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SOME REMARKS ON THE LIPSCHITZ REGULARITY
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(Communicated by Alexander Iosevich)

Abstract. A set in the Euclidean plane is constructed whose image under the
classical Radon transform is Lipschitz in every direction. It is also shown that,
under mild hypotheses, for any such set the function which maps a direction
to the corresponding Lipschitz constant cannot be bounded.

1. Introduction

Let R denote the classical Radon transform associated to the complex of all
affine lines in R

2. That is, given f ∈ L1(R2) let

Rωf(t) :=

∫
�ω(t)

f dH1 for (ω, t) ∈ S1 × R,

where �ω(t) := {x ∈ R
2 : 〈x, ω〉 = t} is the line in the direction of1 ω⊥ at distance

t from the origin, noting that each function Rωf is well defined in an almost-
everywhere sense. The purpose of this note is to explore the degree of regularity
Rωf can enjoy when f = χE is taken to be the characteristic function of some
measurable set E ⊆ R

2. In particular, one is interested in examples of sets E with
the property that for all directions ω ∈ S1 the function RωχE is Lipschitz. Both a
positive and a negative result are established: the former demonstrates a nontrivial
example of a set E whose Radon transform is indeed Lipschitz in every direction,
whilst the latter shows that, under a mild hypothesis on the set, the Lipschitz
constant must necessarily be an unbounded function of the direction. To make
this discussion precise, for any measurable set E and ω ∈ S1 let LipE(ω) denote
the Lipschitz constant of RωχE , with the understanding that LipE(ω) := ∞ if
RωχE(t) = ∞ for any t ∈ R.

Theorem 1. There exists a measurable set E ⊆ R
2 with 0 < |E| < ∞ such that

LipE(ω) < ∞ for all ω ∈ S1.

Such a set E is explicitly constructed in this paper. The construction is not a
bounded set, but it does satisfy the following weaker property:

(1.1) ω �→ H1{t ∈ R : RωχĒ(t) 	= 0} is bounded on S1.

Moreover, LipE : S1 → R is an unbounded function, but it transpires that this is
necessary whenever E satisfies (1.1).
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Theorem 2. Suppose E ⊆ R
2 is measurable and satisfies (1.1). Then LipE /∈

L2(S1) and therefore cannot be bounded.

These theorems can be viewed as addressing a global variant of an (open) problem
raised by Marianna Csörnyei. Given f ∈ L1(R2) and real numbers a < b consider
the truncated Radon transform

Ra,b
ω f(t) :=

∫
�a,b
ω (t)

f dH1 for (ω, t) ∈ S1 × R,

where now �a,bω (t) := {x ∈ R
2 : a < 〈x, ω⊥〉 < b and 〈x, ω〉 = t} is a line segment.

Csörnyei’s question asks whether there exists some measurable E ⊆ R
2 of finite,

nonzero measure such that for every choice of a, b, and ω the function Ra,b
ω χE is

Lipschitz. The results and construction of this paper do not offer any direct progress
on this problem.

The analogous questions are easy in R
n if n ≥ 3. Indeed, the cross sectional

volume of a ball in R
n in any direction behaves like (r2 − t2)(n−1)/2, which is

Lipschitz (and thus uniformly Lipschitz over ω ∈ Sn−1) if n ≥ 3. This holds even
for the local version of the problem discussed in the previous paragraph.

2. Proofs

To begin, the proof of Theorem 2 is presented, which is a concise Fourier ana-
lytical argument.

Proof of Theorem 2. Let ω ∈ S1 and suppose

(2.1) LipE(ω) < ∞.

By Rademacher’s theorem,

ess sup
t∈R

∣∣∂tRωχE(t)
∣∣ ≤ LipE(ω),

and hypothesis (1.1) implies that ∂tRωχE(t) is nonzero only for t belonging to a set
of H1-measure at most M > 0, where M is independent of ω. Thus, if one assumes
LipE ∈ L2(S1) so that (2.1) holds for almost every ω ∈ S1, then∫

S1

∫
R

∣∣∂tRωχE(t)
∣∣2 dtdω ≤ M‖LipE‖2L2(S1).

On the other hand, applying the Fourier transform in the t variable, applying the
Fourier slice theorem, and changing from polar to Cartesian coordinates establishes
the well-known identity∥∥∂tRχE

∥∥2
L2(S1×R)

= 8π2‖χE‖2
Ḣ

1
2 (R2)

,

where the right-hand expression involves the homogeneous Sobolev norm. Hence,

‖χE‖2
Ḣ

1
2 (R2)

≤ M

8π2
‖LipE‖2L2(S1) < ∞.

If f ∈ Ḣ(R2) and f∗ is the symmetric decreasing rearrangement of f , then a classical
Sobolev space rearrangement inequality (see, for instance, [1, Lemma 7.17]) states
that

‖f‖2
Ḣ

1
2 (R2)

≥ ‖f∗‖2
Ḣ

1
2 (R2)

.
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Furthermore, recall there is a constant c such that the integral formula

‖f‖2
Ḣ

1
2 (R2)

= c

∫∫
R2×R2

|f(x)− f(y)|2
|x− y|3 dxdy

holds for any f ∈ Ḣ
1
2 (R2) (see, for instance, [1, Theorem 7.12]). Combining these

facts, if B is the ball centered at 0 such that |B| = |E|, then χ∗
E = χB , and so

‖χE‖2
Ḣ

1
2 (R2)

≥ c

∫∫
R2×R2

|χB(x)− χB(y)|2
|x− y|3 dxdy.

However, it is not hard to show that this last integral is infinite, and one obtains a
contradiction. �

The proof of Theorem 1 follows some simple observations concerning configura-
tions of triangles in the plane.

Definition 3. A standard triangle is a closed equilateral triangle T ⊆ R
2 with the

property that one edge is parallel to the x-axis. The common side length of such a
triangle is denoted by �(T ).

Letting ωk := (cos kπ/3, sin kπ/3) ∈ S1 for k = 0, 1, 2, it follows that the set
of (tangent) directions of the edges of a standard triangle is {±ω0,±ω1,±ω2}.
One therefore immediately observes that if T is a standard triangle and ω ∈
{±ω⊥

0 ,±ω⊥
1 ,±ω⊥

2 }, then RωχT is discontinuous. In particular, for each such di-
rection RωχT admits a single jump discontinuity of height �(T ). Away from these
directions, however, the mappings behave well and it is useful to record the following
elementary geometric observation.

Lemma 4. Let T be any standard triangle. If ω ∈ S1 \ {±ω⊥
0 ,±ω⊥

1 ,±ω⊥
2 }, then

RωχT is piecewise linear and Lipschitz. Furthermore, the Lipschitz constant de-
pends only on the direction ω and not on the choice of the underlying standard
triangle.

The construction of the set E proceeds by taking a standard triangle T1 and
modifying it so as to ameliorate the discontinuities.

Definition 5 (Feet). Given a standard triangle T and r > 0 define the r-feet of T
to be the three standard triangles of side-length r formed by extending the edges
of T by r on each side, as demonstrated in Figure 1. Given an r-foot τ of T its
outer edge, denoted out(τ ), is the edge which lies opposite the common vertex of τ
and T .

Definition 6 (Cells). Given a standard triangle T , the cell Cell(T ) is the subset
of T defined by

Cell(T ) := T \
(
int(T 0) ∪

2⋃
k=0

τ0k

)
,

where T 0 is the unique standard triangle whose �(T 0)/2-feet τ00 , τ
0
1 , and τ02 have

outer edges contained in the edges of T . It is easy to see T 0 is concentric to T and
�(T 0) = (2/7) · �(T ). See Figure 2.
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T

τ1

τ0

τ2

Figure 1. A standard triangle T and its r-feet τ0, τ1, τ2.

T 0

Cell(T )T

Figure 2. On the left is a standard triangle T and on the right
the associated cell Cell(T ).

Proof of Theorem 1. A sequence of concentric standard triangles {Tj}∞j=1will be
recursively constructed: the set E will then be defined in terms of the Tj and
the feet and cells associated to these triangles. Let T1 denote a standard triangle
centred at 0 with �(T1) = 1 and suppose T1, . . . , Tj have all been constructed for
some j ≥ 1.

• If j is odd, then let {τj,k}2k=0 denote the three (6/7) · 2−j-feet of Tj .
• If j is even, then let {τj,k}2k=0 denote the three 2−j-feet of Tj .

In either case define Tj+1 to be the unique triangle whose edges contain the sets
out(τj,k) for k = 0, 1, 2; see Figure 3. Here the labeling of the feet is chosen so that
the line through the origin in the direction ω⊥

k bisects each τj,k for k = 0, 1, 2.
Define E to be the set

(2.2) (intT1 ∩ Cell(T1)) ∪
⋃
j∈N

odd

2⋃
k=0

τj,k \ out(τj,k) ∪
⋃
j∈N
even

2⋃
k=0

Cell(τj,k) \ out(τj,k)

and T := {T1} ∪ {τj,k : j ∈ N, k = 0, 1, 2} and note that these objects satisfy the
following basic properties.
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Tj

Tj+1

Figure 3. Passing from the triangle Tj to the triangle Tj+1.

i) The triangles belonging to T are mutually disjoint, and therefore

|E| < |T1|+ 3

∞∑
j=1

|τj,1| <
√
3

4

(
1 + 3

∞∑
j=1

2−2j
)
=

√
3

2
.

ii) Given any affine line � ⊂ R
2 one may crudely estimate

H1(� ∩ Ē) ≤ H1(� ∩ T1) + 3
∞∑
j=1

H1(� ∩ τj,1) <

√
3

2

(
1 + 3

∞∑
j=1

2−j
)
= 2

√
3.

iii) The triangles belonging to T are well spaced and, in particular, for any
0 ≤ k ≤ 2 one may readily deduce from the construction that

(2.3) min{dist(τj,k, τi,k) : 0 ≤ i ≤ j − 1} ≥
{

2j−2 if j ≥ 2,
0 if j = 1,

where τ0,k := T1.

It remains to verify that the RωχE satisfy the property described in Theorem 1.
The first step is to show that most lines intersect few of the constituent triangles
of E.

Claim. Let ω ∈ S1 \ {±ω0,±ω1,±ω2} and suppose � is a line with direction ω⊥.
Then � intersects at most Oω(1) of the triangles belonging to T .

Proof. By the rotational symmetry of E it suffices to prove the lemma with T
replaced by T1 := {τj,1 : j ∈ N}.

From the choice of direction, there exists some N ∈ N such that

2−N < ∠(ω⊥, ω⊥
1 ) ≤ 2−N+1,

where 0 ≤ ∠(v, w) ≤ π/2 denotes the (unsigned) acute angle between the directions
v, w ∈ S1.
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Suppose that there exist at least M := max{N, 6} triangles belonging to T1
which intersect �. For notational simplicity let τ0 := T1 and τj := τj,1 for all j ∈ N.
Then there exist some j1, j2 ≥ M − 2 with j1 > j2 such that � ∩ τj1 and � ∩ τj2 are
nonempty. Moreover, by the definition of T1 and (2.3) it follows that there exist
x1, x2 ∈ � which satisfy dist(x1, x2) ≥ 2M−4. We also have that x1, x2 lie at a
distance at most 2−M+1 from span{ω⊥

1 } as τj = τj,1 lies in a 2−j+1 neighborhood
of ω⊥

1 . Consequently,

∠(ω⊥, ω⊥
1 ) ≤ tan∠(ω⊥, ω⊥

1 ) ≤ 2−2M+6 ≤ 2−N ,

which contradicts the definition of N . Thus, there can be at most max{N, 6}
triangles belonging to T1 which intersect �, giving the desired bound. �

Suppose ω ∈ S1 \ {±ω0,±ω⊥
0 ,±ω1,±ω⊥

1 ,±ω2,±ω⊥
2 } and write RωχE as a sum

of Rωχτ as τ varies over all sets appearing in the essentially disjoint union on the
right-hand side of (2.2). By Lemma 4, each of the functions appearing in this sum is
piecewise linear and Lipschitz and the resulting Lipschitz constants are uniformly
bounded. Furthermore, the above claim ensures that for each t ∈ R the values
Rωχτ (t) are nonzero for only Oω(1) choices of τ . Combining these observations
one deduces that RωχE is itself a Lipschitz function.

Now suppose ω ∈ {±ω⊥
0 ,±ω⊥

1 ,±ω⊥
2 }. Here one can immediately see from the

construction of the set that the alignment and relative proportions of the feet ensure
that RωχE is a Lipschitz, countably piecewise linear function. The idea is that for
k ∈ {0, 1, 2}, the edge of τj,k (resp., Cell(T1)) orthogonal to the direction ω⊥

k is
matched by the edges of τj+1,k+1 and τj+1,k+2 (resp., τ1,k+1 and τ1,k+2), where the
addition is taken modulo 3, in a way that makes the resulting Radon transform
Lipschitz.

It remains to consider the case ω ∈ {±ω0,±ω1,±ω2}. By rotational symmetry
one may assume without loss of generality that ω = ω0. It is clear that F := RωχE

is Lipschitz and bounded on the restricted domain {t ∈ R : |t| ≥ 1/4}, and it
therefore suffices to consider the behaviour of F on [−1/2, 1/2]. Since F is an even
function the problem further reduces to showing F is Lipschitz on [−1/2, 0].

Letting

E1 := (intT1 ∩ Cell(T1)) ∪ (τ1,1 \ out(τ1,1))

and fj(t) := Rωχ2−2jE1
(t) one may easily observe that

F (t) =
∞∑
j=0

fj(t)

for all t ∈ [−1/2, 0]. This follows from the fact that when j is even τj,0 and τj+1,0

together behave like a 2−j-scaled copy of E1 with respect to Radon transforms in
the direction ω0. Furthermore, for i = 1, . . . , 5 define Iij := 2−2jIi, where

I1 := [−1/2,−2/7], I2 := [−2/7,−3/14], I3 := [−3/14,−1/7],

I4 := [−1/7,−1/14], I5 := [−1/14, 0],
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and, in addition, let I0j := [−1/2,−2−2j/2]. Then for j ∈ N0 it follows that

fj(t) :=
√
3×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if t ∈ I0j ,
t+ 2−2j−1 if t ∈ I1j ,
(3/7) · 2−2j−1 if t ∈ I2j ,
3t+ (3/7) · 2−2j+1 if t ∈ I3j ,
t+ (1/7) · 2−2j+2 if t ∈ I4j ,
2−2j−1 if t ∈ I5j .

Letting Fk(t) :=
∑k

j=0 fj(t) suppose k ≥ 2 and note the following.

• For t ∈ I0k one has fk(t) = 0, and it follows that Fk(t) = Fk−1(t).

• For t ∈ I5k−1 and 0 ≤ j ≤ k − 1 one has fj(t) =
√
3 · 2−2j−1, and therefore

Fk(t) = fk(t) + Ck−1, where Ck−1 := (2/
√
3) · (1− 2−2k).

• Fixing t ∈ I1k and writing Fk(t) = Fk−2(t) + fk−1(t) + fk−2(t), since I1k ⊂
I5k−2 one may deduce that

Fk(t) = Ck−2 + fk−1(t) + fk(t).

Note that [−1/2, 0] = I0k ∪I1k ∪I5k−1, and so the above analysis determines the value
of Fk on the whole interval of interest.

It now follows by induction that each Fk is a piecewise linear function on [−1/2, 0]

with derivative (where defined) bounded above by 3
√
3, and, consequently, F is

Lipschitz. �
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