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Abstract. Let X be a compact Kähler manifold of dimension n. Let F be
a family of probability measures on X whose superpotentials are of uniformly
bounded Cα norms for some fixed constant α ∈ (0, 1]. We prove that the
corresponding family of solutions of the complex Monge-Ampère equations
(ddcϕ+ ω)n = μ with μ ∈ F is Hölder continuous.

1. Introduction

Let X be a compact Kähler manifold of dimension n with a fixed Kähler form
ω so normalized that

∫
X
ωn = 1. Let μ be a probability measure on X. For every

bounded ω-psh function ϕ on X, we put ωϕ := ddcϕ + ω. By [1, 10], the currents
ωj
ϕ are well defined for 1 ≤ j ≤ n. Consider the complex Monge-Ampère equation

ωn
ϕ = μ,(1.1)

where ϕ is a bounded ω-psh function on X and
∫
X
ϕωn = 0. The equation (1.1) and

its variants have been extensively studied and have a wide range of applications.
Instead of giving details on the development of the research on (1.1), in this short
paper, we refer the readers to [2–5, 9, 11, 13–15, 18] and the references therein for
detailed information.

In this work, we study the Hölder continuity of solutions of (1.1). Recently, based
on [3], Dinh and Nguyên proved in [6] that (1.1) has a unique Hölder continuous
solution ϕμ if and only if μ has a Hölder continuous superpotential Uμ; see Definition
2.1 below. Precisely, they proved that if Uμ is Hölder continuous with Hölder
exponent α ∈ (0, 1], then ϕμ ∈ Cβ(X) for any β ∈ (0, 2α

n+1 ), where Cβ(X) denotes
the set of Hölder continuous functions with Hölder exponent β on X. In this case,
we call ϕμ the (Monge-Ampère) potential of μ. In view of the last result, we
would like to address the question of the stability of the Hölder continuity of the
solution of (1.1) with respect to μ: given a family of probability measures with
Hölder continuous superpotentials, does ϕμ depend Hölder continuously on μ in
that family? Let us be more clear in the next paragraph.

Let α ∈ (0, 1]. By [6, Pro. 4.1], if ϕ varies in a bounded subset of Cα(X), then ωn
ϕ

has a Hölder continuous superpotential with uniformly bounded Hölder exponent
and Hölder constant. Hence, in order to study the above stability problem, it is
necessary to consider sets of probability measures having the last property.
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Let C0 be a positive constant and denote by Pα,C0
the set of probability measures

μ on X whose superpotentials Uμ are Hölder continuous with Hölder exponent α
and Hölder constant C0. Since the specific value of C0 is not important in our
setting below, from now on, we will write Pα instead of Pα,C0

for simplicity.
Let β ∈ (0, 2α

n+1 ). Define Φ : Pα → Cβ(X) by sending μ ∈ Pα to the unique

solution ϕμ of (1.1). Recall that the set of probability measures on X endowed
with the weak topology is a metric space with the distance dist defined as follows:
for measures μ, μ′,

dist(μ, μ′) := sup
‖v‖C1≤1

∣∣〈μ− μ′, v〉
∣∣,

where v is a smooth real-valued function on X. The following is our main result.

Theorem 1.1. The map Φ is Hölder continuous with Hölder exponent α′ for any
0 < α′ < β( 2α

n+1 − β)2−n−1.

Equivalently, the last theorem says that there is a constant C (depending on
β, α′) such that

‖ϕμ1
− ϕμ2

‖Cβ ≤ C[dist(μ1, μ2)]
α′

(1.2)

for every μ1, μ2 ∈ Pα. Consequently, if {μk}k∈N ∈ Pα converges weakly to μ ∈ Pα,
then the associated solution ϕμk

converges to ϕμ in Cβ(X). An interesting feature
in the last assertion is that μk and μ can be singular to each other for every k.
An imitation of Ko�lodziej’s arguments in [12] only gives an estimate of type (1.2)
but with dist(μ1, μ2) replaced by the mass norm ‖μ1 − μ2‖ of (μ1 − μ2). Such an
estimate is not useful when μ1, μ2 are singular to each other. For example, as in
the situation described in Corollary 1.2 below, the supports of measures μ1, μ2 in
question are disjoint, hence ‖μ1 − μ2‖ = 2 in this case.

We give now an application of our main result. Recall that a real submanifold of
X is said to be Cauchy-Riemann generic if the real tangent space at any point of
it isn’t contained in a complex hypersurface of the real tangent space at that point
of X. By [17], the restriction of a smooth volume form of an immersed (Cauchy-
Riemann) generic submanifold Y of X to a compact subset K of Y has a Hölder
continuous superpotential. It is also clear from the arguments there that if the
compact K depends smoothly on a parameter τ , then the Hölder exponent and
Hölder constant of the superpotential can be chosen to be fixed numbers for every
τ ; see Proposition 2.7 below. More precisely, let M be a compact real manifold
and let Y be a real Riemannian manifold. Assume that there is a smooth map
Ψ : Y ×M → X such that Ψτ := Ψ|Y×{τ} : Y → X is an embedding into X such
that Yτ := Ψτ (Y ) is a generic submanifold Yτ for every τ ∈ M. Then {Yτ}τ∈M is a
smooth family of generic submanifolds of X. Note that using local charts of X, we
see that such a family exists abundantly. With this setting, we get the following
nice geometric result.

Corollary 1.2. Let K be a compact subset of Y. For τ ∈ M, define μτ to be the
pushforward measure of the volume form of Y on K under Ψτ . Then the family of
the Monge-Ampère potential ϕμτ

of μτ is Hölder continuous in τ.

Note that as in Theorem 1.1, we can give an explicit Hölder exponent in Corollary
1.2. In the next section, we will give a proof of Theorem 1.1.
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2. Proof of Theorem 1.1

Let P0 be the set of ω-psh functions ϕ on X such that
∫
X
ϕωn = 0. We define

the distance distL1 on P0 by putting

distL1(ϕ1, ϕ2) :=

∫
X

|ϕ1 − ϕ2|ωn

for every ϕ1, ϕ2 ∈ P0.

Definition 2.1. The superpotential of a probability measure μ (of mean 0) is the
function U : P0 → R given by U(ϕ) :=

∫
X
ϕdμ. We say that U is Hölder continuous

with Hölder exponent α ∈ (0, 1] and Hölder constant C if it is so with respect to
the distance distL1 , i.e.,

|U(ϕ1)− U(ϕ2)| ≤ C[distL1(ϕ1, ϕ2)]
α

for every ϕ1, ϕ2 ∈ P0. The Cα-norm of U is defined as usual.

By [6, Le. 3.3], that U is Hölder continuous with Hölder exponent α ∈ (0, 1] is
equivalent to having∫

X

|ϕ1 − ϕ2|dμ ≤ Cmax
{
‖ϕ1 − ϕ2‖αL1(X), ‖ϕ1 − ϕ2‖L1(X)

}
(2.1)

for some constant C independent of ϕ1, ϕ2. By the arguments in [6], we immediately
get the following.

Lemma 2.2. Assume that the superpotential U of a probability measure μ on X is
Hölder continuous with Hölder exponent α and Hölder constant C. Let β ∈ (0, 2α

n+1 ).

Then the unique solution ϕμ of (1.1) with
∫
X
ϕμ ω

n = 0 is Hölder continuous with

Hölder exponent β and Hölder constant C̃ depending only on α, β, C, and X. In
particular, ϕμ is bounded by C̃ independent of μ ∈ Pα.

Let K be a Borel subset of X. The capacity of K is given by

capω(K) := sup
{∫

K

ωn
ϕ : 0 ≤ ϕ ≤ 1, ϕ ω-psh

}
.

The above notion is due to Ko�lodziej as an analogue to the capacity given by
Bedford and Taylor in the local setting. Let us recall the following important result
of Ko�lodziej.

Lemma 2.3 (see [12, Le. 2.2]). Let ϕ1, ϕ2 be bounded ω-psh functions on X. Let
s be a real number. Assume that the set {ϕ1 − s < ϕ2} is nonempty and there are
a positive constant A and an increasing function h : (0,∞) → (1,∞) such that∫ ∞

1

dt

th1/n(t)
< ∞,

∫
K

ωn
ϕ1

≤ Acapω(K)

h
(
[capω(K)]−1/n

)
for every compact subset K of X. For ε ∈ (0, 1), put cε := capω

(
{ϕ1− s− ε < ϕ2}

)
.

Then we have ∫ ∞

c
−1/n
ε

dt

th1/n(t)
+ h−1/n(c−1/n

ε ) ≥ A′(1 + ‖ϕ2‖L∞)−1ε,

where A′ is a positive constant depending only on A, n.
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As introduced in [6], a positive measure μ is said to be K-moderate if there are
positive constants A and δ0 for which

μ(K) ≤ Ae−[capω(K)]−δ0
(2.2)

for every Borel subset K of X. Recall that if μ has a Hölder continuous superpo-
tential with Hölder exponent α and Hölder constant C, then μ is K-moderate by
[6, Pro. 2.4]. Moreover, the constants A, δ0 in (2.2) depend only on α,C, and X.
The following result is crucial for our later proof.

Lemma 2.4. Let ϕ1, ϕ2 be bounded ω-psh functions on X. Let s be a real number.
Assume that the set {ϕ1 − s < ϕ2} is nonempty and ωn

ϕ1
is K-moderate. Let δ

be a positive number in (0, 1). Then there exists a constant A′ depending only on
A, δ0, δ, and n such that for any ε ∈ (0, 1) we have

capω
(
{ϕ1 − s− ε < ϕ2}

)
≥ A′(1 + ‖ϕ2‖L∞)−δεδ.

Proof. Using the inequality
e−t ≤ m! t−m

for t > 0 and m ∈ N, we get

e−[capω(K)]−δ0 ≤ m![capω(K)]mδ0

for every m ∈ N. Choose m such that mδ0 ≥ nδ−1 + 1. This combined with (2.2)
for μ = ωn

ϕ1
gives ∫

K

ωn
ϕ1

≤ A1[capω(K)]nδ
−1+1(2.3)

for some constant A1 depending only on A, n, δ0, δ. Define h(t) := max{tn2δ−1

, 1}
for positive real numbers t. Put cε := capω

(
{ϕ1 − s − ε < ϕ2}

)
. Applying Lemma

2.3 to h(t) and ϕ1, ϕ2 gives∫ ∞

c
−1/n
ε

t−1h−1/n(t)dt+ h−1/n(c−1/n
ε ) � (1 + ‖ϕ2‖L∞)−1ε.

Then the desired inequality follows easily. The proof is finished. �
Lemma 2.5. Let μ1, μ2 ∈ Pα and ϕ1, ϕ2 be Hölder continuous solutions of (1.1)
for μ1, μ2, respectively. Let β ∈ (0, 2α

n+1 ). Then we have

‖ϕ1 − ϕ2‖L1(X) ≤ C dist(μ1, μ2)
β2−n

(2.4)

for some constant C independent of μ1, μ2.

Proof. By [2, Th. 1.2], we have∫
X

d(ϕ1 − ϕ2) ∧ dc(ϕ1 − ϕ2) ∧ ωn−1 ≤ C
( ∫

X

(ϕ1 − ϕ2)(ω
n
ϕ2

− ωn
ϕ1
)
)21−n

,(2.5)

for some constant C independent of μ1, μ2. Now using Poincaré’s inequality (see
[8, Th. 1, page 275]) for L2-norm and the fact that ϕ1, ϕ2 are Hölder continuous
with Hölder exponent β and a fixed Hölder constant, we get

‖ϕ1 − ϕ2‖L1(X) �
( ∫

X

(ϕ1 − ϕ2)(ω
n
ϕ2

− ωn
ϕ1
)
)2−n

� distβ(μ1, μ2)
2−n

,(2.6)

where
distβ(μ1, μ2) := sup

‖v‖
Cβ≤1

∣∣〈μ1 − μ2, v〉
∣∣.
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Recall from [7, 16] that distβ(μ1, μ2) � distβ(μ1, μ2) for β ∈ [0, 1]. This together
with (2.6) gives (2.4). The proof is finished. �

The following result is the interpolation inequality for Hölder norms of which we
include a proof for the reader’s convenience.

Lemma 2.6. Let f be a Hölder continuous function in Cβ(X) for some positive
constant β ∈ (0, 1). Let ε be a positive number in [0, 1− β]. Then we have

‖f‖Cβ ≤ C‖f‖
ε

β+ε

C0 ‖f‖
β

β+ε

Cβ+ε

for some constant C depending only on X.

Proof. Recall that the Cβ-norm is defined in X by using a fixed cover of X by local
charts. Thus without loss of generality, we can assume that X = C

n. For x, y ∈ C
n,

we have

|f(x)− f(y)|
|x− y|β = |f(x)− f(y)| ε

β+ε
( |f(x)− f(y)|

|x− y|β+ε

) β
β+ε ≤ 2‖f‖

ε
β+ε

C0 ‖f‖
β

β+ε

Cβ+ε .

The proof is finished. �

End of the proof of Theorem 1.1. Let μ1, μ2 ∈ Pα (μ1 �= μ2) and ϕ1, ϕ2 be Hölder
continuous solutions of (1.1) for μ1, μ2, respectively. Fix a constant β ∈ (0, 2α

n+1 )

and δ ∈ [0, 2α
n+1 − β). By Lemma 2.2 and the definition of Pα, there is a positive

constant C̃ independent of ϕ1, ϕ2 such that ϕ1, ϕ2 are Hölder continuous with
Hölder exponent (β + δ) and Hölder constant C̃. Set

N(ϕ1, ϕ2) := max{‖ϕ1 − ϕ2‖αL1(X), ‖ϕ1 − ϕ2‖L1(X)} �= 0.

Fix a real number δ̃ in (0, 1). In order to prove (1.2), it suffices to suppose from now
on that dist(μ1, μ2) is small. As it will be clear later, we will need that dist(μ1, μ2) is

less than a positive constant depending on δ̃ but independent of μ1, μ2. By Lemma
2.5, the quantity N(ϕ1, ϕ2) is also small. In what follows, we use the notation � and
� to indicate ≤ and ≥, respectively, up to a multiplicative constant independent
of μ1, μ2.

Let ε be a positive real number in (0, 1) to be chosen later. Put Eε := {ϕ1 + ε <
ϕ2}. On Eε we have ϕ1 − ϕ2 ≤ −ε < 0, hence |ϕ1 − ϕ2| ≥ ε. It follows that∫

Eε

dμ1 ≤ ε−1

∫
X

|ϕ1 − ϕ2|dμ1 � ε−1N(ϕ1, ϕ2)(2.7)

by (2.1). Since |ϕ2| ≤ C̃, for any ω-psh function ϕ on X such that 0 ≤ ϕ ≤ 1, we
have

E := {ϕ1 + (C̃ + 2)ε < εϕ+ (1− ε)ϕ2} ⊂ {ϕ1 + (C̃ + 2)ε < ε+ ϕ2 + εC̃} = Eε.

This combined with the comparison principle gives∫
E

ωn
εϕ+(1−ε)ϕ2

≤
∫
E

ωn
ϕ1

≤
∫
Eε

ωn
ϕ1

=

∫
Eε

dμ1.

On the other hand, we also have E2ε(C̃+1) ⊂ E and ωn
εϕ+(1−ε)ϕ2

≥ εnωn
ϕ. This yields

εn
∫
E2ε(C̃+1)

ωn
ϕ ≤

∫
E

ωn
εϕ+(1−ε)ϕ2

≤
∫
Eε

dμ1.
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Combining the last inequality with (2.7), we obtain

εn
∫
E2ε(C̃+1)

ωn
ϕ � ε−1N(ϕ1, ϕ2).

Taking the supremum over every ϕ in the last inequality implies

capω
(
E2ε(C̃+1)

)
� ε−n−1N(ϕ1, ϕ2).(2.8)

Choose ε := Cδ̃

(
N(ϕ1, ϕ2)

)1/(n+1+δ̃) ∈ (0, 1), where Cδ̃ > 1 is a constant large

enough (depending on δ̃) which is independent of ϕ1, ϕ2. Here recall that N(ϕ1, ϕ2)
was assumed to be small enough at the beginning of the proof.

We claim that E2ε(C̃+2) is empty. Suppose the contrary. Thus applying Lemma

2.4 to s := −2(C̃ + 2)ε shows that capω
(
E2ε(C̃+1)

)
≥ Aδ̃ε

δ̃ for some constant Aδ̃

independent of ϕ1, ϕ2. This coupled with (2.8) gives

N(ϕ1, ϕ2) � Aδ̃ε
n+1+δ̃ = Aδ̃C

n+1+δ̃

δ̃
N(ϕ1, ϕ2).(2.9)

We get a contradiction because Cδ̃ can be chosen such that Aδ̃Cδ̃ > 1. Therefore,
E2ε(C̃+2) is empty. In other words, we have

ϕ1 − ϕ2 � −
(
N(ϕ1, ϕ2)

)1/(n+1+δ̃)
.

By swapping the roles of ϕ1, ϕ2 we also get

ϕ2 − ϕ1 � −
(
N(ϕ1, ϕ2)

)1/(n+1+δ̃)
.

This implies that

‖ϕ1 − ϕ2‖L∞(X) �
(
N(ϕ1, ϕ2)

)1/(n+1+δ̃) � ‖ϕ1 − ϕ2‖α/(n+1+δ̃)
L1(X)(2.10)

which is
� dist(μ1, μ2)

αβ2−n/(n+1+δ̃).

Now applying Lemma 2.6 to f = ϕ1 − ϕ2 and using (2.10) we obtain that for any
δ ∈ [0, 2α

n+1 − β),

‖ϕ1 − ϕ1‖Cβ � ‖ϕ1 − ϕ2‖
δ

β+δ

L∞(X) � dist(μ1, μ2)
δα2−n(n+1+δ̃)−1 β

β+δ .

Letting δ → ( 2α
n+1 −β) and δ̃ → 0 gives the desired result. The proof is finished. �

Proposition 2.7. Let M, {Yτ}τ∈M and Ψ be as in the Introduction. Then the
superpotential of μτ is Hölder continuous with uniformly bounded Hölder exponent
and Hölder constant as τ varies in M.

Proof. As already mentioned, the desired result can be deduced directly from [17].
We briefly explain it here for the reader’s convenience. We need to prove (2.1) for
μτ instead of μ and the constants C,α there must be independent of τ.

Since the problem is local, it is enough to work locally. Each Yτ inherits the
metric from Y. Fix τ ∈ M and a point a ∈ Yτ . The crucial point is that the data in
[17, Le. 3.1] can be chosen uniformly in τ, a. To be precise, there exists a local chart
(W,Φ) around a in X with Φ : W → Cn such that the following three properties
hold:

(i) W ∩Kτ contains a ball BYτ
(a, r) of radius ra centered at a of Yτ , where r > 0

is a constant independent of a, τ,
(ii) ‖Φ‖C3 and ‖Φ−1‖C3 are bounded by a constant independent of a, τ,
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(iii) Φ(W∩K) is the graph over the unit ball B of Rn of a smooth map h : B → Rn

(Cn ≈ Rn+ iRn) such that ‖h‖C3 is bounded by a constant independent of a, τ and
Djh(0) = 0 for j = 0, 1, 2.

By Property (i), the number of local charts (W,Φ) needed to cover Kτ can be
chosen to be a fixed number for every τ. On such a local chart, every constant in
[17, Pro. 3.7] can be chosen to be the same for every τ, a. Now the rest of the proof
is done as in [17]. This gives us constants C,α in (2.1) independent of τ. The proof
is finished. �
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