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Abstract. We prove the genericity of the shadowing and periodic shadowing
properties for both conservative and dissipative homeomorphisms on a compact
connected manifold. Our proof is valid for topological manifolds and still
holds in the dissipative case. As a consequence of this result, we establish the

genericity of the specification property, the average shadowing property, and
the asymptotic average shadowing property, in the conservative case.

1. Introduction

Most of practical dynamical systems are very complex and subject to exterior
perturbations, thus limiting their modelling to a relatively rough approximation.
Therefore, one can wonder if the small discrepancy between the real system and
its model has big consequences from a dynamical viewpoint. It turns out that
for dynamical systems possessing the shadowing property (see Definition 1.2), the
errors induced by the model do not destroy completely the dynamical behaviour:
any orbit of the model is in fact close to some real orbit. In particular, this remark
is still valid in the case where the “real system” is some abstract dynamics and
the model is a numerical simulation of it. The goal of this paper is to prove that
“most of” the dynamical systems satisfy this shadowing property: both generic
conservative and dissipative homeomorphisms of compact manifolds possess this
property (see definitions below). Thus, most of the time, in some quite weak sense,
both approximated models and numerical simulations are dynamically relevant.

1.1. General set-up. Throughout this paper, we will consider M , a compact con-
nected manifold with or without boundary, of dimension n ≥ 2, endowed with a
distance dist. A good1 Borel probability measure μ on M is a measure satisfying:

(1) ∀p ∈ M,μ({p}) = 0 (non-atomic);
(2) ∀Ω ⊂ M non-empty open set, μ(Ω) > 0 (full support);
(3) μ(∂M) = 0 (zero on the boundary).

Once and for all, we fix such a measure μ. We denote by H(M) the set of home-
omorphisms of M and by H(M,μ) the set of conservative homeomorphisms of M ,
namely, the homeomorphisms on M preserving the measure μ. In what follows,
H will denote both spaces H(M) and H(M,μ). The spaces H are metrizable by
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the C0 distance d(f, g) = maxx∈M dist(f(x), g(x)), for f, g ∈ H, or by the uniform
distance for homeomorphisms δ(f, g) = d(f, g) + d(f−1, g−1). Only the latter is
complete, but one can easily check that they span the same topology.

We call Gδ any countable intersection of open subsets ofH. SinceH is a complete
metric space, Baire’s theorem states that a countable intersection of dense open sets
is, in particular, a dense Gδ set. We call residual a dense Gδ set and say that a
property is generic in H if it is satisfied on at least a residual set. This notion
has a nice behaviour under intersection: given a finite (or countable) number of
generic properties, the set of homeomorphisms satisfying simultaneously all these
properties is still a countable intersection of dense open sets and is therefore dense.
As a consequence, this allows us to talk about generic homeomorphisms and list
their different properties.

1.2. The shadowing property.

Definition 1.1. Given f ∈ H and δ > 0, a δ-pseudo orbit (xk)k∈Z is a sequence of
points in M such that dist(f(xk), xk+1) < δ, for all k ∈ Z. A δ-periodic pseudo orbit
is a δ-pseudo orbit such that there exists an integer N > 0 such that xk+N = xk,
for all k ∈ Z.

It is natural to think of a δ-pseudo orbit in terms of a roundoff error that a
computer would generate when trying to compute the iterations of the point x0

under the transformation f .

Definition 1.2 (Shadowing property). We say that f ∈ H satisfies the following:

• shadowing property if for every ε > 0, there exists δ > 0, such that any
δ-pseudo orbit (xk)k∈Z is ε-shadowed by the real orbit of a point; namely,
there exists x∗ ∈ M such that dist(fk(x∗), xk) < ε, for all k ∈ Z;

• periodic shadowing property if for every ε > 0, there exists a δ > 0, such
that any δ-periodic pseudo orbit (xk)k∈Z of period N is ε-shadowed by the
real orbit of an N -periodic point x∗;

• special shadowing property if it satisfies both the shadowing and periodic
shadowing properties.

In other words, if f satisfies the shadowing property, then any pseudo orbit stays
close enough to the real orbit of some point x∗ of M , a priori different from x0.

1.3. Main result. As far as conservative homeomorphisms are concerned, their
generic properties are now quite well understood, thanks to some fundamental
results obtained in the 1940’s by J. Oxtoby and S. Ulam, in the 1960’s by A. Katok
and A. Stepin, and in the 1970’s by S. Alpern, V. S. Prasad, and P. Lax. In [6], the
first author provides a general overview of the generic properties of conservative
homeomorphisms, be they of topological or ergodic nature (see also the historical
survey [3] of J. Choksi and Prasad).

However, it seems that the genericity of the shadowing property is still missing
in the conservative case. This paper aims to fill in this gap by showing the following
result:

Theorem 1.3. The special shadowing property is generic in H.

Our proof relies on the use of Oxtoby-Ulam’s theorem, which provides an ade-
quate subdivision of the manifold M in a very general case; namely, we only require
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M to be a topological manifold. As a consequence, this article also establishes the
genericity of the special shadowing property in the dissipative case for the class of
topological manifolds.

One must admit that the genericity in the C0 topology can be considered as
irrelevant from a practical viewpoint: a generic homeomorphism is nowhere differ-
entiable and exhibits wild behaviours such as Cantor sets of periodic points of a
given period; thus generic homeomorphisms represent badly most real-world sys-
tems. However, results are usually much easier to obtain than in more regular
topologies and can constitute a first step for the studies of genericity in Cr topolo-
gies for greater numbers r.

The shadowing property was first introduced in the works of D. Anosov and
R. Bowen, who proved independently that in a neighbourhood of a hyperbolic
set, a diffeomorphism has the shadowing property. This result is known as the
shadowing lemma (see [18, paragraph 2.7] or [8, Theorem 18.1.2] for a proof). As
a consequence, examples of dynamical systems satisfying the shadowing property
are provided by Anosov diffeomorphisms. For further details on the notion of
shadowing, we refer the reader to the books [14] of S. Y. Pilyugin and [13] of
K. Palmer.

The first proof of genericity of the shadowing property was obtained by K. Yano
(see [17]) in the case M = S

1. Then, using the possibility to approximate any
homeomorphism by a diffeomorphism in dimension n ≤ 3, K. Odani obtained in
[11] the genericity of the shadowing property for manifolds of dimension less than
3. Pilyugin and O. B. Plamenevskaya were able to improve this result in [15] to
any dimension in the case of smooth manifolds. In 2005, P. Koscielniak established
in [9] the genericity of the shadowing property for homeomorphisms on a compact
manifold which possesses a triangulation (smooth manifolds or topological mani-
folds of dimension ≤ 3 for example) or a handle decomposition (smooth manifolds
or manifolds of dimension ≥ 6 for example). To the best of our knowledge, this is
the best result obtained so far. Notice that our global strategy of proof is similar
to that of [9].

Let us mention some consequences of our main theorem in the conservative case.
One knows that a generic conservative homeomorphism is topologically mixing (see
[6]). Now, in [5, Proposition 23.20], M. Denker, C. Grillenberger, and K. Sigmund
prove that a homeomorphism which is topologically mixing and satisfies the shad-
owing property has the specification property.2 A very slight adaptation of their
proof, using the periodic shadowing property instead of the shadowing property,
gives the periodic specification property. Also, in [10, Theorem 3.8], M. Kulczy-
cki, D. Kwietniak, and P. Oprocha prove that the average shadowing property and
the asymptotic average shadowing property3 are satisfied by a topologically mixing
system possessing the shadowing property. To sum up, we obtain the following
corollary:

2Morally, a homeomorphism has the periodic specification property if any finite number of
pieces of orbits which are sufficiently time-spaced can be shadowed by the real orbit of a periodic
point. For a rigourous definition, see [5].

3The definition of average shadowing is similar to that of shadowing but allows large deviations
in the distance between f(xk) and xk+1, as long as they are rare enough and balanced by a number

of very small deviations. For a precise definition, see [10].
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Corollary 1.4. A generic element in H(M,μ) satisfies the specification property,
the average shadowing property, and the asymptotic average shadowing property.

1.4. Reading guide. As a reading guide, let us sketch the proof of Theorem 1.3.
To begin with, we will apply the Oxtoby-Ulam-Brown Theorem (Theorem 2.4),
which will reduce the study to the case where the phase space is the unit cube.
That will allow us to define dyadic subdivisions (see Definition 2.5) on our manifold.
Then, given a generic homeomorphism f ∈ H and denoting by Ci the cubes of some
fine enough dyadic subdivision, we will prove that:

(1) Each time f(Ci)∩Cj �= ∅, the set f(Ci)∩Cj has non-empty interior. This
will be obtained easily by a “transversality” result (first part of the proof
of Lemma 3.1).

(2) Each time f(Ci) ∩ Cj �= ∅, there exist some small cubes ci ⊂ Ci and
cj ⊂ Cj such that ci and cj have a Markovian intersection (see Definition
2.7). Homeomorphisms satisfying this property will be called chained (see
Definition 2.11). This is the most delicate part of the proof, which will
be obtained by creating transverse intersections for some foliations on the
cube (see Definition 2.14).

The property of periodic shadowing will be deduced from the previous construction
by applying a fixed point lemma (Lemma 2.12, due to [19]).

Section 2 of the present article is a toolbox of key technical lemmas which we
will use in Section 3 in order to prove our main theorem. Eventually, we formulate
a few remarks about the proof in Section 4.

2. Toolbox

In this section, we present the main technical results that will be used in the
proof of the main theorem. We begin by presenting the two perturbation results
for homeomorphsims we will use throughout this paper.

2.1. Perturbation lemmas in topology C0. In the following, λ will denote the
Lebesgue measure on R

n. The next two perturbation lemmas are among the key
technical results used to prove the genericity of topological properties in H.

Lemma 2.1 (Extension of finite maps). Let x1, . . . , xn be n different points of
M \ ∂M and let Φ : {x1, . . . , xn} → M be an injective map such that d(Φ, Id) < δ.
Then, there exists ϕ ∈ H such that ϕ(xi) = Φ(xi), for all i ∈ {x1, . . . , xn} and
d(ϕ, Id) < δ. Moreover, given n injective continuous paths γi joining xi to Φ(xi),
the support of ϕ can be chosen in any neighbourhood of the union of the paths γi.

The proof of this lemma is rather easy but a bit technical. For a detailed proof,
see [12] or [6, Chapter 2].

Before stating the second lemma, we recall the definition of a bicollared embed-
ding, which avoids pathological embeddings such as the Alexander horned sphere.

Definition 2.2 (Bicollared embeddings). An embedding i of a manifold Σ into a
manifold M is said to be bicollared if there exists an embedding j : [−1, 1]×Σ → M
such that j{0}×Σ = i.

Lemma 2.3 (Local modification). Let σ1, σ2, τ1, τ2 be the images by four bicollared
embeddings of S

n−1 in R
n such that σ1 is in the bounded connected component

of σ2 and τ1 is in the bounded connected component of τ2. Let A1 be the bounded
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connected component of Rn−σ1, B1 the bounded connected component of Rn−τ1, Σ
the connected component of Rn−(σ1 ∪ σ2) with boundaries σ1∪σ2, Λ the connected
component of Rn − (τ1 ∪ τ2) with boundaries τ1 ∪ τ2, A2 the unbounded connected
component of Rn − σ2, and B2 the unbounded connected component of Rn − τ2.

Consider two homeomorphisms fi : Ai → Bi such that they both preserve or
reverse the orientation. Then, there exists a homeomorphism f : Rn → R

n such
that f = f1 on A1 and f = f2 on A2.

Moreover, if we assume λ(A1) = λ(B1) and λ(Σ) = λ(Λ) and the homeomor-
phisms fi are conservative, then f can be chosen conservative too.

Figure 1. The local modification theorem.

Although the statement of the local modification lemma is quite natural, its
proof involves the very hard annulus theorem. For a proof, see [4] or [6, Chapter
3].

2.2. Dyadic subdivision. In = [0, 1]n will denote the unit cube in R
n. Recall

that M is a compact connected manifold with or without boundary, of dimension
n ≥ 2, endowed with a good measure μ. One of the most fundamental results in
the theory of generic (conservative) homeomorphisms is a combination of theorems
of Brown (see [2]) and of Oxtoby-Ulam (see [12]). A detailed proof of this result
can be found in [1, Appendix 2]:

Theorem 2.4 (Oxtoby-Ulam-Brown). Let μ be a good Borel probability measure
on M . Then, there exists φ : In → M continuous such that:

(1) φ is surjective,
(2) φ| ◦

In
is a homeomorphism on its image,

(3) φ(∂In) is a closed subset of M , of empty interior, and disjoint of φ(
◦
In),

(4) μ(φ(∂In)) = 0,
(5) φ∗(λ) = μ.

Now, once and for all, we fix such a map φ : In → M . This allows us to introduce
the notion of dyadic subdivision.

Definition 2.5 (Dyadic subdivision). A dyadic cube of order m of M is the image

inM by φ of a cube
∏n

i=1[
ki
2m

,
ki + 1

2m
], with 0 ≤ ki ≤ 2m−1. The dyadic subdivision

Dm of order m of the manifold M is the collection of dyadic cubes of order m of
M . In the following, pm = 2nm will denote the number of cubes of the subdivision.
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For a dyadic subdivision Dm = (Ci)1≤i≤pm
, we will denote by χ(Dm) the maxi-

mum diameter of its cubes, namely,

χ(Dm) = max
Ci∈Dm

diam Ci.

These dyadic subdivisions satisfy some good properties:

• Each cube is connected and obtained as the closure of the open cube
∏n

i=1]
ki
2m

,
ki + 1

2m
[.

• For all m, Dm is a cover of M by a finite number of cubes of the same
measure and whose interiors are pairwise disjoint.

• For all m, Dm+1 is a refinement of the subdivision Dm.
• The measure of the cubes as well as of χ(Dm) tends to 0 as m → ∞. The
measure of the boundary of each cube is zero.

Note that the image of the dyadic subdivision by any f ∈ H is still a dyadic
subdivision satisfying the same properties.

2.3. Markovian intersections. The mechanism of perturbation which will pro-
duce the shadowing property is based on the notion of chained homeomorphisms
(Definition 2.11, itself based on Markovian intersections).

Definition 2.6. We call rectangle a subset R ⊂ M such that R = φ(In), where
φ : In → φ(In) ⊂ M is a homeomorphism. We call faces of R the image by
φ of the faces4 of In. We call horizontal the faces R− = φ(In−1 × {0}) and
R+ = φ(In−1 × {1}) and vertical the others. We say that a rectangle R′ ⊂ R is a
strict horizontal (resp. vertical) subrectangle of R if the horizontal (resp. vertical)
faces of R′ are strictly disjoint from those of R and the vertical (resp. horizontal)
faces of R′ are included in those of R.

Given x ∈ R
n, we will denote by π1(x) its first coordinate. Following P. Zgliczyn-

ski and M. Gidea’s article [19], we define Markovian intersections in the following
way:

Definition 2.7. Let f be a homeomorphism of M and let R1 and R2 be two
rectangles of M . We say that f(R1)∩R2 is a Markovian intersection if there exists
a horizontal subrectangle H of R1 and a homeomorphism φ from a neighbourhood
of H ∪R2 to R

n such that:

• φ(R2) = [−1, 1]n;
• either φ(f(H+)) ⊂ {x | π1(x) > 1} and φ(f(H−)) ⊂ {x | π1(x) < −1} or
φ(f(H−)) ⊂ {x | π1(x) > 1} and φ(f(H+)) ⊂ {x | π1(x) < −1};

• φ(H) ⊂ {x | π1(x) < −1} ∪ [−1, 1]n ∪ {x | π1(x) > 1}.
The following two results show that the Markovian intersections have nice be-

haviours under C0 perturbation and iteration. Proofs of them can be obtained as a
combination of Theorem 16, Theorem 13, and Corollary 12 of [19].

Proposition 2.8. A Markovian intersection is C0 robust; namely, if the intersec-
tion f(R1) ∩R2 is Markovian, then it is still true in a C0 neighbourhood of f .

Proposition 2.9. Given three rectangles R1, R2, and R3, if the intersections
f(R1) ∩ R2 and f(R2) ∩ R3 are Markovian, then the intersection f2(R1) ∩ R3

is Markovian too.

4By definition, a face of In is one of the n− 1-dimensional cubes constituting the boundary of
In.
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Figure 2. A Markovian intersection.

Definition 2.10 (m-nice homeomorphism). Given a homeomorphism f , we say
that f is m-nice for an integer m > 0 if, given the dyadic subdivision Dm =

(Cm)1≤m≤pm
, we have for all i, j ∈ {1, . . . , pm} either f(Ci)∩Cj = ∅ or f(

◦
Ci)∩

◦
Cj �=

∅.
Definition 2.11 (m-chained homeomorphism). Given a homeomorphism f , we say
that f is m-chained if for every cube Ci of Dm there exists a rectangle ci ⊂ Ci, such
that for every i, j such that f(Ci)∩Cj �= ∅, the intersection f(ci)∩ cj is non-empty
and Markovian.

We will use the following lemma to obtain periodic points for the periodic shad-
owing property. It is a simplified version of [19, Theorems 4 and 16]. The proof is
based on an argument of homotopy and theory of degree:

Lemma 2.12. Let f be a homeomorphism and let R be a rectangle such that f(R)∩
R is Markovian. Then, there exists a fixed point for f in R.

2.4. Foliations. In this paragraph, we recall an elementary result on foliations.

Definition 2.13 (Transverse intersection). Given two foliations F ,F ′ such that
dim(F) + dim(F ′) = n, we will say that two leaves L of F and L′ of F ′ intersect
transversally, denoted by L � L′, if either their intersection is empty or there exists
an open set  of the leaf L such that Card( ∩ L′) = 1. We will say that the two
foliations F and F ′ intersect transversally if they have two leaves that intersect
transversally.

In the following, we will use this definition with dim(F) = codim(F ′) = 1.

Proposition 2.14. Assume f is m-nice and consider two cubes Ci, Cj of the sub-
division Dm such that f(Ci) ∩ Cj �= ∅. We consider a smooth foliation F of Ci

and a smooth foliation F ′ of Cj such that dim(F)+ dim(F ′) = n. If f(F) does not
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intersect transversally F ′ on
◦
Cj, then there exists a C0 perturbation of f , as small

as desired, such that this intersection is transverse.

Proof. We assume that there does not exist any transverse intersection of leaves in

U = f(
◦
Ci) ∩

◦
Cj . Consider a point y ∈ U and the leaf L′ of F ′ passing through

y. We denote by (f1, . . . , fk) an orthonormal basis of TyL
′ and we complete it into

an orthonormal basis (f1, . . . , fn) of Rn. Now, we consider the point x = f−1(y),
the leaf L of F passing through x, and an orthonormal basis (e1, . . . , en−k) of TxL
which we complete in a basis (e1, . . . , en) of R

n. We denote by A ∈ O(n) the
linear orthogonal application such that Aei = fk+i, i ∈ {1 . . . , n}, where the index
is taken modulo n. Then, one can apply Lemma 2.3 to replace locally around y the
homeomorphism f by the affine volume-preserving transformation taking value x
on y and of linear part A. This gives a homeomorphism of H as close as wanted to
f , for which the intersection is transverse. �

3. Proof of main theorem

In this section, we prove Theorem 1.3. Let us define

Aε =
{
f ∈ H | f is m-chained for some Dm with χ(Dm) < ε

}
.

The proof of the theorem immediately follows from these two lemmas:

Lemma 3.1. For any ε > 0, the set Aε is open and dense in H.

Lemma 3.2. If f ∈
⋂

p∈N
A1/p, then f satisfies the special shadowing property.

Proof of Lemma 3.1. The fact that Aε is open easily follows from Proposition 2.8.
Therefore, we only have to prove that this set is dense in H.

We fix ε > 0, f ∈ H, and κ > 0. We want to show that there exists g ∈ Aε

such that d(f, g) < κ. We consider a dyadic subdivision Dm such that χ(Dm) <
min(ε, κ, ω(κ)), where ω(κ) denotes the modulus of uniform continuity of f . Our
goal is to create Markovian intersections between each pair of cubes Ci and Cj such
that f(Ci) ∩ Cj �= ∅.

Firstly, we prove that making a small perturbation of f if necessary, each time
f(Ci) ∩ Cj �= ∅, the intersection has non-empty interior.

Assume that f(Ci) ∩ Cj �= ∅ but f(
◦
Ci) ∩

◦
Cj = ∅. This means that f(∂Ci) ∩

∂Cj �= ∅; consider f(x) = y in this intersection. Now, by the extension of finite
maps (Lemma 2.1), one can find a homeomorphism ϕ ∈ H with support5 in a

neighbourhood of y, such that f̃ = ϕ ◦ f is as close to f as wanted and f̃(x) ∈
◦
Cj .

Therefore f̃(
◦
Ci) ∩

◦
Cj �= ∅ (see Figure 3).

Now, on each cube Ci ∈ Dm, we consider the foliation F by vertical lines and
the foliation H by horizontal hyperplanes. For each intersection f(Ci)∩Cj �= ∅, we
look at both foliations f(F ∩ Ci) and H ∩ Cj . By Proposition 2.14, we can always
assume that, up to a small perturbation of f , this intersection is transverse. We

denote by Lj
i and L′j

i the leaves of F ∩ Ci and H ∩ Cj , such that f(Lj
i ) intersects

transversally L′j
i .

On each cube Ci, we consider a smooth path γi such that for every transverse

intersection Lj
i � f−1(L′j

i ) �= ∅, the path γi coincides with the leaf Lj
i on a small

5The support of a homeomorphism ψ is defined as the closure of the largest set K such that
ψ|K �= Id.
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neighbourhood of Lj
i � f−1(L′j

i ). Looking at the cubes Ck such that f(Ck) ∩
Ci �= ∅, we also consider a smooth codimension 1 submanifold σi such that for

every transverse intersection f(Li
k) � L′i

k �= ∅, σi coincides with the leaf L′i
k on a

small neighbourhood of the transverse intersection f(Li
k) � L′i

k. Remark that by
construction, for every i and j, we have the transverse intersection f(γi) � σj .

Figure 3. Local modification of f , seen in the cube I2.

Then, we consider a δ tubular neighbourhood Γi of the path γi and a δ′ tubular
neighbourhood Σi of the submanifold σi, as well as two (conservative) homeomor-
phisms φi and φ′

i of the cube Ci, such that (see Figures 4 and 5):

• Γi and Σi have the same volume,
• φi and φ′

i have support in Ci,
• if we denote by ci the cube with the same centre as Ci and the same volume
as Γi, we have φi(ci) = Γi and φ′

i(ci) = Σi;
• the image of the vertical (resp. horizontal) faces of the cube ci by φi (resp.
φ′
i) is contained in a small neighbourhood of the boundary of γi (resp. σi).

As γi and σi are smooth, for δ (and thus δ′) small enough, for any i, j such that
f(Ci) ∩Cj �= ∅, the rectangles f(φi(ci)) and φ′

j(cj) have a Markovian intersection.
Then, we set

g =
(∏

j

(φ′
j)

−1
)
f
(∏

i

φi

)
.

By the inequality χ(Dm) < min(ε, κ, ω(κ)) and since φi and φ′
i have their support

included in a single cube of the subdivision, one gets a homeomorphism which is
κ-close to f and which belongs to Aε. �

Proof of Lemma 3.2. We now prove that if f ∈
⋂

p∈N
A1/p, then f satisfies the

special shadowing property.
Let us consider f ∈ Aε. This gives us a subdivision Dm such that f is m-chained

for Dm and χ(Dm) < ε. We set

δ < min
f(Ci)∩Cj=∅

dist (f(Ci), Cj).
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Figure 4. Cubes A and B have their image intersecting the cube
C. The vertical lines represent the image by f of the vertical
foliation of cubes A and B. Σ is transverse to the image of the
foliation by f in the dark red areas.

Figure 5. The application φ′ unfolds the cube c in the manifold
Σ. The previous dark red areas in Figure 4 are the image by φ′ of
the dark red areas above.

Note that the set of indices on which the minimum is taken may be empty; in that
case, any δ > 0 works.
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Now, consider any δ-pseudo orbit (yk)k∈Z of f . As the cubes Ci form a partition
of M , one can choose a sequence (ik)k∈Z of indices such that yk ∈ Cik for any k ∈ Z.
Therefore, f(Cik)∩Cik+1

�= ∅; otherwise we would have d(f(Cik), Cik+1
) > δ, which

is impossible because (yk)k∈Z is a δ-pseudo orbit.
Recall that by definition of Aε, we have associated a small rectangle ci to any

cube Ci of Dm, such that for any i, j such that f(Ci) ∩ Cj �= ∅, the intersection
f(ci) ∩ cj is non-empty and Markovian. Then, by an easy recurrence on n, using
Proposition 2.9, we obtain that for any n, the intersection fn(ci−n

) ∩ f−ncin is
non-empty and Markovian. Let xn be a point of this intersection. Then, for any
k ∈ {−n, . . . , n}, as fk(xn) ∈ cik ⊂ Cik � yk, one has

d(fk(xn), yk) < χ(Dm) < ε.

Therefore, xn ε-traces the finite δ-pseudo orbit (yk)−n≤k≤n. Since M is a compact
manifold, a subsequence of (xn)n>0 converges towards some point x, which ε-traces
the δ-pseudo orbit (yk)k∈Z.

In the case of a periodic δ-pseudo orbit, the shadowing by the real orbit of a
periodic point follows immediately from the previous reasoning and Lemma 2.12,
which allows us to exhibit a periodic orbit from a periodic chain of cubes.

Eventually, this shows that the Gδ set
⋂

p∈N
A1/p is contained in the set of

homeomorphisms of H satisfying the special shadowing property. �

4. Remarks

As a conclusion, we formulate a few remarks:

• As mentioned briefly in the introduction, the proof actually still holds in
the non-conservative case and provides an alternative proof to [9]. Indeed,
topologically, the only difference is that the image of a cube may be strictly
contained in another cube, but this fact does not have any consequence on
our proof.

• The non-shadowing property also holds on a dense set in H. Indeed, in [6]
(pages 33-34), the density of the maps f ∈ H which have an iterate equal
to the identity on an open set (fp = Id on an open set V ⊂ M , for some
p > 0) is proved. This property contradicts immediately the shadowing
property.

• Given an ε > 0, the proof also provides an upper-bound for the δ > 0 that
can be chosen. If Dm is a subdivision of diameter less than ε, then one can
take

δ < min
f(Ci)∩Cj=∅

dist (f(Ci), Cj).

• The specification property does not hold generically in the dissipative case.
Indeed, it is known that the specification property implies topological mix-
ing (see [5, Proposition 21.3]), which, in turn, does not hold on an open set
in the dissipative case.
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[19] Piotr Zgliczyński and Marian Gidea, Covering relations for multidimensional dynamical sys-
tems, J. Differential Equations 202 (2004), no. 1, 32–58. MR2060531

[20] Jerzy Jezierski and Wac�law Marzantowicz, Homotopy methods in topological fixed and pe-
riodic points theory, Topological Fixed Point Theory and Its Applications, vol. 3, Springer,
Dordrecht, 2006. MR2189944

http://www.ams.org/mathscinet-getitem?mr=0158374
http://www.ams.org/mathscinet-getitem?mr=729529
http://www.ams.org/mathscinet-getitem?mr=1745449
http://www.ams.org/mathscinet-getitem?mr=0457675
http://www.ams.org/mathscinet-getitem?mr=2931648
http://www.ams.org/mathscinet-getitem?mr=2145808
http://www.ams.org/mathscinet-getitem?mr=1326374
http://www.ams.org/mathscinet-getitem?mr=2160682
http://www.ams.org/mathscinet-getitem?mr=3194417
http://www.ams.org/mathscinet-getitem?mr=1009998
http://www.ams.org/mathscinet-getitem?mr=0005803
http://www.ams.org/mathscinet-getitem?mr=1885537
http://www.ams.org/mathscinet-getitem?mr=1711347
http://www.ams.org/mathscinet-getitem?mr=0352411
http://www.ams.org/mathscinet-getitem?mr=882123
http://www.ams.org/mathscinet-getitem?mr=1351526
http://www.ams.org/mathscinet-getitem?mr=2060531
http://www.ams.org/mathscinet-getitem?mr=2189944


GENERIC SHADOWING FOR CONSERVATIVE HOMEOMORPHISMS 4237

Universidade Federal Fluminense, Rua Mário Santos Braga, 24020-140, Niterói, RJ,
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