = A · f(x+ h),

so D is a cyclic A-module generated by f(x+h). Indeed, each difference ΔAf(x, h)
=

∑
i Aif(x+aih) of f without h-constant term Af(x) can be written as the action

(3.1) ΔAf(x, h) = (
∑
i

Aixai
) · f(x+ h).

For more properties of group algebras see [15].
We also define the algebra B to be the k-semigroup algebra of the multiplicative

semigroup (actually monoid) of all real numbers by adjoining the absorbing basis
element x0. Its multiplication is given by x0xr = x0, for all real numbers r. Since
x0 · f(x+ h) = f(x), in light of (3.1), the space of all differences of f at x and h is
a cyclic B-module generated by f(x+ h). Being more inclusive, the action of B is
more general than the action of its subalgebra A. On the other hand, the difference
between B and A is just the basis element x0. This translates into the space of all
differences of f at x and h splitting into differences that do and those that do not
contain f(x) as a term. Our concern being with nth A-differences of f , the only
adjustment we make between the actions of algebras A and B on f(x + h) is at
the Vandermonde conditions for j = 0. See the sentence following equation (2.1)
to understand how the j = 0 condition naturally fits into the theory.

We shall see that questions about generalized derivatives translate into questions
about principal ideals of A.

4. Properties of the groups R+
and R×

The multiplicative group R× of non-zero real numbers has a single torsion ele-
ment −1 of order two. Torsion elements in a group are its elements of finite order.
A torsion group is a group whose elements are all of finite order. The group isomor-
phism r 	→ (sign(r), |r|) gives a decomposition of R× as a direct product 〈−1〉×R+

of its torsion subgroup 〈−1〉 and its torsion-free subgroup R+.
We digress for a paragraph and recall coproducts and direct sums. The di-

rect product of a family of groups {Gi}i∈I is the Cartesian product
∏

i∈I Gi =
{(gi)i | gi ∈ Gi, i ∈ I}, with the componentwise multiplication. Their coproduct or
direct sum is the subgroup∐

Gi =
⊕
i∈I

Gi = {(gi)i | gi = 1Gi
, for all but finitely many i ∈ I}.

The above two definitions coincide precisely when the indexing set I is finite. When
dealing with multiplicative groups, we prefer the coproduct

∐
because the direct

sum notation ⊕ connotes additivity. The direct product enjoys the uniqueness
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of expression of elements by their components, while the coproduct additionally
requires the finiteness of expressions. The usual notion of a direct sum of vector
spaces is an abelian group direct sum with an additional scalar structure. The
finiteness condition is analogous to the property that every element of a vector
space is a finite linear combination of basis elements.

We show that the multiplicative group R+ is the coproduct of 2ℵ0 copies of Q. A
way to see this is to first notice that log : R+ → R is a group isomorphism from the
multiplicative group R+ to the additive group R (with inverse map exp : R → R+),
and observe that R is a direct sum of copies ofQ. Indeed, the field R is a vector space
over its subfield Q; hence it has a basis, say {log λi}i∈I (known as a Hamel basis).
So we see that R is a direct sum of the 2ℵ0 one-dimensional subspaces generated
by the basis elements. The subspaces are each isomorphic to Q as abelian groups.

In fact, it is apparent that log : R+ → R is also a Q-vector space isomor-
phism, where the scalar multiplication on the multiplicative abelian group R+

is defined by exponentiation. So now {λi}i∈I is a basis of R+ over Q, and the

span of each λi is written λQ
i . Thus we have the Q-vector space decomposition

R+ = exp(
∑

Q log λi) =
∐

λQ
i . Equivalently, every element of R+ is uniquely a

finite product
∏

λqi
i , with qi ∈ Q.

We consider the algebra of generalized polynomials k[x]Q where rational expo-

nents are allowed. One can define k[x]Q as the union
⋃

n>0 k[x
±1/n] of Laurent

polynomial rings using formal nth roots of the indeterminate x. Algebras of gen-
eralized polynomials k[xi | i ∈ I]Q in continuum many variables xi are defined
similarly. These algebras have bases of generalized monomials given by finite prod-
ucts

∏
xqi
i with qi ∈ Q where the multiplication is the obvious one, agreeing with

the ones in the polynomial subrings k[x
±1/n
i | i ∈ I].

Lemma 1. The group algebra kR+ is a generalized polynomial algebra over k in
continuum-many variables.

Proof. Consider the k-linear map ν : k[xi|i ∈ I]Q → kR+ defined on monomials
by ν(

∏
xqi
i ) = x∏

λ
qi
i
. The above discussion on the uniqueness of the direct sum

decomposition makes ν a k-linear bijection, and the definition of group algebra kR+

makes ν an algebra homomorphism. This completes the proof of the lemma. �

5. The algebras A, B, and their associated differences

This section is useful in getting familiar with the basic properties of the algebras
A and B and their interpretation with differences. It is essential to understanding
the rest of the paper, though non-algebraists may wish to skim it on the first pass.

5.1. Properties of the algebras A and B. The group algebra A = kR× and
the semigroup algebra B = kR have many basic properties, some of which translate
into properties of differences of a function f . Here are some of these properties.

(AB1). Both A and B have the same identity element 1 = x1.

(AB2). Let σ = x−1. The elements ±σ are the only elements of A and B with
multiplicative order 2.
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(AB3). A contains two orthogonal idempotents e = 1
2 (1 + σ) and d = 1

2 (1 − σ)

such that e + d = 1 = x1. These are elements that satisfy e2 = e, d2 = d,
and de = 0. Pairwise orthogonal idempotents that add up to one are responsible
for the decomposition of an algebra as a direct sum of ideals that are also unital
subalgebras. In our case,

(5.1) A = eA⊕ dA,

where e is the identity of eA and d is the identity of dA. Algebra B contains the
absorbing idempotent x0, and B = kx0 ⊕ A, a direct sum of unital subalgebras,
not ideals. Note that ex0 = x0 and dx0 = 0. Therefore

(5.2) B = (kx0 ⊕ eA)⊕ dA = eB⊕ dB.

(AB4). Let er = 1
2 (xr + x−r) = exr ∈ eA and dr = 1

2 (xr − x−r) = dxr ∈ dA. For
example, we have d1 = d and e1 = e. An element of A looks like α =

∑
r Arxr,

and a generic element of eA is eα =
∑

r Arer. Since e−r = er, we can write
eα =

∑
r>0(Ar +A−r)er, so eA =

∑
r>0 ker and similarly dA =

∑
r>0 kdr.

(AB5). After relabeling of coefficients, the above generic element of eA has the
form of a finite sum indexed by positive real numbers

eα =
∑
r>0

Arer =
∑
r>0

Ar
xr + x−r

2
.

Its expression is uniquely determined by twice its positive part
∑

r>0 Arxr. The

structure of eA is then revealed by the mapping kR+ → eA given by xr 	→ er, for
r > 0. One easily checks that this map is an algebra isomorphism. The result of
this is that eA and (similarly) dA are isomorphic to the group algebra kR+. By
Lemma 1, we see that both eA and dA are generalized polynomial algebras in 2ℵ0

variables. This structure will be used in Example 4.

(AB6). Equation (5.1) is the decomposition of A as a direct sum of its eigenspaces
given by multiplication by σ. Specifically, eA is the σ-eigenspace with eigenvalue
+1 and dA is the σ-eigenspace with eigenvalue −1. We call eA the even part of
A, and dA is the odd part of A.

(AB7). The elements of A of the form cxr, where c, r ∈ R×, are invertible in A.
These are the trivial units of A; their inverses are c−1xr−1 . We shall see next that
the trivial units are not all of the units of A. It is well-known (see [15], Chapter
13) that the group algebra of a torsion-free abelian group has only trivial units.
In particular, the same is true for the group algebra kR+ and by (AB5) for its
isomorphic copies eA and dA. The (trivial) units in eA are e-multiples of trivial
units in A. This means they are of the form Aexr = Aer, for 0 �= A ∈ k and r > 0.
By the same token, the units of dA are of the form Bdxs = Bds, for 0 �= B ∈ k
and s > 0. Since the units of a direct sum of algebras are sums of the units of the
summands, by (5.1) we conclude that the units of A are precisely the elements of
the form Aer +Bds, for 0 �= A,B ∈ k, and r, s > 0.

(AB8). Let V =
∑

r∈k kxr. Then the k-space F(k) = {f | f : k → k} of all real
functions is isomorphic to the dual k-space V ∗ = Homk(V, k) = {ϕ | ϕ : V → k}
via the mapping F(k)  f 	→ ϕ ∈ V ∗, where ϕ is the linear map defined on basis
elements of V by ϕ(xr) = f(r), for all r ∈ k.
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(AB9). This property, which looks more technical than it really is, is only needed
in the proof of Corollary 1. Let k′ be a subfield of k and let V ′ =

∑
r∈k′ k′xr. Each

function f : k′ → k′ can be viewed as a function f : k → k by setting f(t) = 0, for
t ∈ k \ k′. In this way, the function space F(k′) embeds naturally in F(k) as the
k′-subspace

F ′(k) = {f ∈ F(k) | R(f) ⊆ k′ and k \ k′ ⊆ N(f)},

where R(f) andN(f) are the range and the nullset of f . By (AB8) applied to k′ and
V ′ in place of k and V , we have F(k′) is k′-linear isomorphic to V ′∗ = Homk′(V ′, k′).
Let S = {1} ∪ T be a basis of k over k′. Then

⋃
r∈k′ Sxr is a k′-basis of V . Each

k′-linear map ϕ : V ′ → k′ naturally extends to a k′-linear map ϕ : V → k by
setting ϕ(t) = 0, for t ∈

(⋃
r∈k′ Sxr

)
\ {xr|r ∈ k′}, which is also an element of V ∗.

Then V ′∗ is k′-linearly isomorphic to V ∗′
= {ϕ ∈ V ∗ | R(ϕ) ⊆ k′ and (

⋃
r∈k′ Sxr)\

{xr|r ∈ k′} ⊆ N(ϕ)}, which is a k′-subspace of V ∗. Moreover, F ′(k) is isomorphic

to V ∗′
as a k′-space via the mapping F ′(k)  f 	→ ϕ ∈ V ∗′

, where ϕ is defined on
k′-basis elements of V by ϕ(xr) = f(r) and ϕ(T xr) = 0, for all r ∈ k′:

F(k′) → F ′(k) ↪→ F(k)
↓ ↓ ↓

V ′∗ → V ∗′
↪→ V ∗

The above diagram illustrates the relationship between the vector spaces and linear
maps considered in (AB8) and (AB9). The right vertical arrow is the k-linear
isomorphism of (AB8). The four arrows to the left are the k′-linear isomorphisms
of (AB9). The two hook-arrows are inclusions of k′-subspaces.

5.2. And their interpretation with differences. The above properties trans-
late into the language of even and odd differences of Section 1.2 or group algebra
actions of Section 3. For example, we have

e · f(x+ h) =
f(x+ h) + f(x− h)

2
, d · f(x+ h) =

f(x+ h)− f(x− h)

2
.

More generally, if α =
∑

i Aixai
is the element of A determined by ΔA in (3.1),

then

(eα) · f(x+ h) = e ·ΔAf(x, h) = Δev
A f(x, h),

(dα) · f(x+ h) = d ·ΔAf(x, h) = Δodd
A f(x, h).

The second equalities say that the actions of e and d on the space D of all differences
of f at x and h map these differences onto their even and odd parts, respectively.
For the first equalities, we notice that α ∈ A (resp. α ∈ B) is equivalent to
ΔAf(x, h) is a difference without f(x)-term (resp. ΔAf(x, h) is any difference of
f). We deduce that the submodules of D generated by f(x+ h) under the actions
of eA and dA (resp. eB and dB) are exactly all even and odd differences without
f(x)-term (resp. all even and odd differences of f). Note that odd differences do
not have f(x)-terms, so the actions of dA and dB on f(x+h) coincide. The natural
consequence from here is that the actions of A and B on f(x+ h), which are sums
of the actions of their components given in (5.1) and (5.2), amount to splitting their
corresponding differences into even and odd components given in (1.6).
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6. Translation theorem and proof of main results

The major result of this section, Theorem 5, translates the implication and the
equivalence of generalized derivatives into the inclusion and equality of principal
ideals of algebras A or B. We then prove the main classification results of Theorems
2 and 3 stated in the Introduction by means of classifying principal ideals of A or B
by inclusion or equality. The proof goes by reference to the group algebra properties
(AB1)-(AB9) of Section 5.

6.1. Translation theorem. Let α =
∑

i Aixai
and β =

∑
i Bixbi be the ele-

ments of B that correspond to the differences ΔAf(x, h) =
∑

i Aif(x + aih) and
ΔBf(x, h) =

∑
i Bif(x + bih), as defined in Section 5.2. Call {xb1 , xb2 , . . .} the

support of β. As examples, α = d1 corresponds to the first symmetric Riemann dif-
ference Δs

1f(x, h), α = x1−x0 corresponds to the first (forward) Riemann difference
Δ1f(x, h), and α = A(er − x0) + d1 corresponds to the first difference ΔAf(x, h)
of Theorem 1.

The ideal of B generated by α is denoted by (α). Let αr = αxr =
∑

Aixair be
the dilate of α by r ∈ k×. Note especially that xr invertible implies (α) = (αr),
and since (α) is the set of all B-multiples of α, the ideal (α) is the linear span of
all dilates of α. Moreover, since in arguments about A-differentiability of a general
function f at x we can always assume without loss that x = 0 and f(0) = 0, this
amounts to factoring out the ideal (x0) of B, that is, to projecting down to A. In
this process, the ideals of B may be assumed to be ideals of A.

Theorem 5. With the above notation, if α and β correspond to order n generalized
Riemann differences ΔA and ΔB, then

(i) (α) ⊇ (β) iff “A-differentiable at x =⇒ B-differentiable at x”;
(ii) (α) = (β) iff “A-differentiable at x ⇐⇒ B-differentiable at x”.

Proof. (i) Assume (α) ⊇ (β). We write β as a finite sum β =
∑

r crαr with
r, cr ∈ k. Let f be α-differentiable at x and denote Dαf(x) = d ∈ k. As an abuse
of notation, we write α-differentiable, Dαf(x), and α(x, h) to respectively denote
A-differentiable, DAf(x), and ΔAf(x, h). Since

Dαr
f(x) = lim

h→0

αr(x, h)

hn
= lim

h→0

α(x, rh)

(rh)n
· rn = rnDαf(x),

linearity of the limit operator makes f a β-differentiable function at x andDβf(x) =∑
r crr

nd. This sum actually equals d, since β is a generalized Riemann derivative.
It remains to prove the converse. Let G be the subgroup of k× generated by

all non-zero ai’s and bi’s. Then G is countable while the set of its cosets in k× is
not. Consider {sn}n>0 a sequence of representatives of cosets of G in k× such that
limn→∞ sn = 0. We prove the contrapositive statement: assuming (α) � (β), we
show that there exists a function f such that DAf(0) exists but DBf(0) does not
exist.

Observe that, by assumption and the obvious fact that (βsn) = (β), we have
βsn /∈ (α) for all n. Moreover, the βsn ’s are linearly independent modulo the ideal
(α). To see this, we note that the support of β is included in G and this makes
the supports of the βsn ’s included in the Gsn’s; hence they are pairwise disjoint.
Suppose that

∑
λnβsn ∈ (α), for λn ∈ k. We write this as

∑
λnβsn = α

∑
μixri ,

for μi ∈ k and ri ∈ k×. For each n, let tsn be the sum of all terms μixri of the last
sum for which ri ∈ Gsn, and let t′ be the sum of the remaining terms. The last
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equation becomes
∑

λnβsn = α(t′ +
∑

tsn) = αt′ +
∑

αtsn . The expression of an
element of a group algebra as a sum of elements with supports in distinct cosets of
a subgroup is unique. Thus λnβsn = αtsn , for all n, and 0 = αt′. If λn �= 0, for
some n, then βsn ∈ (α), a contradiction.

Let V be the vector space defined in (AB8) of Section 5.1. The axiom of choice
implies that every linearly independent subset of V can be completed to a basis,
so let W be a complement of the subspace (α) ⊕

∑
kβsn in V , or V = (α) ⊕∑

kβsn ⊕W . Define a functional ϕ ∈ V ∗ by setting ϕ identically equal to zero on
both (α) and W , and ϕ(βsn) = 1, for all n. Then the corresponding function f
has ΔAf(0, h) =

∑
Aif(aih) =

∑
Aiϕ(xaih) = ϕ (

∑
Aixaih) = ϕ(αh) = 0, since

αh ∈ (α), for all h. Thus DAf(0) = limh→0 ΔAf(0, h)/h
n = 0. On the other hand,

ΔBf(0, sm) =
∑

Bif(bism) =
∑

Biϕ(xbism) = ϕ (
∑

Bixbism) = ϕ(βsm) = 1, for
all m, implies that DBf(0) = limm→∞ ΔBf(0, sm)/snm = limm→∞ 1/snm does not
exist.

Part (ii) is an easy consequence of part (i). �
Recall that Example 3(iii) of Section 1 contained an application of Theorem 3.

It provided two third generalized Riemann differences ΔA and ΔB such that B-
differentiation does not imply A-differentiation. The next example is an application
of Theorem 5. It obtains the same result in a different way and additionally shows
that for the same two differences, A-differentiation does not imply B-differentiation.
Similar ring-theoretic arguments can be used for many other examples.

Example 4. Let ΔA and ΔB be the third differences of Example 3(iii). The group
algebra elements corresponding to them are α = d2 − 2d1 and β = 2d 3

2
− 6d 1

2
=

2x 1
2
β′, where β′ = d3 − 3d1. We observe that both α and β are elements of dA

since they correspond to odd differences, and (β) = (β′) since the factor 2x 1
2
is a

unit in A. The integers 2 and 3 are not rational powers of each other, so they are
multiplicatively Q-linearly independent. Take the basis elements λ1 = log 2 and
λ2 = log 3 for R over Q as in Section 4. By (AB5) we can pass from kR+ to dA
and see that the elements d2 and d3 are algebraically independent over k. Since
d1 = d is the identity element of dA, so too are α and β′. Since α and β′ are not
multiples of each other, the ideals

αk[α, β′] = (α) ∩ k[α, β′] and β′k[α, β′] = (β′) ∩ k[α, β′]

of k[α, β′] = A ∩ k[α, β′] are incomparable (not included in each other), and hence
the same is true about the ideals (α) and (β′) = (β) of A. By Theorem 5(i), neither
A-differentiability nor B-differentiability implies the other.

Corollary 1. The counterexample f constructed in the proof of Theorem 5 may
not be a measurable function. Nevertheless, the proof can be adapted to make f
measurable.

Proof. We follow closely the proof of Theorem 5 and stress only the differences.
Let k′ be the subfield of k generated over the rationals by all Ai, ai, Bi, bi, and
{sn}n≥1. This is a countable field. Recall from earlier in the section that the
ideal (α) is the k-span of all shifts αr = αxr, for r ∈ k. We define [α] to be the
k′-span of all shifts αr, for r ∈ k′. Then (α) = ([α]) and also (β) = ([β]). Note
that the βsn ’s are k′-linearly independent modulo [α], since they are k-linearly
independent modulo (α). Let W be a k′-complement of [α] ⊕

∑
k′βsn in V , that

is, V = [α] ⊕
∑

k′βsn ⊕W . Since the first two terms above are part of V ′, using
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the k′-basis of V of (AB9), we may assume that W contains all basis elements of V
that are not basis elements of V ′. Define a functional ϕ ∈ Homk′(V, k) by setting
ϕ identically equal to zero on both [α] and W and ϕ(βsn) = 1, for all n. Then ϕ

is an element of V ∗′
. Let f ∈ F ′(k) be the function that corresponds to ϕ via the

last isomorphism in (AB9). Let h be any real number. If h ∈ k′, then αh ∈ [α],
so ΔAf(0, h) =

∑
Aif(aih) =

∑
Aiϕ(xaih) = ϕ (

∑
Aixaih) = ϕ(αh) = 0. If

h ∈ k \ k′, then ΔAf(0, h) =
∑

Aif(aih) =
∑

Aiϕ(xaih) =
∑

Ai · 0 = 0, by the
definition of ϕ, since aih ∈ k \ k′ makes xaih ∈ W . The rest follows the last part
of the proof of Theorem 5. The function f is measurable, since it is non-zero on a
subset of the countable set

∑
k′βsn . �

Let n ≥ 2. If the ordinary nth derivative exists at x, so does the ordinary mth
derivative for each m, 1 ≤ m < n. This property fails for all A-derivatives.

Corollary 2. Let A be a generalized Riemann derivative of order n, n ≥ 2. If B
is any generalized Riemann derivative of order m where 1 ≤ m < n, then there is
a measurable function f so that DAf (0) exists, but DBf (0) does not.

Proof. Let A = {A1, . . . ; a1, . . . } and B = {B1, . . . ; b1, . . . }. Since m < n, the mth
Vandermonde conditions force

∑
Aia

m
i = 0 and

∑
Bib

m
i = m!. Consequently ΔB

is not a linear combination of dilates of ΔA. Just as in the proof of Theorem 5
above, this leads to the existence of the desired function f . �

6.2. Proof of the main results. We are now ready to prove Theorems 2 and 3
announced in the Introduction.

Proof of Theorem 3. Example 2 rules out the case m > n, and Corollary 2 rules
out the case m < n, so m = n. By Theorem 5(i), A-differentiation implies B-
differentiation is equivalent to (α) ⊇ (β). We write A = eA ⊕ dA = Aε ⊕ Aε′ ,
by (5.1). The same relation yields (α) = αA = α(e + d)A = αeA ⊕ αdA =

(αe)⊕ (αd) = (αε)⊕ (αε′). A similar expression holds for (β). Basic ideal theory in
direct sums of algebras makes the inclusion (α) ⊇ (β) equivalent to both (αε) ⊇ (βε)

and (αε′) ⊇ (βε′). These are clearly equivalent to the two desired equations. �

Proof of Theorem 2. The equality m = n follows from Theorem 3. By Theorem 5,
“A-differentiable ⇐⇒ B-differentiable” is equivalent to “(α) = (β)”, that is, to
β = uα, for some invertible element u ∈ A. By (AB7), we write u = Aer + Bds,
for 0 �= A,B ∈ k and r, s > 0. Consequently, β = Aerα+Bdsα = Axreα+Bxsdα.
Uniqueness of writing β and α as sums of components makes βε and βε′ scalar
multiples of dilates of αε and αε′ , respectively. Moreover, the equation m = n
makes both α and β correspond to nth generalized Riemann differences, and, by
Theorem 4(i), the same is true for βε and αε. We conclude that Δε

Bf(x, h) is a

scaling of Δε
Af(x, h) and Δε′

Bf(x, h) is a non-zero scalar multiple of a dilate of

Δε′

Af(x, h). �
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