Families of Monge-Ampère measures with Hölder continuous potentials
HTML articles powered by AMS MathViewer
- by Duc-Viet Vu
- Proc. Amer. Math. Soc. 146 (2018), 4275-4282
- DOI: https://doi.org/10.1090/proc/14076
- Published electronically: May 2, 2018
- PDF | Request permission
Abstract:
Let $X$ be a compact Kähler manifold of dimension $n.$ Let $\mathcal {F}$ be a family of probability measures on $X$ whose superpotentials are of uniformly bounded $\mathscr {C}^\alpha$ norms for some fixed constant $\alpha \in (0,1].$ We prove that the corresponding family of solutions of the complex Monge-Ampère equations $(dd^c \varphi + \omega )^n= \mu$ with $\mu \in \mathcal {F}$ is Hölder continuous.References
- Eric Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), no. 1, 1–44. MR 445006, DOI 10.1007/BF01418826
- Zbigniew Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 6, 1697–1701. MR 2021054, DOI 10.1512/iumj.2003.52.2346
- Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Hoang Hiep Pham, Sławomir Kołodziej, and Ahmed Zeriahi, Hölder continuous solutions to Monge-Ampère equations, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 619–647. MR 3191972, DOI 10.4171/JEMS/442
- Sławomir Dinew, Uniqueness in $\scr E(X,\omega )$, J. Funct. Anal. 256 (2009), no. 7, 2113–2122. MR 2498760, DOI 10.1016/j.jfa.2009.01.019
- Sławomir Dinew and Zhou Zhang, On stability and continuity of bounded solutions of degenerate complex Monge-Ampère equations over compact Kähler manifolds, Adv. Math. 225 (2010), no. 1, 367–388. MR 2669357, DOI 10.1016/j.aim.2010.03.001
- Tien-Cuong Dinh and Viêt-Anh Nguyên, Characterization of Monge-Ampère measures with Hölder continuous potentials, J. Funct. Anal. 266 (2014), no. 1, 67–84. MR 3121721, DOI 10.1016/j.jfa.2013.08.026
- Tien-Cuong Dinh and Nessim Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math. 203 (2009), no. 1, 1–82. MR 2545825, DOI 10.1007/s11511-009-0038-7
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Pham Hoang Hiep, Hölder continuity of solutions to the Monge-Ampère equations on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 5, 1857–1869 (English, with English and French summaries). MR 2766232, DOI 10.5802/aif.2574
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI 10.1007/BF02392879
- Sławomir Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 3, 667–686. MR 1986892, DOI 10.1512/iumj.2003.52.2220
- Sławomir Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64. MR 2172891, DOI 10.1090/memo/0840
- Sławomir Kołodziej, Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in $L^p$: The case of compact Kähler manifolds, Math. Ann., 342 (2008).
- D. H. Phong, Jian Song, and Jacob Sturm, Complex Monge-Ampère equations, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 327–410. MR 3076065, DOI 10.4310/SDG.2012.v17.n1.a8
- Hans Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645
- D.-V. Vu, Complex Monge-Ampère equation for measures supported by real submanifolds. arXiv:1608.02794, 2016. to appear in Math. Ann.
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Bibliographic Information
- Duc-Viet Vu
- Affiliation: School of Mathematics, Korea institute for advanced study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
- MR Author ID: 1051002
- Email: vuviet@kias.re.kr
- Received by editor(s): September 9, 2017
- Received by editor(s) in revised form: December 18, 2017
- Published electronically: May 2, 2018
- Communicated by: Filippo Bracci
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 4275-4282
- MSC (2010): Primary 32Uxx, 32Qxx
- DOI: https://doi.org/10.1090/proc/14076
- MathSciNet review: 3834657