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EXTREMAL MULTIPLIERS OF THE DRURY–ARVESON SPACE

MICHAEL T. JURY AND ROBERT T. W. MARTIN

(Communicated by Stephan R. Garcia)

Abstract. We give a new characterization of the so-called quasi-extreme mul-
tipliers of the Drury–Arveson space H2

d and show that every quasi-extreme

multiplier is an extreme point of the unit ball of the multiplier algebra of H2
d .

1. Introduction

In [7] and [8] we introduced the notion of a quasi-extrememultiplier of the Drury–
Arveson space H2

d and gave a number of equivalent formulations of this property.
(The relevant definitions are recalled in Section 2.) The purpose of this paper is to
give one further characterization of quasi-extremity in the general case, from which
it will follow that every quasi-extreme multiplier of H2

d is in fact an extreme point
of the unit ball of the multiplier algebra M(H2

d). Our main result is the following
theorem.

Theorem 1.1. A contractive multiplier b of H2
d is quasi-extreme if and only if the

only multiplier a satisfying

(1.1) M∗
aMa +M∗

b Mb ≤ I

is a ≡ 0.

Corollary 1.2. If b ∈ ball(M(H2
d)) is quasi-extreme, then b is an extreme point

of ball(M(H2
d)).

Proof. Since the corollary concerning extreme points follows immediately, we prove
it here. If b is not extreme, then there exists a nonzero a ∈ ball(M(H2

d)) such that
both b ± a lie in ball(M(H2

d)), that is, are contractive multipliers of H2
d . We then

have the operator inequalities

M∗
b+aMb+a ≤ I, M∗

b−aMb−a ≤ I.

Averaging these inequalities gives

M∗
aMa +M∗

b Mb ≤ I,

so by Theorem 1.1, b is not quasi-extreme. �
The converse statement, namely whether or not every extreme point is quasi-

extreme in our sense, remains open.
The remainder of the paper is devoted to proving Theorem 1.1. The outline of

the paper is as follows: in Section 2 we recall the Drury–Arveson space and its
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multipliers, and review the necessary results concerning the de Branges–Rovnyak
type spaces H(b) contractively contained in H2

d , and in particular the solutions to
the Gleason problem in these spaces. We define the quasi-extreme multipliers and
review some equivalent formulations of this property that will be used later. In
Section 3 we introduce what we call the minimal functional model of a multiplier,
and in Section 4 we use it to prove one direction of Theorem 1.1. Finally in Section 5
we recall the notion of a free lifting of a contractive multiplier and complete the
proof of Theorem 1.1.

2. The Drury–Arveson space, multipliers, and quasi-extremity

The Drury–Arveson space is the Hilbert space of holomorphic functions defined
on the unit ball Bd ⊂ Cd with reproducing kernel

kw(z) = k(z, w) =
1

1− zw∗ , z, w ∈ B
d.

(Here we use the notation z = (z1, z2, . . . , zd) so that zw∗ =
∑d

j=1 zjwj .) General

facts about the H2
d spaces may be found in the recent survey [12].

A holomorphic function b on Bd will be called a multiplier if bf ∈ H2
d whenever

f ∈ H2
d . In this case the operator Mb : f → bf is bounded, and we let M(H2

d)
denote the Banach algebra of multipliers, equipped with the operator norm. For
the reproducing kernel kw we have M∗

b kw = b(w)∗kw. It follows that ‖Mb‖ ≤ 1 if
and only if the expression

kbw(z) = kb(z, w) :=
1− b(z)b(w)∗

1− zw∗

defines a positive kernel on B
d. When this is the case we let H(b) denote the

associated reproducing kernel Hilbert space, called the de Branges–Rovnyak space
of b. The spaceH(b) is a space of holomorphic functions on Bd, contained inH2

d , and
the inclusion map H(b) ⊂ H2

d is contractive for the respective Hilbert space norms.
We write ‖ · ‖b and 〈·, ·〉b for the norm and inner product in H(b), respectively.

Properties of the spaces H(b) when d > 1 were studied in [7], inspired among
other things by the results of Sarason in the one-variable case [10], [11]. In one
variable, the H(b) spaces are invariant under the backward shift; in several variables
we instead (following Ball, Bolotnikov, and Fang [2]) consider solutions to the
Gleason problem: given a function f ∈ H(b), we seek functions f1, . . . , fd ∈ H(b)
such that

(2.1) f(z)− f(0) =
d∑

j=1

zjfj(z).

From [2] we know that this problem always has a solution; in fact there exist (not
necessarily unique) bounded operators X1, . . . , Xd acting on H(b) such that the
functions fj := Xjf solve (2.1) for any f ∈ H(b). Moreover, these Xj can be
chosen to be contractive in the following sense: for every f ∈ H(b),

(2.2)

d∑
j=1

‖Xjf‖2b ≤ ‖f‖2b − |f(0)|2.

These contractive solutions were studied further in [7], where we proved the follow-
ing (see also [8] for the vector-valued case).
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Proposition 2.1. A set of bounded operators (X1, . . . , Xd) is a contractive solution
to the Gleason problem in H(b) if and only if the Xj act on reproducing kernels by
the formula

(2.3) Xjk
b
w = w∗

j k
b
w − b(w)∗bj

for some choice of functions b1, . . . , bd ∈ H(b) which satisfy

(i)
∑d

j=1 zjbj(z) = b(z)− b(0),

(ii)
∑d

j=1 ‖bj‖2b ≤ 1− |b(0)|2.

The set of all contractive solutions X is in one-to-one correspondence with the
set of all tuples b1, . . . , bd satisfying these conditions [8, Theorem 4.10]. We will call
such sets of bj admissible, or say that such a set is a contractive Gleason solution
for b.

In turns out that for some contractive multipliers b, the operators Xj of the
proposition are unique, that is, there is only one admissible tuple. When this
happens we will call the multiplier b quasi-extreme. (The original definition of quasi-
extreme in [7] is different, involving the so-called noncommutative Aleksandrov–
Clark state for b, but this definition will be easier to work with for the present
purposes.) In [7] and [8] we gave a number of equivalent formulations of quasi-
extremity; we recall only a few of them here.

Proposition 2.2. Let b be a contractive multiplier of H2
d and d > 1. The following

are equivalent:

i) b is quasi-extreme.
ii) There is a unique contractive solution (X1, . . . , Xd) to the Gleason problem

in H(b).
iii) Every contractive Gleason solution for H(b) is extremal, i.e., given any

contractive solution, (X1, . . . , Xd), the equality
∑d

j=1 ‖Xjf‖2b = ‖f‖2b −
|f(0)|2 holds for every f ∈ H(b).

iv) There is a unique admissible tuple (b1, . . . , bd) satisfying the conditions of
Proposition 2.1.

v) All admissible tuples (b1, . . . , bd) are extremal, i.e.,

d∑
j=1

‖bj‖2b = 1− |b(0)|2,

for any admissible tuple.
vi) H(b) does not contain the function b.

In [8] these equivalences were extended to the case of operator-valued b.
What will be most useful in what follows is item (v); in particular, b is not quasi-

extreme if and only if there exists an admissible tuple (b1, . . . , bd) which obeys the
strict inequality

d∑
j=1

‖bj‖2b < 1− |b(0)|2.

3. The minimal functional model

We begin by recalling the relevant facts about transfer function realizations [3]
and the generalized functional models of [1, 2].
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Let X ,U ,Y be Hilbert spaces and let X d denote the direct sum of d copies of
X . By a d-colligation we mean an operator U : X ⊕ U → X d ⊕ Y expressed in the
block matrix form

U =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ :

[
X
U

]
→
[
X d

Y

]
.

The colligation is called contractive, isometric, unitary, etc. if U is an operator of
that type. For points z = (z1, . . . , zd) ∈ Cd, it will be convenient to identify z with
the row contraction:

z : X d → X ; z

⎡⎢⎣x1

...
xd

⎤⎥⎦ := z1x1 + · · ·+ zdxd.

Observe that ‖z‖2 = ‖zz∗‖L(X ) =
∑d

j=1 |zj |2, so ‖z‖ = |z|Cd < 1 if and only if

z ∈ Bd. If U is a contractive colligation, the transfer function for U is

S(z) = D + C(I − zA)−1zB.

The transfer function S(z) is a holomorphic function in Bd taking values in the space
of bounded operators from U to Y . Moreover, S(z) acts as a contractive multiplier
from H2

d ⊗ U to H2
d ⊗ Y . (For our purposes we will only need to consider finite-

dimensional U and Y .) Conversely, it is a theorem of Ball, Trent, and Vinnikov [3]
that S is a contractive multiplier of H2

d ⊗ U into H2
d ⊗Y if and only if it possesses

a transfer function realization. In [2], it was shown that such a transfer function
could always be chosen to be of a special form, called a generalized functional model
realization. In particular (in the case U = Y = C) this is a realization such that
the state space X is equal to H(b), and:

• (A1, . . . , Ad) is a contractive solution to the Gleason problem in H(b),
• (B1, . . . , Bd) is a contractive Gleason solution for b,
• Cf = f(0), and
• Dλ = b(0)λ.

The corresponding colligation is contractive and its transfer function is b(z).
Since Cf = f(0) = 〈f, kb0〉, we will write kb

∗

0 for C, and using the notation of the
previous section we will write generalized functional model colligations in the form

U =

⎡⎢⎢⎢⎣
X1 b1
...

...
Xd bd
kb∗0 b(0)

⎤⎥⎥⎥⎦ .

3.1. The minimal functional model. We now construct what we will call the
minimal functional model of b. In the next section we will use it to prove the first
half of Theorem 1.1 and deduce some of its further properties.

Fix a (nonconstant) contractive multiplier b and consider the de Branges–
Rovnyak kernel

(3.1)
1− b(z)b(w)∗

1− zw∗ = 〈kbw, kbz〉.
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We define two Hilbert spaces D and R as follows:

D = span

{[
kbw

b(w)∗

]
: w ∈ B

d

}
⊂ H(b)⊕ C,(3.2)

R = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
w∗

1k
b
w

...
w∗

dk
b
w

1

⎤⎥⎥⎥⎦ : w ∈ B
d

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⊂ H(b)(d) ⊕ C.(3.3)

The factorization (3.1) shows that the map defined for each w ∈ Bd by

(3.4) V :

[
kbw

b(w)∗

]
→

⎡⎢⎢⎢⎣
w∗

1k
b
w

...
w∗

dk
b
w

1

⎤⎥⎥⎥⎦
extends to a linear isometry (that is, a unitary) from D onto R (this is the well-
known “lurking isometry” argument). We then extend it to a map (still denoted
V) from all of H(b)⊕C into H(b)(d)⊕C by declaring V to be 0 on D⊥ ⊂ H(b)⊕C.
The extended V is thus a partial isometry with initial space D and final space R.

Let us pause to make some remarks on the spaces D and R. First we observe
that the space R⊥ consists of all the vectors

(3.5)

⎡⎢⎢⎢⎣
g1
...
gd
λ

⎤⎥⎥⎥⎦ ∈ H(b)(d) ⊕ C such that w1g1(w) + · · ·+ wdgd(w) + λ ≡ 0.

When d = 1, this forces both g and λ to be 0, so we always have R = H(b)⊕ C in
that case. In contrast, it can be shown that R is always a proper subspace when
d > 1, though we do not prove this here since it will not be required.

What is the space D⊥? If the vector
[
f
λ

]
∈ H(b)⊕ C is orthogonal to D, then

(3.6) 〈f, kbw〉+ λb(w) = f(w) + λb(w) = 0

for all w ∈ Bd. If λ = 0, this forces f = 0. If λ �= 0, then f = −λb, which means
b ∈ H(b). Conversely, if b ∈ H(b), then

[−b
1

]
belongs to D⊥. There are thus two

cases: if b /∈ H(b) (that is, if b is quasi-extreme), then D⊥ = {0}; otherwise, if b is
not quasi-extreme, then D⊥ is one dimensional, spanned by

[−b
1

]
.

Proposition 3.1. The partial isometry V just defined is a generalized functional
model realization for b, with state space X = H(b) and input and output spaces
U = Y = C.

Proof. Write V as a colligation:

V =

[
A B
C D

]
=

⎡⎢⎢⎢⎣
A1 B1

...
...

Ad Bd

C D

⎤⎥⎥⎥⎦ :

[
H(b)
C

]
→
[
H(b)d

C

]
.

The bottom row
[
C D

]
is a linear functional on H(b) ⊕ C uniquely determined

by the fact that for each w ∈ B
d it sends

[
kb
w

b(w)∗

]
to 1 and sends D⊥ to 0. It



4298 MICHAEL T. JURY AND ROBERT T. W. MARTIN

is straightforward to check that this forces C = k∗0 and D = b(0). Next, since
V∗V = 1 on D, we obtain for all w

(3.7)

[
A∗

1 . . . A∗
d C∗

B∗
1 . . . B∗

d D∗

]
:

⎡⎢⎢⎢⎣
w∗

1k
b
w

...
w∗

dk
b
w

1

⎤⎥⎥⎥⎦→
[

kbw
b(w)∗

]
.

Since we have C = kb∗0 , from the first row we obtain

(3.8)

⎛⎝ d∑
j=1

w∗
jA

∗
j

⎞⎠ kbw + kb0 = kbw.

Taking the inner product of an arbitrary f ∈ H(b) against this equality, and rear-
ranging, we obtain

(3.9) f(w)− f(0) =

d∑
j=1

wj(Ajf)(w),

which shows that the Aj solve the Gleason problem in H(b). The fact that V
is a partial isometry shows that this is a contractive solution as defined above.
Similarly, from the second row, using the fact that D = b(0), we have

(3.10)

d∑
j=1

wjBj(w) = b(w)− b(0),

so that the Bj form a solution to the Gleason problem for b. And again since V is

a partial isometry, we obtain
∑d

j=1 ‖Bj‖2H(b) + |b(0)|2 ≤ 1. Thus V is a functional

model realization of b. �

More or less by definition, any generalized functional model must agree with V
on D and map D⊥ contractively into R⊥. Since V is 0 on D⊥ we will call V the
minimal functional model of b.

4. The a-function

In this section we prove the first half of Theorem 1.1.

Proposition 4.1. If b is not quasi-extreme, then there exists a nonzero multiplier
a such that

M∗
aMa +M∗

b Mb ≤ I.

In the one-variable case if b is not extreme, then there is an outer function a
defined by the property that

(4.1) |a(ζ)|2 + |b(ζ)|2 = 1 a.e. on T;

we can assume that a(0) > 0. In the above T denotes the unit circle. For this a we
immediately have M∗

aMa +M∗
b Mb = I. It is known in general that an equality of

this sort cannot hold when d > 1 except in trivial cases (where the functions are
constant); see [5]. In any case, when d > 1 we do not have any direct recourse to
the theory of outer functions, so different methods are required.

Nonetheless, the proof of (4.1) is in a sense constructive: a will be given in terms
of a transfer function realization.
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It is remarkable that the algebraic construction given here, if carried out in one
variable, produces exactly the outer function in (4.1). This follows from our transfer
function realization and Sarason’s computation of the Taylor coefficients of a [10];
we prove this at the end of the section.

Proof of Proposition 4.1. Consider the minimal functional model V constructed in
the previous section; we maintain the notation used there. Consider the vector

(4.2) u :=

[
−b
1

]
which spans the space D⊥. Let a0 := ‖u‖−1 = (1 + ‖b‖2H(b))

−1/2. Since V is a

partial isometry with initial space D, we haveV∗V+|a0|2uu∗ = I, so we can extend
V vertically by a0u

∗ to obtain an isometric colligation acting between H(b) ⊕ C

and H(b)(d) ⊕ C2; explicitly,

Ṽ :=

[
V

a0u
∗

]
=

⎡⎢⎢⎢⎢⎢⎣
X1 b1
...

...
Xd bd
kb∗0 b(0)

−a0b
∗ a0

⎤⎥⎥⎥⎥⎥⎦ .

By the realization theory for contractive multipliers, the transfer function of this

Ṽ is a C
2-valued contractive multiplier given by

(4.3)

[
s1(z)
s2(z)

]
=

[
b(0)
a0

]
+

[
kb

∗

0

−a0b
∗

]⎛⎝I −
d∑

j=1

zjXj

⎞⎠−1⎛⎝ d∑
j=1

zjbj

⎞⎠ .

Now s1(z) is equal to b(z), since it is just the transfer function associated to the
minimal functional model V, which was constructed as a realization of b to begin
with. Thus, taking a(z) = s2(z) proves the theorem (note that a is nonzero since
a(0) = a0 �= 0). �

4.1. Further properties of the minimal functional model. Let us collect
some further properties of the minimal functional model and its associated Gleason
solution X; these results should be compared with the results of Sarason ([10]) for
the backward shift in H(b) in the one-variable case.

Proposition 4.2. Suppose b is not quasi-extreme. There exists a unique contractive
solution X = (X1, . . . , Xd) to the Gleason problem in H(b) with the property that

(4.4) Xjb = bj ,

where the bj are those associated to Xj in Proposition 2.1.

Proof. The Xj that we seek are precisely those given by the minimal functional
model V. By its definition, V annihilates the vector u =

[−b
1

]
, which means for

each j,

(4.5) −Xjb+ bj = 0,

as desired. Since any other functional model must be nonzero on D⊥, it would not
annihilate u, and the uniqueness follows. �
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Proposition 4.3. Let b be a nonquasi-extreme multiplier. If Xj is the minimal
solution to the Gleason problem in H(b) (coming from the minimal functional model
V), then

(4.6) I −
d∑

j=1

X∗
jXj = kb0k

b∗
0 + |a0|2bb∗.

Proof. This is immediate from the fact that the extended Ṽ is an isometry (one

need only write out the identity Ṽ∗Ṽ = I as a block matrix). �

4.2. The one-variable case. We analyze the foregoing construction in the one-
variable case. Here the Drury–Arveson space becomes the classical Hardy space
H2(D) and its multiplier algebra is the space of bounded analytic functions H∞(D),
equipped with the supremum norm. In this case it is known [11] that b ∈ ball(H∞)
is quasi-extreme if and only if it is an extreme point of ball(H∞), which is equivalent
to the condition

(4.7)

∫
T

log(1− |b|2) dm = −∞.

(See [6, p. 138]). Conversely, if b is not (quasi-)extreme, this integral is finite, and
hence there exists (as noted at the beginning of this section) an outer function
a ∈ ball(H∞) satisfying

(4.8) |a(ζ)|2 + |b(ζ)|2 = 1

for almost every |ζ| = 1; this a is unique if we impose the normalization a(0) > 0.
In this setting, there is, of course, ever only one solution to the Gleason problem

in H(b), namely the usual backward shift operator on holomorphic functions

S∗f(z) =
f(z)− f(0)

z
.

Following Sarason [10] we denote the restriction

X = S∗|b.

All of the above discussions of transfer function realizations apply here, so b is
realized by the colligation

V =

[
X Xb
kb∗0 b(0)

]
.

Now let a be the outer function of (4.8) with a(0) > 0. We expand a as a power
series

a(z) =
∞∑

n=0

â(n)zn.

Sarason [10, Lemma 6] proves the following formula for the Taylor coefficients â(n).

Proposition 4.4. We have |a(0)|2 = 1
1+‖b‖2

b
, and for n ≥ 1,

〈Xnb, b〉H(b) =
−â(n)

a(0)
.
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It is then straightforward to verify, by comparing Taylor coefficients, that this
coincides with the a constructed via the transfer function realization above, since
we had |a(0)|2 = |a0|2 = 1

1+‖b‖2
b
by definition, and

(4.9) a(z) = a0 − a0b
∗(I − zX)−1(zXb) = a0 − a0

∞∑
n=1

zn〈Xnb, b〉.

We do not know if the a function is outer when d > 1 (here outer means that the
operator of multiplication by a in H2

d has dense range).

5. Conclusion of the Proof of Theorem 1.1

In this section we prove the second half of Theorem 1.1.

Proposition 5.1. If b is a multiplier of H2
d and there exists a nonzero multiplier

a such that
M∗

aMa +M∗
b Mb ≤ I,

then b is not quasi-extreme.

The proof requires an elementary-seeming lemma, which nonetheless appears
easiest to prove using the notion of a free lifting of a multiplier. We review the
relevant results, prove the lemma, and finally prove Proposition 5.1.

We recall quickly the construction of the free or noncommutative Toeplitz algebra
of Popescu. This is a canonical example of a free semigroup algebra as described
by Davidson and Pitts [4], which contains proofs of all the claims made here. Fix
an alphabet of d letters {1, . . . , d} and let F

+
d denote the set of all words w in

these d letters, including the empty word ∅. The set F
+
d is a semigroup under

concatenation: if w = i1 · · · in and v = j1 · · · jm, we define

wv = i1 · · · inj1 · · · jm.

Let F 2
d denote the Hilbert space (called the Fock space) with orthonormal ba-

sis {ξw}w∈F
+
d
. This space comes equipped with a system of isometric operators

L1, . . . , Ld which act on basis vectors ξw by left creation:

Liξw = ξiw.

The operators L1, . . . , Ld obey the relations

L∗
iLj = δjiI;

in other words, they are isometric with orthogonal ranges. The free semigroup
algebra Ld is the WOT-closed algebra of bounded operators on F 2

d generated by
L1, . . . , Ld. Each operator F ∈ Ld has a Fourier-like expansion

(5.1) F ∼
∑
w∈F

+
d

fwL
w,

where, for a word w = i1 · · · in, by Lw we mean the product Li1Li2 · · ·Lin . The
coefficients fw are determined by the relation

fw = 〈Fξ∅, ξw〉F 2
d
,

and the Cesaro means of the series converge WOT to F . To each F ∈ Ld we
can associated a d-variable holomorphic function λ(F ) as follows: to each word
w = i1 · · · in let zw denote the product

zw = zi1zi2 · · · zin .
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(Observe that zw = zv precisely when w is obtained by permuting the letters of v.)
Then for F ∈ Ld we define λ(F ) by the series

λ(F )(z) =
∑
w∈F

+
d

fwz
w.

The series converges uniformly on compact subsets of Bd and is always a multiplier
of H2

d . In fact, Davidson and Pitts prove that the map λ is completely contractive
from Ld to M(H2

d). Conversely, if f ∈ M(H2
d) and ‖f‖ ≤ 1, then there exists

(by commutant lifting) an F ∈ Ld (not necessarily unique) such that ‖F‖ ≤ 1 and
λ(F ) = f . We call such an F a free lifting of f . Free liftings also always exist for
matrix-valued multipliers, so in particular if, say,(

f
g

)
is a contractive 2 × 1 multiplier, then there exist F,G ∈ Ld such that λ(F ) =
f, λ(G) = g, and (

F
G

)
is contractive.

We will need the following lemma, which we prove using free liftings.

Lemma 5.2. If b is a multiplier and there exists a nonzero multiplier a satisfying
M∗

aMa + M∗
b Mb ≤ I, then an a can be chosen satisfying this inequality and such

that a(0) �= 0.

Proof. By the above remarks there exist free liftings A,B of a and b to the free
semigroup algebra Ld such that the column (BA ) is contractive. The element A has
Fourier expansion

A ∼
∑

awL
w

with a∅ = 0 (since a(0) = 0). Choose a word v of minimal length such that cv �= 0.
It follows that

Ã = L∗
vA =

∑
w

cwL
∗
vLw =

∑
u

c̃uLu

is a contractive free multiplier, and Ã(0) := c̃∅ = cv �= 0, and we then have that(
B

Ã

)
=

(
I 0
0 L∗

v

)(
B
A

)
is contractive. Since the Davidson–Pitts symmetrization map λ is completely con-

tractive, on putting ã = λ(Ã) we have ã(0) �= 0 and(
b
ã

)
is a contractive 2× 1 multiplier, which proves the lemma. �

Remark. This is really the same proof that works in the disk (without the need for
the free lifting step). In the disk we just get that ã satisfies a(z) = znã(z) for some
n, and hence

M∗
aMa = M∗

ãMã
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(since Mz is an isometry). More generally, we could let a = θF be the inner-outer
factorization of a; since Mθ is isometric we would have

M∗
aMa = M∗

FM
∗
θMθMf = M∗

FMF .

Proof of Proposition 5.1. Suppose that b is a contractive multiplier and there exists
a nonzero multiplier a so that

M∗
aMa +M∗

b Mb ≤ I.

By the lemma we may assume that a(0) �= 0. We will construct an admissible tuple
b1, . . . , bd such that

d∑
j=1

‖bj‖2b ≤ 1− |b(0)|2 − |a(0)|2 < 1− |b(0)|2;

by the remark following Proposition 2.2 this proves that b is not quasi-extreme.
Let

c =

(
b 0
a 0

)
.

Then c is a 2× 2 contractive multiplier and

(5.2) c(0)∗c(0) =

(
|b(0)|2 + |a(0)|2 0

0 0

)
.

We form the de Branges–Rovnyak space H (c) of the function c, which has the
reproducing kernel

kc(z, w) =
I − c(z)c(w)∗

1− zw∗

=

[
kb(z, w) −b(z)a(w)∗

1−zw∗
−a(z)b(w)∗

1−zw∗ ka(z, w)

]
.

Now we apply the vector-valued generalization of a basic result from the theory
of reproducing kernel Hilbert spaces: let H(k) be a H-valued RKHS of functions
on a set X. An H-valued function F on X belongs to H(k) if and only if there is
a t ≥ 0 such that

F (x)F (y)∗ ≤ t2k(x, y)

as positive L(H)-valued kernel functions on X. Moreover, the least such t that
works is t = ‖F‖H(k) [9, Theorem 10.17].

Note that in the above we view F (x) : C → H as a linear map for any fixed
x ∈ X. It follows that F (y)∗h = 〈F (y), h〉H for any h ∈ H. For example, if (as in

the case of H (c)) H = C
2, then in the standard basis F (x) =

[
F1(x)
F2(x)

]
and

F (x)F (y)∗ =

[
F1(x)F1(y) F1(x)F2(y)

F2(x)F1(y) F2(x)F2(y)

]
.

So now let C : C2 → K(c) ⊗ Cd be a contractive Gleason solution for c, e.g., the
one appearing in a generalized functional model realization for c (which exists by

[2]). That is, C =

[
c1
...
cd

]
obeys

zC(z) = z1c1(z) + · · ·+ zdcd(z) = c(z)− c(0)
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and contractivity means

C∗C ≤ I − c(0)∗c(0).

So each cj(z) ∈ C2×2 and we write

cj(z) =

[
bj(z) ∗
aj(z) ∗

]
,

and observe that the B =

[
b1
...
bd

]
and the A =

[
a1

...
ad

]
are Gleason solutions for b, a in

the sense that

b(z)− b(0) =
d∑

j=1

zjbj(z),

and similarly for a. Note that

cj(z)e1 =

[
bj(z)
aj(z)

]
.

We need to check that B actually belongs to H(b)⊗Cd and is a contractive Gleason
solution for b: Let {e1, e2} denote the standard orthonormal basis of C2 and let
tj := ‖cke1‖H (c). Then by the vector-valued RKHS proposition discussed above
and the form of the reproducing kernel for H (c),

(cj(z)e1)(cj(w)e1)
∗ =

[
bj(z)
aj(z)

] [
bj(w)

∗ aj(w)
∗]

=

[
bj(z)bj(w)

∗ bj(z)aj(w)
∗

aj(z)bj(w)
∗ aj(z)aj(w)

∗

]
≤ t2j

[
kb(z, w) −b(z)a(w)∗

1−zw∗
−a(z)b(w)∗

1−zw∗ ka(z, w)

]

as positive kernel functions. In particular, the (1, 1) entry of the above equation
must be a positive kernel function so that

bj(z)bj(w)
∗ ≤ t2jk

b(z, w).

Again, by the scalar version of the RKHS result this implies that bj ∈ H(b) and
that

‖bj‖H(b) ≤ tj = ‖cje1‖H (c).
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This yields the inequalities

d∑
k=1

‖bj‖2H(b) ≤
d∑

k=1

t2j

=
d∑

k=1

‖cje1‖2H (c)

=

d∑
k=1

〈c∗jcje1, e1〉C2

= 〈C∗Ce1, e1〉C2

≤ 〈(I − c(0)∗c(0))e1, e1〉C2

= 1− |b(0)|2 − |a(0)|2,
< 1− |b(0)|2,

and the proof is complete. �
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