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ON SYMMETRIC HOMEOMORPHISMS ON THE REAL LINE

HU YUN, WU LI, AND SHEN YULIANG

(Communicated by Jeremy Tyson)

Abstract. We introduce a complex Banach manifold structure on the space
of normalized symmetric homeomorphisms on the real line.

1. Introduction

We begin with some basic notation. Let U = {z = x + iy : y > 0} and L =
{z = x+ iy : y < 0} denote the upper and lower half plane in the complex plane C,

respectively. R = ∂U = ∂L is the real line, and R̂ = R ∪ {∞} is the extended real

line in the Riemann sphere Ĉ = C ∪ {∞}. Let Δ = {z : |z| < 1} denote the unit

disk. Δ∗ = Ĉ−Δ is the exterior of Δ, and S1 = ∂Δ = ∂Δ∗ is the unit circle.
Let Hom+(R) denote the set of all increasing homeomorphisms of R onto itself.

A homeomorphism h ∈ Hom+(R) is said to be quasisymmetric if there exists some
M > 0 such that

(1.1)
1

M
≤ h(x+ t)− h(x)

h(x)− h(x− t))
≤ M

for all x ∈ R and t > 0. Beurling-Ahlfors [BA] proved that h ∈ Hom+(R) is
quasisymmetric if and only if there exists some quasiconformal homeomorphism of
U onto itself which has boundary values h.

The universal Teichmüller space T is a universal parameter space for all Rie-
mann surfaces and can be defined as the space of all normalized quasisymmetric
homeomorphisms on the real line, namely, T = QS(R)/Aff(R). Here, QS(R) de-
notes the group of all quasisymmetric homeomorphisms of the real line, and Aff(R)
the subgroup of all real affine mappings z �→ az + b, a > 0, b ∈ R. It is known
that the universal Teichmüller space T is an infinite-dimensional complex Banach
manifold, and QS(R) has a smooth Banach manifold structure such that QS(R) is
diffemorphic to T ×Aff(R) (see [Ga], [GL], [Le], [Na]).

A quasisymmetric homeomorphism h is said to be symmetric if

(1.2) lim
t→0+

h(x+ t)− h(x)

h(x)− h(x− t))
= 1
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uniformly for all x ∈ R. Let S(R) denote the set of all symmetric homeomorphisms
of the real line. This class was first studied in [Ca] when Carleson discussed the
absolute continuity of a quasisymmetric homeomorphism. It was investigated in
depth later by Gardiner-Sullivan [GS] during their study of little Teichmüller spaces
and asymptotic Teichmüller spaces (see also [EGL1,EGL2], [EMS]). In particular,
it was proved that a quasisymmetric homeomorphism h is symmetric if and only if h
can be extended as an asymptotically conformal mapping f to the upper half plane,
and that the Beurling-Ahlfors extension of h is asymptotically conformal when h is
symmetric (see [Ca], [GS], [Ma]). Here by an asymptotically conformal mapping f
of the upper half plane onto itself we mean that its complex dilatation μ = ∂f/∂f
satisfies the condition μ(x + iy) → 0 uniformly for all x ∈ R when y → 0+.
Consequently, S(R) is a subgroup of QS(R). We denote T∗ = S(R)/Aff(R) and
call it the symmetric Teichmüller space.

In this paper, we will endow the symmetric Teichmüller space T∗ with a complex
Banach manifold structure under which T∗ can be biholomorphically embedded as
a bounded domain in a certain Banach space. We will also point out an essential
difference, a fact which appears to have gone unnoticed, between the symmetric
Teichmüller space T∗ and the little Teichmüller space T0 that will be defined in the
last section.

2. Preliminaries and statement of the main result

In this section, we recall some basic definitions and results on the universal
Teichmüller space and state the main result of the paper. For primary references,
see Gardiner-Lakic [GL], Lehto [Le] and Nag [Na].

2.1. Universal Teichmüller space. Let M(U) denote the open unit ball of the
Banach space L∞(U) of essentially bounded measurable functions on the upper
half plane U. For μ ∈ M(U), let fμ be the unique quasiconformal mapping of
U onto itself which has complex dilatation μ and keeps the points 0, 1, and ∞
fixed. We say two elements μ and ν in M(U) are equivalent, denoted by μ ∼ ν, if
fμ = fν on the real line R. We let [μ] denote the equivalence class of μ. Then the
correspondence [μ] �→ fμ|R establishes a one-to-one map from M(U)/∼ onto the
universal Teichmüller space T . T = M(U)/∼ is known as the Bers model of the
universal Teichmüller space. We let Φ denote the natural projection from M(U)
onto T so that Φ(μ) is the equivalence class [μ]. [0] is called the base point of T .
The Teichmüller distance between two points [μ1] and [μ2] in T is defined as

(2.1) τ ([μ1], [μ2])
.
= inf

{
1

2
log

1 + ‖ ν1−ν2

1−ν1ν2
‖∞

1− ‖ ν1−ν2

1−ν1ν2
‖∞

: [ν1] = [μ1], [ν2] = [μ2]

}
.

Earle-Eells [EE] proved that the universal Teichmüller space T is contractible by
means of a Beurling-Ahlfors extension. In fact, they showed that the Beurling-
Ahlfors extension induces a continuous section s : T → M(U) of the natural pro-
jection Φ by sending a point [μ] to the Beltrami coefficient of the Beurling-Ahlfors
extension of fμ|R.

Let Ω be an arbitrary simply connected domain in the extended complex plane Ĉ
which is conformally equivalent to the upper half plane. Recall that the hyperbolic
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metric λΩ in Ω can be defined by

(2.2) λΩ(f(z))|f ′(z)| = 1

2y
, z = x+ iy ∈ U,

where f : U → Ω is any conformal mapping. Let B(Ω) denote the Banach space of
functions φ holomorphic in Ω with norm

(2.3) ‖φ‖B(Ω) = sup
z∈Ω

|φ(z)|λ−2
Ω (z).

It is easy to see that a conformal mapping g : Ω1 → Ω2 induces an isometric
isomorphism φ �→ (φ ◦ g)(g′)2 from B(Ω2) onto B(Ω1).

It is known that the universal Teichmüller space T is an infinite-dimensional
complex Banach manifold. To make this precise, we consider the map S : M(U) →
B(L) defined as S(μ) = S(fμ|L), where fμ is the unique quasiconformal mapping
of the complex plane C which has complex dilatation μ in U, is conformal in L, and
keeps the points 0, 1, and ∞ fixed, while S(f) denotes the Schwarzian derivative

of a locally univalent function f of a domain in the extended plane Ĉ, defined as
(f ′′/f ′)′ − 1/2(f ′′/f ′)2. It is known that S is a holomorphic split submersion and
descends down to a one-to-one map B : T → B(L), which is known as the Bers
embedding. Via the Bers embedding, T carries a natural complex structure so that
the natural projection Φ : M → T is a holomorphic split submersion and B is a
biholomorphism from T onto its image.

2.2. Statement of main result. Let B∗(L) be the subspace of B(L) which con-
sists of those functions φ such that y2φ(x+ iy) → 0 uniformly for x ∈ R as y → 0−.
It is easy to see that B∗(L) is closed in B(L). To see this, let a sequence (φn) in
B∗(L) and φ ∈ B(L) be given such that ‖φn−φ‖B(L) → 0 as n → ∞. Then for each
ε > 0, we may choose some n0 such that ‖φn0

−φ‖B(L) < ε. Since φn0
∈ B∗(L), there

exists some δ > 0 such that y2|φn0
(x + iy)| < ε whenever x ∈ R and −δ < y < 0.

Thus,

y2|φ(x+ iy)| ≤ y2|φn0
(x+ iy)|+ y2|φn0

(x+ iy)− φ(x+ iy)| < 2ε

whenever x ∈ R and −δ < y < 0, which implies that φ ∈ B∗(L). Consequently,
B∗(L) is closed in B(L), which implies that B∗(L) itself is a complex Banach space.

Now let L∗(U) be the subspace of L
∞(U) which consists of those functions μ such

that μ(x+iy) → 0 uniformly for x ∈ R as y → 0+. By the same reasoning as above,
we find out that L∗(U) is closed in L∞(U). Set M∗(U) = M(U)∩L∗(U). Then the
correspondence [μ] �→ fμ|R establishes a one-to-one map from M∗(U)/∼ onto the
symmetric Teichmüller space T∗, and the Beurling-Ahlfors section s : T → M(U)
maps T∗ into M∗(U) (see [Ca], [GS], [Ma]). By the continuity of s : T → M(U), we
conclude that T∗ is contractible.

In this paper, we will endow the symmetric Teichmüller space T∗ with a complex
Banach manifold structure. The main result is the following.

Theorem 2.1. S maps M∗(U) into B∗(L) and is a holomorphic split submersion
from M∗(U) onto its image. Consequently, T∗ has a unique complex structure such
that B : T∗ → B∗(L) is a biholomorphic map from T∗ onto a domain in B∗(L).
Under this complex structure, the natural projection Φ from M∗(U) onto T∗ is a
holomorphic split submersion.
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3. An integral representation of the Schwarzian derivative S(μ)
In this section, we will prove that S maps M∗(U) into B∗(L). We first establish

an integral representation of the Schwarzian derivative S(μ), which was inspired by
the computation from Astala-Zinsmeister [AZ].

Proposition 3.1. For each μ ∈ M(U), the Schwarzian derivative S(μ) has the
following expression:

(3.1) S(μ)(z) = − 6

π
f ′
μ(z)

∫∫
U

∂fμ(ζ)

(ζ − z)2(fμ(ζ)− fμ(z))2
dξdη, z ∈ L.

Proof. We borrow some discussion by Astala-Zinsmeister [AZ]. Consider a quasi-
conformal mapping g in the complex plane, which is conformal in Δ∗ and has the
expression

(3.2) g(w) = w +
∞∑

n=0

bnw
−n, w ∈ Δ∗.

A direct computation yields that

lim
w→∞

w4S(g)(w) = −6b1.

On the other hand, we have the following identity by the Green formula:

∫∫
Δ

∂g(ζ)dξdη = lim
w→∞

∫∫
Δ

w2

(ζ − w)2
∂g(ζ)dξdη

= lim
w→∞

1

2i

∫
∂Δ

w2

(ζ − w)2
g(ζ)dζ

= lim
w→∞

1

2i

∫
∂Δ∗

w2

(1− ζ̄w)2
g(ζ)dζ̄

= − lim
w→∞

∫∫
Δ∗

w2

(1− ζ̄w)2
g′(ζ)dξdη

= −
∫∫

Δ∗

g′(ζ)

ζ̄2
dξdη

= πb1.

Consequently, we have

(3.3)
6

π

∫∫
Δ

∂g(ζ)dξdη = − lim
w→∞

w4S(g)(w).

Now let μ ∈ M(U) be given. For simplicity, we set f = fμ. For any z ∈ L, consider

γ(w) = zw−z̄
w−1 , Γ(w) = (z−z̄)f ′(z)

w−f(z) . Then g
.
= Γ◦f ◦γ is a quasiconformal mapping in

the complex plane, which is conformal in Δ∗ and satisfies the normalized condition
(3.2). So (3.3) holds. Noting that S(g) = (S(f) ◦ γ)(γ′)2, we obtain

(3.4) lim
w→∞

w4S(g)(w) = lim
w→∞

w4S(f)(γ(w))(γ′(w))2 = S(f)(z)(z − z̄)2.
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On the other hand, since ∂g = (Γ′ ◦ f ◦ γ)(∂f ◦ γ)γ′, we have∫∫
Δ

∂g(ζ)dξdη =

∫∫
Δ

(Γ′ ◦ f ◦ γ)(∂f ◦ γ)γ′dξdη

=

∫∫
U

(Γ′ ◦ f)∂f(γ−1)′dξdη

= f ′(z)(z − z̄)2
∫∫

U

∂f(ζ)

(ζ − z)2(f(ζ)− f(z))2
dξdη.(3.5)

Now (3.1) follows from (3.3)-(3.5) directly. �

Corollary 3.2. For each μ ∈ M(U), it holds that

(3.6) |S(μ)(z)|2 ≤ 144

(1− ‖μ‖2∞)πy2

∫∫
U

|μ(ζ)|2
|ζ − z|4 dξdη, z = x+ iy ∈ L.

Proof. We recall a classical result of Bergman-Schiffer [BS] which says that for any
regular domain Ω bounded by analytic curves,

(3.7)
1

π

∫∫
Ĉ−Ω

dξdη

|ζ − w|4 ≤ λ2
Ω(w), w ∈ Ω.

In fact, Harmelin [Ha] pointed out that (3.7) holds for any simply connected hy-
perbolic domain Ω in the Riemann sphere. Since we are not able to find a complete
proof of (3.7) in the literature, here we give a direct estimate of the integral in (3.7)
for convenience. Though our estimate is not as precise as (3.7), it is sufficient for
our purpose. For each w ∈ Ω, we denote by d(w, ∂Ω) the distance between w and

∂Ω so that |ζ − w| > d(w, ∂Ω) when ζ ∈ Ĉ \ Ω. Thus,

(3.8)
1

π

∫∫
Ĉ−Ω

dξdη

|ζ − w|4 ≤ 1

π

∫∫
|ζ−w|>d(w,∂Ω)

dξdη

|ζ − w|4 =
1

d2(w, ∂Ω)
.

On the other hand, when Ω does not contain ∞, it is well known that (see [Le])

(3.9) λΩ(w) ≥
1

4d(w, ∂Ω)
, w ∈ Ω.

By (3.8) and (3.9) we have the desired estimate

(3.10)
1

π

∫∫
Ĉ−Ω

dξdη

|ζ − w|4 ≤ 16λ2
Ω(w), w ∈ Ω,

when Ω does not contain ∞.
Now set f = fμ as above, and D = f(U), D∗ = f(L), k = ‖μ‖∞. By Hölder’s

inequality we conclude from (3.1) that

(3.11) |S(μ)(z)|2 ≤ 36

π2
|f ′(z)|2

∫∫
U

|μ(ζ)|2
|ζ − z|4 dξdη

∫∫
U

|∂f(ζ)|2
|f(ζ)− f(z)|4 dξdη.

Since D∗ does not contain ∞, we obtain from (3.10) that∫∫
U

|∂f(ζ)|2
|f(ζ)− f(z)|4 dξdη ≤ 1

1− k2

∫∫
U

|∂f(ζ)|2 − |∂f(ζ)|2
|f(ζ)− f(z)|4 dξdη

=
1

1− k2

∫∫
D

1

|ζ − f(z)|4 dξdη

≤ 16π

1− k2
λ2
D∗(f(z)).
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Combining this with (3.11) yields that

|S(μ)(z)|2 ≤ 576

(1− k2)π
λ2
D∗(f(z))|f ′(z)|2

∫∫
U

|μ(ζ)|2
|ζ − z|4 dξdη

=
144

(1− k2)πy2

∫∫
U

|μ(ζ)|2
|ζ − z|4 dξdη,

by (2.2). �

Lemma 3.3. For each μ ∈ M∗(U), it holds that

lim
y→0−

∫∫
U

y2

|ζ − (x+ iy)|4 |μ(ζ)|
2dξdη = 0

uniformly for x ∈ R.

Proof. For each t > 0, set U1
t = {ζ = ξ+ iη : 0 < η < t}, U2

t = {ζ = ξ+ iη : η > t}.
Let ε > 0 be arbitrarily given. Since μ ∈ M∗(U), there exists t > 0 such that
|μ(ζ)| < ε for ζ ∈ U1

t . Set k = ‖μ‖∞ as above. Then for z = x+ iy ∈ L, we have∫∫
U

|z − z̄|2
|ζ − z|4 |μ(ζ)|

2dξdη ≤ ε2
∫∫

U1
t

|z − z̄|2
|ζ − z|4 dξdη + k2

∫∫
U2

t

|z − z̄|2
|ζ − z|4 dξdη.

Set γ(w) = zw−z̄
w−1 as above, and ω(ζ) = γ−1(ζ) = ζ−z̄

ζ−z . Then ω maps the upper half

plane U onto the unit disk Δ, and ω′(ζ) = z̄−z
(ζ−z)2 . Thus,∫∫

U

|z − z̄|2
|ζ − z|4 |μ(ζ)|

2dξdη≤ε2
∫∫

ω(U1
t )

dudv+k2
∫∫

ω(U2
t )

dudv≤πε2+k2
∫∫

ω(U2
t )

dudv.

Noting that

γ(w)− γ(w)

2i
=

1

2i

(
zw − z̄

w − 1
− z̄w̄ − z

w̄ − 1

)
=

z − z̄

2i

|w|2 − 1

|w − 1|2 ,

we find out that, under the mapping ω, the line {ζ = ξ + iη : η = t} is mapped

onto the circle {w : |w−1|2
1−|w|2 = −y

t }, or equivalently, {w : |w − t
t−y | = − y

t−y}.
Consequently, ω(U2

t ) is the disk {w : |w − t
t−y | < − y

t−y}, which implies that∫∫
U

|z − z̄|2
|ζ − z|4 |μ(ζ)|

2dξdη ≤ πε2 + πk2
y2

(t− y)2
,

and so

lim
y→0−

∫∫
U

|z − z̄|2
|ζ − z|4 |μ(ζ)|

2dξdη ≤ πε2

uniformly for x ∈ R. By the arbitrariness of ε, we obtain (3.8) as desired. �

Corollary 3.4. For each μ ∈ M∗(U), it holds that S(μ) ∈ B∗(L).

Proof. This follows from Corollary 3.2 and Lemma 3.3. �

Remark. Corollary 3.4 implies that B(T∗) ⊂ B(T ) ∩B∗(L). It is not clear whether
the converse is true.
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4. Proof of Theorem 2.1

Corollary 3.4 says that S maps M∗(U) into B∗(L). This also implies that
S : M∗(U) → B∗(L) is holomorphic since S : M(U) → B(L) is holomorphic.
It remains to show that S : M∗(U) → B∗(L) is a split submersion onto its image,
or equivalently, S : M∗(U) → B∗(L) has local holomorphic sections. We write the
standard proof here (see [Ah], [EN], [SW]).

Let φ = S(μ), μ ∈ M∗(U) be given. Without loss of generality, we may assume
that μ = s([μ]), that is, fμ is the Beurling-Ahlfors extension of fμ|R. Set f = fμ,

D = f(U), D∗ = f(L) as before, and r = f ◦ f−1. Ahlfors [Ah] showed that
r : D → D∗ is a quasiconformal reflection and there exists a constant C1 such that

(4.1)
1

C1
≤ |r(z)− z|2λ2

D∗(r(z))|∂r(z)| ≤ C1, z ∈ D.

Consider Bε(φ) = {ψ ∈ B∗(L) : ‖ψ − φ‖B(L) < ε} for ε > 0. Then for each
ψ ∈ Bε(φ) there exists a unique locally univalent function fψ in L which fixes the
points 0, 1, ∞ such that S(fψ) = ψ. Set gψ = fψ◦f−1. Then S(gψ)◦f(f ′)2 = ψ−φ,
and S(gψ) ∈ B(D∗) with ‖S(gψ)‖B(D∗) = ‖ψ − φ‖B(L). More specifically,

λ−2
D∗(f(z))|S(gψ)(f(z))| = |z − z̄|2|ψ(z)− φ(z)|, z ∈ L.

When ε is small, Ahlfors [Ah] proved that gψ is univalent and can be extended to
a quasiconformal mapping in the whole plane whose complex dilatation μψ has the
form

(4.2) μψ(z) =
S(gψ)(r(z))(r(z)− z)2∂r(z)

2 + S(gψ)(r(z))(r(z)− z)2∂r(z)
, z ∈ D.

By (4.1) we have for some constant C2 that

(4.3) |μψ(z)| ≤ C2|S(gψ)(r(z))|λ−2
D (r(z)), z ∈ D.

Consequently, fψ = gψ ◦ f is univalent in L and has a quasiconformal extension to
the whole plane whose complex dilatation νψ is

(4.4) νψ =
μ+ (μψ ◦ f)τ
1 + μ(μψ ◦ f)τ , τ =

∂f

∂f
.

It is well known that νψ depends holomorphically on ψ (see [Ah], [EN]). Now, it
follows from (4.3) that

|μψ(f(z))| ≤ C2|S(gψ)(r(f(z)))|λ−2
D∗(r(f(z)))

= C2|S(gψ)(f(z̄))|λ−2
D∗(f(z̄))

= C2|ψ(z̄)− φ(z̄)||z − z̄|2,
which implies that μψ ◦ f ∈ M∗(U), and we conclude by (4.4) that νψ ∈ M∗(U).
Since S(νψ) = ψ, we conclude that ν : Bε(φ) → M∗(U) is a local holomorphic
section to S : M∗(U) → B∗(L). This completes the proof of Theorem 2.1. �

5. Concluding remarks

5.1. We recall the little Teichmüller space, which is closely related to the symmetric
Teichmüller space T∗. Let L0(U) be the closed subspace of L∞(U) which consists
of those functions μ such that

inf{‖μ|U\K‖∞ : K ⊂ U compact} = 0.
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Set M0(U) = M(U) ∩ L0(U). T0 = M0(U)/∼ is one of the models of the little
Teichmüller space. It is obvious that L0(U) ⊂ L∗(U), and so T0 ⊂ T∗. Now we
point out that T0 is a nontrivial subset of T∗. To make this precise, we consider
the symmetric homeomorphisms on the unit circle S1.

Let h be an orientation-preserving self-homeomorphism of the unit circle S1 with
h(1) = 1. Then h determines two increasing self-homeomorphisms of the real line

R. One is ĥ determined by

e2πiĥ(x) = h(e2πix), ĥ(0) = 0.

The other is h̃ determined by

h̃(x)− i

h̃(x) + i
= h(

x− i

x+ i
).

By definition, h is said to be quasisymmetric if ĥ is quasisymmetric, while h is said

to be symmetric if ĥ is symmetric. It is well known that h is quasisymmetric if
and only if h can be extended a quasiconformal homeomorphism f to the unit disk
Δ, or, equivalently, h̃ is quasisymmetric. It is also known that h is symmetric if
and only if h can be extended as an asymptotically conformal mapping f to Δ in
the sense that its complex dilatation μ = ∂f/∂f satisfies the condition μ(z) → 0

when |z| → 1−, or, equivalently, h̃ represents a point in the little Teichmüller space

T0 (see [GL], [GS], [Ma]). Consequently, ĥ is a symmetric homeomorphism and
thus represents a point in the symmetric Teichmüller space T∗ whenever h is a

symmetric homeomorphism on the unit circle. However, ĥ cannot represent a point

in the little Teichmüller space T0 except for h being the identity map. In fact, ĥ
can even not represent a so-called Strebel point in the universal Teichmüller space
T from extremal quasiconformal mapping theory (see [GL]).

5.2. A problem. It is known that there exists the invariant Kobayashi metric on
any complex Banach manifold (see [Ko]). It is also known that the Kobayashi
metric coincides with the Teichmüller metric on the universal Teichmüller space T
and also on the little Teichmüller space T0 (see [Ga], [GL], [EGL1, EGL2]). We
do not know whether or not the Kobayashi metric coincides with the Teichmüller
metric on the symmetric Teichmüller space T∗, which is a complex Banach manifold
by our Theorem 2.1.
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