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ASKEY–WILSON OPERATOR ON ENTIRE FUNCTIONS

OF EXPONENTIAL TYPE

XIN LI AND RAJITHA RANASINGHE

(Communicated by Mourad E. H. Ismail)

Abstract. In this paper, we first establish a series representation formula for
the Askey–Wilson operator applied on entire functions of exponential type and
then demonstrate its power in discovering summation formulas, some known
and some new.

1. Introduction

Let Bσ denote the set of entire functions of exponential type σ. That is, f ∈ Bσ

if f is an entire function, and for any ε > 0, there is an Aε > 0 such that

|f(z)| ≤ Aεe
(σ+ε)|z|

for all z ∈ C. Boas (see [5], [6, pp. 210–211]), in providing a simpler proof of a
Bernstein inequality given in [4], established an interesting interpolating formula
for the derivatives of functions in Bσ, known as Boas’s formula, which is a general-
ization of an interpolating formula of M. Riesz [13] for trigonometric polynomials:
if f ∈ Bσ and if f is bounded on the real line R,

(1.1) f ′(x) =
4σ

π2

∞∑
n=−∞

(−1)n

(2n+ 1)2
f
(
x+

π

2σ
+

nπ

σ

)
.

In this paper, we want to extend Boas’s formula by replacing the differentiation with
a special divided difference operator of Askey-Wilson, and then show the power of
the Askey–Wilson operator in discovering summation formulas.

2. Boas’ formula extended

We first establish an extension of Boas’s formula for the Askey–Wilson operator.

2.1. Askey–Wilson operator. In 1985, Askey and Wilson introduced the Askey–
Wilson operator in their study of a class of orthogonal polynomials, the Askey–
Wilson polynomials (see [2]).
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Definition 2.1. Let q ∈ (0, 1). The Askey–Wilson operator, Dq, is defined by

(2.1) (Dqf)(x) =

�
f (q1/2z)−

�
f (q−1/2z)

�
h(q1/2z)−

�
h(q−1/2z)

, (x ∈ [−1, 1]),

where

�
h(z) =

1

2

(
z +

1

z

)
,

�
f (z) = f

(
1

2

(
z +

1

z

))
, z = eiθ, x = cos θ.

Note that
�
h(q1/2z) −

�
h(q−1/2z) = i sin θ · (q1/2 − q−1/2), and thus (2.1) can be

written as

(2.2) (Dqf)(x) =

�
f (q1/2z)−

�
f (q−1/2z)

i sin θ · (q1/2 − q−1/2)
.

Since

lim
q→1−

(Dqf) (x) = f ′(x)

at any point x where f ′(x) exists, Dqf can be considered as a discrete version of
the derivative of f.

The definition of Dq given in [2] was mainly used to act on polynomials f , and it
uses values of f at points in C\ [−1, 1]. To extend the domain of the operator to act
on more general functions, Brown and Ismail [7] proposed an approach to define Dq

on a dense subset of L2[(1 − x2)−1/2, [−1, 1]]. In this paper, we will consider only
entire functions, and so Dq is well defined as in (2.1), even for complex x ∈ C.

2.2. Main result. For convenience, with x = cos θ, we write

(2.3) α :=
1

2
(q1/2 + q−1/2) cos(θ) and β := (q1/2 − q−1/2) sin(θ).

Note that, when (x, q) ∈ [−1, 1] × (0, 1), we have α, β ∈ R. Now, we are ready to
state our main result.

Theorem 2.2. Assume that f ∈ Bσ and the restriction of f on R is bounded.
Then, for x ∈ [−1, 1],

(2.4) (Dqf) (x) =
4

σ

∞∑
k=−∞

f
(
α+

π

2σ
(2k + 1)

) (−1)k cosh
(
σ
2β
)

β2 + (2k + 1)2 π2/σ2
.

Remark 2.3. When q → 1−, we have α → x and β → 0, and thus, the limiting case
of (2.4) becomes the classical Boas’s formula (1.1).

Remark 2.4. Note that, with (2.3), we have

(2.5) (Dqf)(x) =
f
(
α+ iβ

2

)
− f

(
α− iβ

2

)
iβ

.

We will use (Df)(α, β) to denote the right-hand side to emphasize the dependence
of (Dqf)(x) on α and β.

Remark 2.5. Theorem 2.2 is under the restriction on (x, q) ∈ [−1, 1]×(0, 1). Indeed,
the theorem holds for complex x and q. Our next result is such an example by using
variables α and β.
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Corollary 2.6. Under the same assumptions on f as in Theorem 2.2, we have
that

(2.6) (Df)(α, β) =
4

σ

∞∑
k=−∞

f
(
α+

π

2σ
(2k + 1)

) (−1)k cosh
(
σ
2β
)

β2 + (2k + 1)2 π2/σ2

holds for all α, β ∈ C and that the convergence is locally uniform for α, β ∈ C.

2.3. Classical sampling theorem. Our proof of Theorem 2.2 is based on a sam-
pling theorem. There are many forms of sampling theorems (see Butzer et al. [8]).
We will use the following form.

Theorem 2.7. If f ∈ Bσ and f is bounded on R, then

(2.7) f(x) =

+∞∑
k=−∞

f

(
kπ

σ

)
sinc

σ

π
(x− kπ

σ
) (x ∈ C),

the convergence being absolute and uniform on compact subsets of C.

Recall that the function sinc is defined as

sincx :=

⎧⎨
⎩

sin(πx)

πx
for x ∈ C\{0},

1 for x = 0.

3. Proof of Theorem 2.2

We first establish a lemma that gives us the action of the Askey–Wilson operator
on the sinc function. To indicate that the operator Dq is applied with respect to x,
we will use the notation Dq,x.

Lemma 3.1. For x ∈ C and any integer k, we have

(3.1)

(
Dq,x(sinc

σ

π
(x− y − kπ

σ
))

)∣∣∣∣
y=α+π/(2σ)

=
4

σ
·
(−1)k · cosh

(
σ
2β
)

β2 + (2k + 1)
2 π2

σ2

.

Remark 3.2. The key feature of the lemma is the evaluation of y at a point α+ π
2σ

that is independent of k.

Proof. Let g(x) := sinc σ
π (x − y − kπ

σ ). Then, by the definition of a sinc function,
we have

g(x) =
sin
(
σ(x− y − kπ

σ )
)

σ(x− y − kπ
σ )

.

Note that

(3.2)
�
g(q1/2z) =

sin
(
σ
2 ·
(
q1/2z + q−1/2z−1

)
− (σy + kπ)

)
σ
2 ·
(
q1/2z + q−1/2z−1

)
− (σy + kπ)

and

(3.3)
�
g(q−1/2z) =

sin
(
σ
2 ·
(
q−1/2z + q1/2z−1

)
− (σy + kπ)

)
σ
2 ·
(
q−1/2z + q1/2z−1

)
− (σy + kπ)

.

So, we have

(3.4)

(
Dq,x(sinc

σ

π
(x− y − kπ

σ
))

)
(x) =

�
g(q1/2z)−

�
g(q−1/2z)

i sin θ ·
(
q1/2 − q−1/2

)
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with

�
g(q1/2z)−

�
g(q−1/2z)

=
sin
(

σ
2

(
q1/2z + 1

q1/2z

)
− σy − kπ

)
σ
2

(
q1/2z + 1

q1/2z

)
− σy − kπ

−
sin
(

σ
2

(
z

q1/2
+ q1/2

z

)
− σy − kπ

)
σ
2

(
z

q1/2
+ q1/2

z

)
− σy − kπ

= (−1)k

[
sin
(
−σ

2

(
q1/2z + 1

q1/2z

)
+ σy

)
−σ

2

(
q1/2z + 1

q1/2z

)
+ σy + kπ

−
sin
(

σ
2

(
z

q1/2
+ q1/2

z

)
− σy

)
σ
2

(
z

q1/2
+ q1/2

z

)
− σy − kπ

]
.

Note that, when y = α+ π
2σ , we have y = 1

4 (q
1/2 + q−1/2)(z + z−1) + π

2σ and

(3.5) −1

2

(
q1/2z +

1

q1/2z

)
+ y − π

2σ
=

1

2

(
z

q1/2
+

q1/2

z

)
− y +

π

2σ
.

Call the common value of the two sides in (3.5) as w. Then

(3.6) w =
1

4
(q1/2 − q−1/2)(z−1 − z) =

1

4
(q1/2 − q−1/2)(−2i) sin θ = −1

2
iβ.

Thus, we can write

�
g(q1/2z)−

�
g(q−1/2z) = (−1)k

[
sin
(
σw + π

2

)
σw + π

2 + kπ
−

sin
(
σw − π

2

)
σw − π

2 − kπ

]

=
(−1)k · 2w cos(σw)

σ ·
{
w2 −

(
k + 1

2

)2 π2

σ2

} .

From this and (3.6), (3.4) yields(
Dq,x(sinc

σ

π
(x− y − kπ

σ
))

)∣∣∣∣
y=α+π/(2σ)

=
4

σ
·
(−1)k · cosh

(
σ
2β
)

β2 + (2k + 1)
2 π2

σ2

,

which is the desired result, (3.1). �

Proof of Theorem 2.2. We start by introducing a translation parameter in the sam-
pling theorem, Theorem 2.7: Fix y ∈ R and apply Theorem 2.7 to gy(x) := f(x+y)
to obtain

gy(x) =
∞∑

k=−∞
f(y +

kπ

σ
) sinc

σ

π
(x− kπ

σ
).

Then

(3.7) f(x) = gy(x− y) =

∞∑
k=−∞

f(y +
kπ

σ
) sinc

σ

π
(x− y − kπ

σ
).

Now, apply Dq with respect to x on both sides of (3.7) to obtain

(Dqf) (x) =

∞∑
k=−∞

f(y +
kπ

σ
) Dq,x

(
sinc

σ

π
(x− y − kπ

σ
)

)
.

The left-hand side is independent of y, and so we can take a special value of y on the
right-hand side. Letting y = α+ π

2σ and using (3.1) of Lemma 3.1, for x ∈ [−1, 1],
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we get

(Dqf) (x) =

∞∑
k=−∞

f

(
α+ (k +

1

2
)
π

σ

)
4

σ
·
(−1)k · cosh

(
σ
2β
)

β2 + (2k + 1)
2 π2

σ2

,

which is (2.4). �

Proof of Corollary 2.6. Note that both sides of (2.6) are entire functions of α and β
(of exponential type σ and σ/2, respectively) and they are equal when α, β ∈ R by
Theorem 2.2 (as (x, q) runs through [−1, 1]×(0, 1)). Thus, by the Identity Theorem,
(2.6) holds for all α, β ∈ C. Finally, we prove the local uniform convergence of the
series. To this end, we need an estimate of Boas ([6, p. 84]): for ε > 0, there is an
Aε > 0 such that

|f(z)| ≤ Aεe
(σ+ε)|Im(z)| for z ∈ C.

Applying this to the series in (2.6), we can establish the local uniform convergence
by using the Weierstrass M-test. �

4. Identities of infinite series

As applications of the extended Boas formula in Theorem 2.2 and its corollary,
we derive identities on infinite series, some new and some known. We begin with
two general remarks.

(i) As a direct consequence from the locally uniform convergence in (2.6), con-
vergence in series below is locally uniform in α and β.

(ii) The extra parameter q introduced by the Askey–Wilson operator in (2.4),
which is not available in Boas’s formula, will be seen as a desirable feature.

First, we apply (2.4) with f(x) = 1. Then Dqf(x) = 0, and so

(4.1)

∞∑
k=−∞

(−1)k

β2 + (2k + 1)
2 = 0,

which can also be verified directly.
Another interesting identity can be obtained by taking f(x) = sin σx. We have

(4.2) (Df) (α, β) =
2 cos(σα) sinh(σ2β)

β
,

which by (2.6) equals

4

σ
cosh

(σ
2
β
) ∞∑

k=−∞
sin(σ(α+

π

2σ
(2k + 1)))

(−1)k

β2 + (2k + 1)2 π2/σ2

=
4

σ
cosh

(σ
2
β
) ∞∑

k=−∞
cos(σα)

1

β2 + (2k + 1)
2
π2/σ2

.

Combining this with (4.2), we get

(4.3)
σ tanh(σ2β)

2β
=

∞∑
k=−∞

1

β2 + (2k + 1)
2
π2/σ2

.

Note that, by Corollary 2.6, (4.3) holds for all β ∈ C \ {±(2k + 1) iπσ }∞−∞. This is
equivalent to a known result; see, e.g., [15, p. 136] or [10, 1.421.2].
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Here is one more identity that can be derived directly from (2.6): Let f(x) =
sincx. Note that

(Df)(α, β) =
−4β sin(πα) cosh(π2β) + 8α cos(πα) sinh(π2β)

πβ(4α2 + β2)
.

Using this in (2.4), we have

−4β sin(πα) cosh(π2β) + 8α cos(πα) sinh(π2β)

πβ(4α2 + β2)

=
4

π
cosh(

π

2
β)

∞∑
k=−∞

(−1)k sin(π(α+ k + 1
2 ))

π(α+ k + 1
2 )(β

2 + (2k + 1)2)

=
4

π
cosh(

π

2
β)

∞∑
k=−∞

cos(πα)

π(α+ k + 1
2 )(β

2 + (2k + 1)2)
.

So, dividing by 4
π cosh(π2β) cos(πα), we get

−πβ tan(πα) + 2πα tanh(π2β)

β(4α2 + β2)
=

∞∑
k=−∞

1

(α+ k + 1
2 )(β

2 + (2k + 1)2)
,

which implies several known identities as special cases.
Next, consider f(x) = x. Then f ∈ B0 ⊂ Bπ. Since Dqf(x) = 1, it is tempting

to let f(x) = x in (2.4) to get

(4.4) 1 =
4

π
cosh

(π
2
β
) ∞∑

k=−∞

(
α+

1

2
(2k + 1)

)
(−1)k

β2 + (2k + 1)2
.

But there is one serious problem: when f(x) = x, the assumption that f is bounded
on R is not satisfied, and so we could not apply Theorem 2.2 directly to f(x) = x.
Fortunately, we can prove (4.4) through a limiting process which we will present
later. Assuming that (4.4) is valid, then we can put it in an equivalent form:

(4.5)
π

4 cosh(π2β)
=

∞∑
k=−∞

(
α+

1

2
(2k + 1)

)
(−1)k

β2 + (2k + 1)
2 .

Using (4.1) (or setting α = 0), we get, for β ∈ C,

(4.6)
π

2 cosh
(
π
2β
) =

∞∑
k=−∞

(−1)k(2k + 1)

β2 + (2k + 1)
2 .

This is another known identity (see [15, p. 136] or [10]). Note that the series in (4.6)
converges locally uniformly for β ∈ C \ {±(2k + 1)i}∞−∞. So by integrating both
sides of (4.6) from β = 0 to β = x, with term-by-term integration on the right-hand
side, Berndt used this identity to obtain an identity of Ramanujan ([3, p. 457]).

Now, we verify (4.4) by applying a trick motivated by the ones used in [6, p.
211] and [11, Lemmas 1 and 2].

Proof of (4.4). For δ ∈ (0, 12 ), define gδ(x) = sin(δx). Then gδ ∈ Bδ ⊆ Bπ and gδ
is also bounded on R. Note that

(Dqgδ)(x) =
2 cos(δα) sinh( δ2β)

β
.
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Thus, we can apply Theorem 2.2 to gδ with σ = π to obtain

(4.7)
2 cos(δα) sinh( δ2β)

δβ
=

4

π
cosh

(π
2
β
) ∞∑

k=−∞
(−1)k

sin(δ(α+ k + 1
2 ))

δ(β2 + (2k + 1)2)
.

Next, note that the partial sum

K∑
k=−K

(−1)k
sin(δ(α+ k + 1

2 ))

δ

is O(K) uniformly in δ > 0. So, by using Abel’s partial summation formula, it is
not hard to verify that the series on the right-hand side of (4.7) converges uniformly
in δ > 0. Thus, by taking limits as δ → 0+ on both sides of (4.7), we obtain

1 =
4

π
cosh

(π
2
β
) ∞∑

k=−∞
(α+ k +

1

2
)

(−1)k

β2 + (2k + 1)
2 ,

which is (4.4). �
We can apply the same idea to obtain extensions to yet another known identity

due to Gosper, Ismail, and Zhang [9, (1.3)]. For b ∈ R, consider the function

fδ,b(x) =
sin(δx) sin

√
b2 + (π − δ)2x2√

b2 + (π − δ)2x2
.

Then fδ,b ∈ Bπ and fδ,b is bounded on the real line. So, we can apply (2.4) to fδ,b
to get

π(Dqfδ,b)(x)

4δ cosh(π2β)
=

∞∑
k=−∞

(−1)k sin(δ(α+ k + 1
2 )) sin

√
b2 + (π − δ)2(α+ k + 1

2 )
2

δ(β2 + (2k + 1)2)
√
b2 + (π − δ)2(α+ k + 1

2 )
2

.

As above, it can be verified that the series on the right-hand side is uniformly
convergent in δ ∈ (0, 12 ). Taking δ → 0+ yields

(4.8) lim
δ→0+

π(Dqfδ,b)(x)

4δ cosh(π2β)
=

∞∑
k=−∞

(−1)k(α+ k + 1
2 ) sin

√
b2 + π2(α+ k + 1

2 )
2

(β2 + (2k + 1)2)
√
b2 + π2(α+ k + 1

2 )
2

.

We need to work out the left-hand side of (4.8). Note that

lim
δ→0+

(Dqfδ,b)(x)

δ

=
(α+ 1

2 iβ) sin
√
b2 + π2(α+ i

2β)
2

iβ
√
b2 + π2(α+ i

2β)
2

−
(α− 1

2 iβ) sin
√
b2 + π2(α− i

2β)
2

iβ
√
b2 + π2(α− i

2β)
2

.

Using this in (4.8), we obtain the following new identity: For any α, β ∈ C,

∞∑
k=−∞

(−1)k(α+ k + 1
2 ) sin

√
b2 + π2(α+ k + 1

2 )
2

(β2 + (2k + 1)2)
√
b2 + π2(α+ k + 1

2 )
2

(4.9)

=
π(α+ 1

2 iβ) sin
√
b2 + π2(α+ i

2β)
2

4iβ cosh(π2β)
√
b2 + π2(α+ i

2β)
2

−
π(α− 1

2 iβ) sin
√
b2 + π2(α− i

2β)
2

4iβ cosh(π2β)
√
b2 + π2(α− i

2β)
2
.
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If we let α = 0, then the above identity becomes

(4.10)

∞∑
k=−∞

(−1)k(2k + 1) sin
√
b2 + π2(k + 1

2 )
2

(β2 + (2k + 1)2)
√
b2 + π2(k + 1

2 )
2

=
π sin

√
b2 − π2β2

4

2 cosh(π2β)
√
b2 − π2β2

4

.

When taking β to be a pure imaginary number, we can recover identity (1.10) of
Gosper, Ismail, and Zhang in [9]. If we further take β = 0, then (4.10) reduces to

(4.11)
∞∑

k=−∞

(−1)k sin
√
b2 + π2(k + 1

2 )
2

(2k + 1)
√
b2 + π2(k + 1

2 )
2

=
π sin b

2b
,

which is the identity (1.3) of Gosper, Ismail, and Zhang in [9]. Thus, identity (4.9)
provides a two-parameter family extension of these identities of Gosper, Ismail, and
Zhang.

Indeed, our argument above really applies to a much more general family of
functions as indicated by the following result.

Theorem 4.1. Let g be an entire function of exponential type π that is bounded
on R. Then, for α, β ∈ C,

∞∑
k=−∞

(−1)k(α+ k + 1
2 )g(α+ k + 1

2 )

β2 + (2k + 1)2
(4.12)

=
πα
[
g(α+ i

2β)− g(α− i
2β)
]
+ i

2πβ
[
g(α+ i

2β) + g(α− i
2β)
]

4iβ cosh(π2β)

=
π

4 cosh(π2β)

{
α (Dqg) (x) + (Aqg) (x)

}
,(4.13)

where Aqg is the “average operator” defined in [12, p. 301] as

(4.14) (Aqg) (x) =
1

2

{
�
g(q1/2z) +

�
g(q−1/2z)

}
.

Proof. Let gδ(x) = g
(
π−δ
π x
)
, for δ ∈

(
0, 1

2

)
. First, we shall apply Theorem 2.2 to

the function g̃(x) = sin(δx)gδ(x) with σ = π to get

(Dqg̃) (x)

δ
=

4

π
cosh

(π
2
β
) ∞∑

k=−∞
(−1)k

sin
(
δ
(
α+ k + 1

2

))
gδ
(
α+ k + 1

2

)
δ(β2 + (2k + 1)

2
)

.

Again, as in the proof of (4.4), we can show that the series is uniformly convergent
in δ ∈

(
0, 1

2

)
. So, we can take the limit as δ → 0+ to get

lim
δ→0+

(Dq g̃) (x)

δ
=

4

π
cosh

(π
2
β
) ∞∑

k=−∞

(−1)k(α+ k + 1
2 )g(α+ k + 1

2 )

β2 + (2k + 1)2
.(4.15)
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Now we shall directly compute lim
δ→0+

(Dq g̃)(x)
δ with the use of (2.5):

lim
δ→0+

(Dq g̃) (x)

δ
=

(
α+ i

2β
)
g
(
α+ i

2β
)
−
(
α− i

2β
)
g
(
α− i

2β
)

iβ

=
α
[
g
(
α+ i

2β
)
− g
(
α− i

2β
) ]

+ iβ
2

[
g
(
α+ i

2β
)
+ g
(
α− i

2β
) ]

iβ
.

(4.16)

Equating the two sides of (4.15) and (4.16) yields (4.12). Finally, (4.13) follows
from the observation that,

(Aqg) (x) =
1

2

{
g

(
α+

iβ

2

)
+ g

(
α− iβ

2

)}
.

�
Remark 4.2. When g(x) = sin

√
b2+π2x2√

b2+π2x2
, (4.12) implies (4.9).

Remark 4.3. Note that the following are additional examples of entire functions of

exponential type π that are also bounded on R: For ν > 1
4 , (i)

Jν(
√
b2+π2x2)

(
√
b2+π2x2)ν

, and

(ii) Jν
[
π
2 (
√
b2 + x2 + x)

]
Jν
[
π
2 (
√
b2 + x2 − x)

]
. Here Jν denotes a Bessel function

of the first kind of order ν (see [1, 14]). Applying Theorem 4.1 to these functions
will verify extensions of (4.11), [9, (1.6)], and identities of Zayed [16, p. 702]. To
illustrate this we take the function in (ii) above. Applying Theorem 4.1 to this
function, we get the following identity: with αk := α+ k + 1

2 ,

∞∑
k=−∞

(−1)kαkJν [
π
2 (
√
b2 + α2

k + αk)]Jν [
π
2 (
√
b2 + α2

k − αk)]

β2 + (2k + 1)2

= πα

{
Jν [

π
2 (
√
b2 + (α+ iβ

2 )
2 + (α+ iβ

2 ))]Jν [
π
2 (
√
b2 + (α+ iβ

2 )
2 − (α+ iβ

2 ))]

4iβ cosh(π2β)

−
Jν [

π
2 (
√
b2 + (α− iβ

2 )
2 + (α− iβ

2 ))]Jν [
π
2 (
√
b2 + (α− iβ

2 )
2 − (α− iβ

2 ))]

4iβ cosh(π2β)

}

+
iπβ

2

{
Jν [

π
2 (
√
b2 + (α+ iβ

2 )
2 + (α+ iβ

2 ))]Jν [
π
2 (
√
b2 + (α+ iβ

2 )
2 − (α+ iβ

2 ))]

4iβ cosh(π2β)

+
Jν [

π
2 (
√
b2 + (α− iβ

2 )
2 + (α− iβ

2 ))]Jν [
π
2 (
√
b2 + (α− iβ

2 )
2 − (α− iβ

2 ))]

4iβ cosh(π2β)

}
.

Taking α = 0 and letting β → 0 above, we get[
Jν

(
πb

2

)]2
= 2

∞∑
k=0

Jν

⎡
⎣π
2

⎛
⎝
√
b2 +

(
k +

1

2

)2

+

(
k +

1

2

)⎞⎠
⎤
⎦

× Jν

⎡
⎣π
2

⎛
⎝
√

b2 +

(
k +

1

2

)2

−
(
k +

1

2

)⎞⎠
⎤
⎦ (−1)k

π(k + 1/2)
,

which is an identity of Zayed [16, p. 702].
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