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INFINITE-DIMENSIONAL GRADIENT SYSTEMS
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Abstract. We state and reprove a stabilisation result for solutions of abstract
gradient systems associated with nonsmooth energy functions on infinite-
dimensional Hilbert spaces. The main feature is the introduction of a con-
venient topology on the effective domain of the energy function, and that in
this general setting the usual assumption on the relative compactness of the
range of the solution in the energy space can be considerably relaxed to rel-
ative compactness of the range in the ambient Hilbert space. This simplifies

the applicability of the stabilisation result even in the case of smooth energies.

1. Introduction

The �Lojasiewicz gradient inequality for real analytic functions on R
N [13, 14]

and its generalisations to functions definable in o-minimal structures [12] or to
smooth functions on infinite-dimensional Hilbert spaces [7, 11, 16] have proved to
be major tools in the study of the asymptotic behaviour of gradient and gradient-
like systems. The �Lojasiewicz–Simon inequality for smooth energy functions on
infinite-dimensional Hilbert spaces has been applied in order to prove stabilisa-
tion of bounded solutions of many parabolic equations such as diffusion equations,
Cahn–Hilliard type equations for describing phase separation phenomena, or geo-
metric evolution equations, but also to hyperbolic equations such as damped wave
equations; the literature being vast, we merely refer to the monographs by Haraux
and Jendoubi [8], Huang [10], and the references therein.

As in [5], here we consider gradient systems in infinite-dimensional Hilbert
spaces, associated with nonsmooth, semiconvex, lower semicontinuous energy func-
tions and their subgradients. The Kurdyka–�Lojasiewicz–Simon inequality may also
be applied in this general setting in order to prove stabilisation of solutions of
gradient systems. Note, however, that unlike in the situation of smooth energy
functions, which are at least continuously differentiable functions defined on (open
subsets of) a Banach space, a natural energy space is not present in the case of
energy functions defined on a Hilbert space and taking values in the extended real
line. The role of energy space is taken over by the effective domain which, however,
carries in general no linear structure.
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This short paper contains the small but useful observation that the effective
domain of a function E on a metric space M always carries a natural topology τE so
that (dom E , τE) is continuously embedded into (M,d) and so that E is continuous on
(dom E , τE). Actually, we take the coarsest topology with these two properties. We
show that in the case of the classical Dirichlet energy of the Neumann-Laplacian
on L2(Ω), and for semilinear perturbations of this energy, which are prototypes
standing as examples for many other energies arising in applications to partial
differential equations, this natural topology coincides with the norm topology on
the Sobolev space H1(Ω).

This small observation is used in the second part where we state and prove
the stabilisation result for global, bounded solutions of associated gradient sys-
tems; compare with [4, 5] and the very recent contributions [3, 9]. This result uses
the Kurdyka–�Lojasiewicz–Simon inequality, named after the Kurdyka-�Lojasiewicz
inequality for functions definable in o-minimal structures and after the �Lojasiewicz–
Simon inequality for functions defined on Hilbert spaces; see especially [5], where
one can find several characterisations of the inequality, including a characterisation
via stabilisation in gradient systems. A new feature of the formulation here is that
the usual assumption of relative compactness of the global solution in the energy
space (or in the effective domain equipped with the topology mentioned above) can
be considerably weakened to the assumption of relative compactness of the solution
in the ambient Hilbert space. In many applications of the �Lojasiewicz–Simon in-
equality the verification of the relative compactness of the range of the solution in
the energy space requires a lot of effort and advanced techniques, while the relative
compactness of the range of the solution in the ambient Hilbert space often follows
from a standard application of Rellich-Kondrachov. Our result thus seems to be of
interest even in the case of smooth energies with effective domains having a linear
structure.

2. Topology and metric induced by the energy

Let (M,d) be a metric space and let E : M → R ∪ {+∞} be an energy function
with values in the extended real line. We suppose that E is proper in the sense
that the effective domain dom E := {E < +∞} is nonempty. We equip dom E
with a topology τE , namely the coarsest topology for which the natural embedding
dom E → M and the mapping E : dom E → R are continuous. A net (uα) in
dom E thus converges to u ∈ dom E with respect to the topology τE if and only if
limα d(uα, u) = 0 and limα E(uα) = E(u). As a consequence of the simple structure
of the topology τE , we have the following lemma.

Lemma 2.1. The topology τE is metrizable. For example, the topology τE is induced
by the metric dE : dom E × dom E → R given by

dE(u, v) := d(u, v) + |E(u)− E(v)| (u, v ∈ dom E).

Example 2.2. On the Hilbert space H = L2(Ω) (Ω ⊆ R
N open) we consider

the function E1 : L2(Ω) → R ∪ {+∞} given by E1(u) = 1
2

∫
Ω
|∇u|2 with effective

domain dom E1 = H1(Ω). Then τE1
coincides with the norm topology in H1(Ω).

In fact, a sequence (un) in H1(Ω) converges with respect to τE1
to some element

u ∈ H1(Ω) if and only if limn un = u in L2(Ω) and limn E1(un) = E1(u) in R. As a
consequence, if a sequence (un) converges to u ∈ H1(Ω) with respect to τE1

, then
necessarily (un) is bounded in (H1(Ω), ‖ · ‖H1). By reflexivity of H1(Ω) and by
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continuity of the embedding H1(Ω) ↪→ L2(Ω), the sequence (un) thus converges
weakly to u ∈ H1(Ω). However, the convergence in τE1

implies in addition that
limn ‖un‖H1 = ‖u‖H1 , and hence (un) converges to u in the norm topology of
H1(Ω). Obviously, the converse implication—saying that convergence in the norm
topology implies convergence in τE1

—is true, too, and hence, also using Lemma 2.1,
both topologies coincide.

Lemma 2.3. Let (M,d) be a metric space. Let E1, E2 : M → R ∪ {+∞} be two
functions, and let E := E1 + E2. Then:

(a) If E2 is continuous with respect to the topology τE1
, then τE is coarser than

τE1
.

(b) If E2 is continuous with respect to the topology in M , then τE = τE1
.

Proof. (a) By assumption and by the definition of τE1
, both E1 and E2 are continuous

with respect to the topology τE1
, and hence E is continuous with respect to this

topology. By the definition again, the topology τE must be coarser than the topology
τE1

.
(b) This follows by symmetry (E1 = E − E2) and by applying (a). �

Example 2.4. On the Hilbert space H = L2(Ω) we consider the function E given
by

E(u) = 1

2

∫
Ω

|∇u|2 +
∫
Ω

F (u)

= E1(u) + E2(u),
where E1 is as in Example 2.2 and E2(u) =

∫
Ω
F (u) for some function F ∈ C1(R)

with globally Lipschitz continuous derivative F ′. The function E2 is continuous
with respect to the norm topology in L2(Ω). By Example 2.2 and Lemma 2.3, τE
coincides with the norm topology in H1(Ω).

Example 2.5. More generally, if E is a function on a Hilbert space H, if the
effective domain V := dom E is a subspace of H, equipped with a seminorm | · |V
such that ‖ · ‖V := | · |V + ‖ · ‖H is a complete norm and (V, ‖ · ‖V ) is a dual
Banach space, and if E is a function of this seminorm (that is, E = f ◦ | · |V for
some continuous f : R → R), then τE is in general coarser than the norm topology
of V . For example, consider the choice H = L2(Ω), V = L2(Ω) ∩ BV (Ω), and
E(u) = |u|TV (the total variation seminorm).

Example 2.6. Let E : M → R ∪ {+∞} be a function on a metric space (M,d).
Given a subset C ⊆ M , we define the indicator function χC : M → R ∪ {+∞} by

χC(u) :=

⎧⎨
⎩
0 if u ∈ C,

+∞ else,

and we let EC := E + χC . Then EC is proper if dom EC = dom E ∩ C �= ∅. The
topology τEC

is the topology induced by τE on dom EC . Indeed, the metrics dE and
dEC

(compare with Lemma 2.1) coincide on dom EC .

3. Stabilisation of global solutions of nonsmooth gradient systems

LetH be a Hilbert space and let E : H → R∪{+∞}. We say that E is semiconvex
if there exists ω ∈ R such that u 
→ E(u) + ω

2 ‖u‖2H is convex. The subgradient of E



4310 RALPH CHILL AND SEBASTIAN MILDNER

is the relation

∂E := {(u, f) ∈ H ×H : u ∈ dom E and for every v ∈ H

lim inf
λ→0+

E(u+ λv)− E(u)
λ

≥ 〈f, v〉H}.

For semiconvex E and ω ∈ R large enough,

∂E = {(u, f) ∈ H ×H : u ∈ dom E and for every v ∈ H

E(v)− E(u) + ω

2
‖v − u‖2H ≥ 〈f, v − u〉H}.

For every u ∈ H we set ∂E(u) := {f ∈ H : (u, f) ∈ ∂E}, which is a closed and
convex set. Furthermore, we define the slope |∂E(u)| := inf{‖f‖H : f ∈ ∂E(u)},
with the convention inf ∅ = ∞. If ∂E(u) is nonempty, then |∂E(u)| = ‖P∂E(u)0‖H ,
where P∂E(u) denotes the orthogonal projection onto ∂E(u).
Lemma 3.1. Let E : H → R ∪ {+∞} be proper, semiconvex, and lower semicon-
tinuous. Let ((un, fn)) be a sequence in ∂E and let (u, f) ∈ H ×H such that

lim
n→∞

un = u and weak−lim
n→∞

fn = f.

Then
(u, f) ∈ ∂E and lim

n→∞
E(un) = E(u).

Proof. By the characterisation of the subgradient of semiconvex functions, for some
ω ∈ R large enough, and for every v ∈ H and every n ∈ N,

(3.1) E(v) ≥ E(un) + 〈fn, v − un〉 −
ω

2
‖v − un‖2H .

By taking the limit inferior on the right-hand side of this inequality, as n → ∞,
and by using the lower semicontinuity of E ,

E(v) ≥ E(u) + 〈f, v − u〉 − ω

2
‖v − u‖2H for every v ∈ H.

This inequality implies first (choose v ∈ dom E !) that u ∈ dom E and second that
(u, f) ∈ ∂E . Now choosing v = u in (3.1) and taking the limit superior on the
right-hand side of that inequality, one obtains E(u) = limn→∞ E(un). �

If E is a proper, semiconvex, lower semicontinuous function on H, then the
gradient system

(3.2) u̇+ ∂E(u) � f

admits for every u0 ∈ dom E and every f ∈ L2(R+;H) a unique strong solution
u ∈ H1

loc(R+;H) satisfying the initial condition u(0) = u0 [6, Théorème 3.6, p. 72],
[2, Theorem 4.11]. A strong solution means that (u(t), f(t)− u̇(t)) ∈ ∂E for almost
every t ∈ R+. For every strong solution u the composition E(u) is absolutely
continuous, and for almost every t ∈ R+ the energy equality

(3.3)
d

dt
E(u) = −1

2
‖u̇‖2H − 1

2
‖P∂E(u)f‖2H +

1

2
‖f‖2H

holds (use [2, Lemma 4.4] or compare with [6, Théorème 3.6, p. 72], [1, Theorem
2.3.3]). In particular, the function H : R+ → R+, defined by

(3.4) H(t) = E(u(t)) + 1

2

∫ ∞

t

‖f(s)‖2H ds,

is absolutely continuous and decreasing.
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Lemma 3.2. Let E : H → R ∪ {+∞} be proper, semiconvex, and lower semicon-
tinuous and let f ∈ L2(R+;H). Let u ∈ H1

loc(R+;H) be a solution of the gradient
system (3.2), and consider its ω-limit set

ω(u) := {ϕ ∈ H : ∃(tn) ↗ ∞ s.t. lim
n→∞

u(tn) = ϕ in H}.

Then:

(a) For every ϕ ∈ ω(u) one has limt→∞ E(u(t)) = E(ϕ).
(b) The function E is constant on ω(u).
(c) One has

ω(u) = {ϕ ∈ H : ∃(tn) ↗ ∞ s.t. lim
n→∞

u(tn) = ϕ w.r.t. τE}.

Proof. Let ϕ ∈ ω(u), and let (tn) be a sequence in R+ such that limn→∞ tn = ∞
and limn→∞ u(tn) = ϕ in H. Let H be the function defined in (3.4). By lower
semicontinuity of E ,

lim inf
n→∞

H(tn) = lim inf
n→∞

E(u(tn)) ≥ E(ϕ)

so that H is bounded from below. Since H is also decreasing,

(3.5) lim
t→∞

H(t) = lim
t→∞

E(u(t)) exists.

Moreover, by the energy equality, u̇ ∈ L2(R+;H). From here we deduce, for every
s ∈ [0, 1],

lim sup
n→∞

‖u(tn + s)− ϕ‖H ≤ lim sup
n→∞

(‖u(tn + s)− u(tn)‖H + ‖u(tn)− ϕ‖H)

≤ lim sup
n→∞

(∫ 1

0

‖u̇(tn + r)‖H dr + ‖u(tn)− ϕ‖H
)

= 0.

Since u̇, f ∈ L2(R+;H) and (u(t), f(t) − u̇(t)) ∈ ∂E for almost every t, we thus
find a sequence (sn) ∈ [0, 1] (depending on the representatives of the measurable
functions f and u̇) such that (u(tn + sn), f(tn + sn)− u̇(tn + sn)) ∈ ∂E ,

lim
n→∞

u(tn + sn) = ϕ, and lim
n→∞

(f(tn + sn)− u̇(tn + sn)) = 0.

By Lemma 3.1, this implies (ϕ, 0) ∈ ∂E and

lim
n→∞

E(u(tn + sn)) = E(ϕ).

From here and the convergence of E(u) (see (3.5)) follows (a). Assertions (b) and
(c) are direct consequences of (a). �

We say that a function E : H → R ∪ {+∞} satisfies the Kurdyka–�Lojasiewicz–

Simon inequality on a set U ⊆ H if there exists a strictly increasing Θ ∈ W 1,1
loc (R)

such that |∂(Θ ◦ E)(v)| ≥ 1 for every v ∈ U with 0 �∈ ∂E(v). The following theorem
is essentially a consequence of [5, Theorem 18 (i)⇒(ii), Remark 19 (ii)], although
the formulation is slightly different.

Theorem 3.3. Let H be a Hilbert space and let E : H → R∪{+∞} be proper, semi-
convex, and lower semicontinuous. Let u ∈ H1

loc(R+;H) be a global strong solution
of the gradient system (3.2) with f = 0. Assume that there exists ϕ ∈ ω(u) such
that E satisfies the Kurdyka–�Lojasiewicz–Simon inequality in a τE-neighbourhood of
ϕ. Then u has finite length in H and limt→∞ u(t) = ϕ in τE .
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For the proof of Theorem 3.3, we need the following chain rule; compare it with
[15, Proposition 10.19].

Lemma 3.4. Let E : H → R∪{+∞} be proper, let u ∈ dom E , and let Θ : R → R be
continuous, strictly increasing, and differentiable at E(u). Then Θ′(E(u)) ∂E(u) ⊆
∂(Θ ◦ E)(u). Moreover, if Θ′(E(u)) �= 0, then Θ′(E(u)) ∂E(u) = ∂(Θ ◦ E)(u).

Proof. Let f ∈ ∂E(u) and v ∈ H. Let ε > 0. Then there exists δ > 0 such that

inf
λ∈(0,δ)

E(u+ λv)− E(u)
λ

≥ 〈f, v〉 − ε,

that is,

E(u+ λv) ≥ E(u) + λ (〈f, v〉 − ε) for every λ ∈ (0, δ).

Due to the monotonicity of Θ, we obtain

(Θ ◦ E)(u+ λv)− (Θ ◦ E)(u)
λ

≥ Θ(E(u) + λ(〈f, v〉 − ε))−Θ(E(u))
λ

→ Θ′(E(u)) (〈f, v〉 − ε) as λ → 0 + .

Therefore, since this inequality holds for every ε > 0,

lim inf
λ→0+

(Θ ◦ E)(u+ λv)− (Θ ◦ E)(u)
λ

≥ 〈Θ′(E(u)) f, v〉.

As a consequence Θ′(E(u))f ∈ ∂(Θ ◦ E)(u).
If Θ′(E(u)) �= 0, we may repeat the argument above with the inverse function

Θ−1, which is continuous, strictly increasing, and differentiable at (Θ ◦ E)(u), and
we obtain the converse inclusion. �

Proof of Theorem 3.3. Let ϕ be as in the assumption, and let U be a τE -neigh-
bourhood of ϕ such that E satisfies the Kurdyka–�Lojasiewicz–Simon inequality
on U . This means that there exists a strictly increasing Θ ∈ W 1,1

loc (R) such that
|∂(Θ ◦ E)(v)| ≥ 1 for every v ∈ U with 0 �∈ ∂E(v).

Since the energy is decreasing along the solution u, E(u(t)) ≥ E(ϕ) for every
t ∈ R+. If E(u(t)) = E(ϕ) for some t ∈ R+, then the energy is eventually constant
along u, which implies that u is eventually constant. In this case, there remains
nothing to prove.

Hence, we may assume that E(u(t)) > E(ϕ) for every t ∈ R+. In this case, E(u)
is strictly decreasing, and u̇(t) �= 0 for almost every t ∈ R+. By assumption and by
Lemma 3.2(c), there exists a sequence (tn) in R+ such that limn→∞ tn = ∞ and
limn→∞ u(tn) = ϕ in τE . Without loss of generality, we may assume that u(tn) ∈ U
for every n. For every n we set

sn := sup{s ∈ [tn,∞) : u(t) ∈ U for every t ∈ [tn, s]}.

Since u is continuous with values in (dom E , τE) and since U is open in this space,
sn > tn. For almost every t ∈ [tn, sn), by the chain rule, the energy equality, and
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Lemma 3.4,

− d

dt
(Θ ◦ E)(u(t)) = −Θ′(E(u(t))) d

dt
E(u(t))

=
1

2
Θ′(E(u(t))) (‖u̇(t)‖2H + |∂E(u(t))|2)

≥ Θ′(E(u(t))) ‖u̇(t)‖H |∂E(u(t))|
≥ ‖u̇(t)‖H |∂(Θ ◦ E)(u(t))|
≥ ‖u̇(t)‖H .(3.6)

Integrating both sides, we obtain

‖u(t)− u(tn)‖H ≤
∫ t

tn

‖u̇(s)‖H ds

≤ (Θ ◦ E)(u(tn))− (Θ ◦ E)(u(t))
≤ (Θ ◦ E)(u(tn))− (Θ ◦ E)(ϕ).

Assume now that all sn are finite. Then, by continuity, the preceding inequality
remains true for t replaced by sn, and thus

‖u(sn)− ϕ‖H ≤ ‖u(sn)− u(tn)‖H + ‖u(tn)− ϕ‖H
≤ (Θ ◦ E)(u(tn))− (Θ ◦ E)(ϕ) + ‖u(tn)− ϕ‖H .

The convergence of (u(tn)) to ϕ in τE and the continuity of Θ then imply that the
right-hand side of this inequality converges to 0 as n → ∞. As a consequence,

lim
n→∞

u(sn) = ϕ in the norm topology of H.

This and Lemma 3.2(a) yield

lim
n→∞

u(sn) = ϕ in the topology τE ,

which is, however, a contradiction since u(sn) �∈ U for every n. Hence, the assump-
tion that all sn are finite was false. There thus exists n such that sn = ∞. In this
case, the estimate (3.6) implies u̇ ∈ L1([tn,∞);H) so that u has finite length in H.
By Cauchy’s criterion, combined with Lemma 3.2(a), we deduce limt→∞ u(t) = ϕ
in τE . �

Remark 3.5. We emphasize that the ω-limit set of the solution u in Theorem 3.3
is taken with respect to the norm topology in the ambient Hilbert space H. A
condition for the nonemptiness of the ω-limit is the condition that the range of u is
relatively compact in the norm topology of H. In many applications, this follows
from mere boundedness of the solution in H, from the boundedness of the energy
along u, and from standard compact embedding theorems.

Many articles on applications of the �Lojasiewicz–Simon inequality in the context
of smooth gradient systems required, in addition, nonemptiness of the ω-limit set
in a finer topology. In the context of Example 2.4, this would be the norm topol-
ogy of the Sobolev space H1(Ω). This was usually verified by showing that the
solution has relatively compact range in the underlying energy space, sometimes
with considerable effort. Note that in Example 2.4, the norm topology in H1(Ω)
and the topology τE coincide. Moreover, by Lemma 3.2(c), the ω-limit set with
respect to the norm topology in H and the ω-limit set with respect to the topology
τE coincide.
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