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EXISTENCE AND UNIQUENESS OF STEADY WEAK

SOLUTIONS TO THE NAVIER–STOKES EQUATIONS IN R
2

JULIEN GUILLOD AND PETER WITTWER

(Communicated by Joachim Krieger)

Abstract. The existence of weak solutions to the stationary Navier–Stokes
equations in the whole plane R

2 is proven. This particular geometry was the
only case left open since the work of Leray in 1933. The reason is that due
to the absence of boundaries the local behavior of the solutions cannot be
controlled by the enstrophy in two dimensions. We overcome this difficulty
by constructing approximate weak solutions having a prescribed mean veloc-
ity on some given bounded set. As a corollary, we obtain infinitely many
weak solutions in R2 parameterized by this mean velocity, which is reminis-
cent of the expected convergence of the velocity field at large distances to any
prescribed constant vector field. This explicit parameterization of the weak

solutions allows us to prove a weak-strong uniqueness theorem for small data.
The question of the asymptotic behavior of the weak solutions remains open
however when the uniqueness theorem doesn’t apply.

1. Introduction

We consider the stationary Navier–Stokes equations in an exterior domain Ω =
R

n \ B̄ where B is a bounded simply connected Lipschitz domain,

Δu−∇p = u · ∇u+ f , ∇ · u = 0 , u|∂Ω = u∗ ,(1.1)

with a given forcing term f and a boundary condition u∗ if B is not empty. Since
the domain is unbounded, we add the boundary condition at infinity,

(1.2) lim
|x|→∞

u(x) = u∞ ,

where u∞ ∈ R
n is a constant vector. In his seminal work, Leray [13] proposed a

three-step method to show the existence of weak solutions to this problem. First,
the boundary conditions u∗ and u∞ are lifted by an extension a which satisfies
the so-called extension condition. The second step is to show the existence of weak
solutions in bounded domains. Finally, the third step is to define a sequence of
invading bounded domains that coincide in the limit with the unbounded domain
and show that the induced sequence of solutions converges in some suitable space.
With this strategy, Leray [13] was able to construct weak solutions in domains
with a compact boundary if the flux through each connected component of the
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boundary is zero. The extension of this result to the case where the fluxes are small
was done by Galdi [5, Section X.4] in three dimensions and by Russo [17] in two
dimensions. We note that by elliptic regularity, weak solutions are automatically
two derivatives more regular than the data [5, Theorem X.1.1]. All these results
about weak solutions have essentially only two drawbacks, both in two dimensions:
the validity of (1.2) is not known and the method of Leray cannot be applied if
Ω = R

2.
In three dimensions, the method of Leray can be used to prove the existence

of a weak solution satisfying (1.2) for any u∞ ∈ R
3. By assuming the existence

of a strong solution satisfying various decay conditions at infinity, Kozono and
Sohr [12] and Galdi [5, §X.3] proved the uniqueness of weak solutions satisfying
the energy inequality. Moreover, the asymptotic behavior was determined by Galdi
[5, Theorem X.8.1] if u∞ �= 0 and by Korolev and Šverák [11, Theorem 1] if u∞ = 0
and the data are small enough. Therefore, in three dimensions the picture is pretty
complete.

In two-dimensional exterior domains, the homogeneous Sobolev space Ḣ1(Ω)
used in the construction of weak solutions is too weak to determine the validity of
(1.2), because elements in this function space can even grow at infinity. Therefore,
the results concerning the uniqueness and the asymptotic behavior of weak solutions
in two dimensions are very limited. Concerning the asymptotic behavior, Gilbarg
and Weinberger [7, 19] proved that either there exists u0 ∈ R

2 such that

lim
r→∞

 
∂Br

|u− u0|2 = 0 or lim
r→∞

 
∂Br

|u|2 = ∞ .

Later on Amick [1] showed that if u∗ = f = 0, then u ∈ L∞(Ω) so that the first
alternative must apply for some u0. Nevertheless, the question if any prescribed
value at infinity u∞ can be obtained this way remains open in general. For small
data and u∞ �= 0, Finn and Smith [4] constructed strong solutions satisfying (1.2).
By assuming that the domain is centrally symmetric, Guillod [8, Theorem 2.27]
proved the existence of a weak solution with u∞ = 0. Under additional symmetry
assumptions, the existence and asymptotic decay of solutions with u∞ = 0 was
proven under suitable smallness assumptions [8, 16, 20, 21] or specific boundary
conditions [10]. We refer the reader to Galdi [5, Chapter XII] and Guillod [8]
for a more complete discussion on the asymptotic behavior of solutions in two-
dimensional unbounded domains. The question of the uniqueness of weak solutions
for small data is even more open in two-dimensional exterior domains. The reason
is that the value at infinity u∞ should be intuitively part of the data in order to
expect uniqueness. The only known results in that direction are due to Yamazaki
[21] and Nakatsuka [14], who proved the uniqueness of weak solutions satisfying the
energy inequality under suitable symmetry and smallness assumptions.

The other main issue concerns the construction of weak solutions in Ω = R
2,

which fails due to a fundamental issue with the function space [5, Remark X.4.4

and §XII.1]. More precisely the completion Ḣ1
0 (Ω) of smooth compactly supported

functions in the semi-norm of Ḣ1(Ω) can be viewed as a space of locally defined
functions only if Ω �= R

2. The example of Deny and Lions [3, Remarque 4.1]

shows that the elements of Ḣ1
0 (R

2) are equivalence classes and cannot be viewed as
functions. The reason is that constant functions can be approximated by compactly
supported functions in Ḣ1(R2); hence the function cannot be locally bounded by
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its gradient. This can also be viewed as a consequence of the absence of Poincaré
inequality in Ḣ1(R2).

The main result of this paper (Theorem 2.6) is a modification of the method
of Leray which allows us to construct weak solutions in Ω = R

2. The idea is
to construct approximate solutions in invading balls having a prescribed mean on
some fixed bounded set. This can be done by using the freedom in the choice of the
boundary condition on the boundary of the balls. That way, the local properties of
the approximate solutions are controlled and can be used to prove that the sequence
of approximate solutions converges locally in Lp-spaces. The method we are using
furnishes as a corollary infinitely many weak solutions parameterized by the mean
μ =

ffl
ω
u, where ω is a fixed bounded set of positive measure. Intuitively we

have recovered the parameter u∞ ∈ R
2, even if the validity of (1.2) remains open.

However, the explicit parametrization by μ can be used to prove a weak-strong
uniqueness theorem for small solutions (Theorem 2.9). This is done in the spirit
of what is known in three dimensions [5, Theorem X.3.2] and is the first general
uniqueness result available in two dimensions. We remark that the existence of a
parametrization of the two-dimensional weak solutions by two real parameters is
open when ∂Ω �= ∅, and in this case it is not clear that the mean μ =

ffl
ω
u will be

such a parametrization. A more detailed discussion of the results is added at the
end of §2.

Notation. The open ball of radius n centered at the origin is denoted by Bn.

For x ∈ R
d, we define 〈x〉 = 1 + |x| and the weight w(x) =

[
〈x〉〈log〈x〉〉

]−1
.

The mean value of a vector field on a bounded set ω of positive measure is writ-
ten as

ffl
ω
u = 1

|ω|
´
ω
u. The space of smooth solenoidal functions having com-

pact support in Ω is denoted by C∞
0,σ(Ω). We denote by Ḣ1(Ω) the linear space{

u ∈ L1
loc(Ω) : ∇u ∈ L2(Ω)

}
with the semi-norm ‖u‖Ḣ1(Ω) = ‖∇u‖L2(Ω). The

subspace of weakly divergence-free vector fields in Ḣ1(Ω) is written as Ḣ1
σ(Ω). Let

Ḣ1
0,σ(Ω) denote the completion of C∞

0,σ(Ω) in the semi-norm of Ḣ1(Ω).

2. Main results

We first recall the standard notion of weak solutions to the stationary Navier–
Stokes equations:

Definition 2.1. Let Ω ⊂ R
2 be any Lipshitz domain (in particular Ω = R

2 is
allowed). Given u∗ ∈ W 1/2,2(∂Ω) and a rank-two tensor F ∈ L2(Ω), a vector field
u : Ω → R

n is called a weak solution of the Navier–Stokes equations (1.1) in Ω with
f = ∇ · F if

(1) u ∈ Ḣ1
σ(Ω) ;

(2) u|∂Ω = u∗ in the trace sense ;
(3) u satisfies

(2.1)
〈
∇u,∇ϕ

〉
L2(Ω)

+
〈
u · ∇u,ϕ

〉
L2(Ω)

=
〈
F,∇ϕ

〉
L2(Ω)

for all ϕ ∈ C∞
0,σ(Ω) .



4432 JULIEN GUILLOD AND PETER WITTWER

The existence of weak solutions in two-dimensional unbounded domains was first
proved by Leray [13] for vanishing flux through the boundaries and was extended
to the case of small fluxes by Russo [17]:

Theorem 2.2. Let Ω ⊂ R
2 be an exterior domain having a compact connected

Lipschitz boundary ∂Ω �= ∅. Let u∗ ∈ W 1/2,2(∂Ω) and F ∈ L2(Ω). If the flux

Φ =

ˆ
∂Ω

u∗ · n

satisfies |Φ| < 2π, then there exists a weak solution u ∈ Ḣ1
σ(Ω) of the Navier–Stokes

equations (1.1) in Ω.

Remark 2.3. For ∂Ω �= ∅, if f ∈ L2(Ω) is a source term of compact support, then
there exists F ∈ L2(Ω) such that f = ∇ · F . See Lemma 3.5 for a more general
result in this direction.

Remark 2.4. This result can be easily extended to the case where the boundary ∂Ω
has finitely many connected components, provided the flux through each connected
component is small enough.

Remark 2.5. The three-dimensional analogue of this theorem is valid even if ∂Ω = ∅,
i.e., if Ω = R

3; see Galdi [5, Theorem X.4.1].

As explained in the introduction, the method used to prove Theorem 2.2 fails
for Ω = R

2. Our main result is the existence of infinitely many weak solutions in
R

2 for every given F :

Theorem 2.6. Let Ω = R
2 and let ω ⊂ Ω be a bounded subset of positive measure.

Let F ∈ L2(Ω) be a rank-two tensor. Then for any μ ∈ R
2, there exists a weak

solution u ∈ Ḣ1
σ(Ω) of the Navier–Stokes equations (1.1) in Ω such that

ffl
ω
u = μ.

Moreover,

(2.2)
∥∥∇u

∥∥2
L2(Ω)

≤
〈
F,∇u

〉
L2(Ω)

,

so ‖∇u‖L2(Ω) ≤ ‖F‖L2(Ω).

Remark 2.7. For Ω = R
2, if f ∈ L2(Ω) is a source term of compact support and´

Ω
f = 0, then there exists F ∈ L2(Ω) such that f = ∇ · F . See Lemma 3.6 for a

more general result in this direction.

Remark 2.8. In this result the set ω can be easily replaced by a bounded and
uniformly Lipschitz arc ω ⊂ R

2 of positive one-dimensional measure.

Finally, with our parametrization of weak solutions by the average μ, we can
prove a weak-strong uniqueness theorem for small data:

Theorem 2.9. Let Ω = R
2 and let ω ⊂ Ω be a bounded subset of positive measure.

Let u and ũ be two weak solutions of the Navier–Stokes equations (1.1) in Ω for
the same source term F ∈ L2(Ω), having the same mean value

ffl
ω
u =

ffl
ω
ũ and

satisfying the energy inequality (2.2). There exists δ > 0 depending only on ω such
that if

(2.3) |ũ(x)− u∞| ≤ δ

〈x〉〈log〈x〉〉 ,

for some u∞ ∈ R
2, then u = ũ.
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We now discuss our results in more detail. The space Ḣ1(Ω) is not a Banach

space since the constant vector fields are in the kernel of the semi-norm, but Ḣ1(Ω)
can be viewed as a sort of graded space. In the presence of a nontrivial boundary,
this problem can be fixed by using the completion Ḣ1

0 (Ω) of smooth compactly sup-

ported functions in the semi-norm of Ḣ1(Ω). Intuitively, there is no more freedom

in the choice of the constant, since the elements of Ḣ1
0 (Ω) are vanishing on the

boundary ∂Ω.
When the boundary is trivial, i.e., Ω = R

n, the boundary cannot serve as an
anchor anymore to fix the problem of the constants. The solution of this problem
now depends on the dimension. For Ω = R

3, the constants do not belong to the
completion Ḣ1

0 (Ω), the reason being the Sobolev embedding into L6(Ω). Therefore,

the space Ḣ1(Ω) is in some sense naturally graded by the constant at infinity
u∞ ∈ R

3 in three dimensions.
For Ω = R

2, the constants belong to the completion Ḣ1
0 (Ω) of smooth compactly

supported functions in the semi-norm of Ḣ1(Ω), so Ḣ1
0 (Ω) is a space of equivalence

classes defined by the relation of being equal up to a constant vector field. Therefore,
Ḣ1

0 (Ω) cannot be viewed as a space of locally defined functions. To overcome this

difficulty, we choose to graduate the space Ḣ1(Ω) by the mean μ ∈ R
2 of the vector

field on ω. Intuitively, this is a recovery of the parameter u∞ ∈ R
2, which is lost

in two dimensions during the completion. This new way of parameterizing the
function space in two dimensions is crucial to prove the existence of weak solutions
and also for the weak-strong uniqueness result.

Concerning our weak-strong uniqueness result, we note that we don’t except the
existence of a solution ũ satisfying (2.3) for all F ∈ L2(Ω). In fact, we can easily
construct counterexamples. For u∞ �= 0, the derivative of a suitable smoothing of
the Oseen fundamental solution will typically decay at infinity like |x|−1 in the wake
and will be a weak solution for a particular forcing. For u∞ = 0, the smoothing
of the exact solution x⊥|x|−2 will also be an exact solution decaying like |x|−1 for
a forcing term of compact support. However, by using the asymptotic behavior
proven by Babenko [2, Theorem 6.1], we can deduce some compatibility conditions
on f such that the existence of a solution ũ satisfying (2.3) with u∞ �= 0 can be
deduced. For u∞ = 0, it was conjectured that some solutions could even decay like
|x|−1/3 [8, §5.4]; however some compatibility conditions on f ensuring the existence
of a solution satisfying (2.3) with u∞ = 0 are known [8, §3.6].

For two-dimensional exterior domains with ∂Ω �= ∅, we would a priori also expect
the existence of infinitely many weak solutions parameterized by some parameter in
R

2. However, this question is open, and therefore no general weak-strong uniqueness
result comparable to Theorem 2.9 is known if ∂Ω �= ∅. We remark that the method
of proof used here for Ω = R

2 does not work if ∂Ω �= ∅ and that it is even not clear
if the mean μ ∈ R

2 will furnish a parametrization in this case.
The asymptotic behavior of the weak solutions in Ω = R

2 can obviously be
determined when our weak-strong theorem is applicable, but otherwise we are not
able to prove more than the best currently known results of Gilbarg and Weinberger
[7, 19]. The result of Amick [1] cannot be used to prove the boundedness of the
weak solutions, due to the fact that the maximum principle used in the proof does
not hold on the region where f has support.

For Ω = R
3 and at any fixed force term f , we expect the map u∞ ∈ R

3 �→ μ ∈ R
3

to be multivalued since nonuniqueness is expected for large data. Moreover, it is not
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clear if this map is surjective. In two dimensions, we might speculate the existence
of a multivalued map μ ∈ R

2 �→ u∞ ∈ R
2 at fixed forcing f , even if the asymptotic

behavior of the weak solutions is unknown. However, it is not clear if one can find
a nontrivial forcing f such that for any u∞ ∈ R

2 a weak solution ũ satisfying
the hypotheses of Theorem 2.9 can be proven. Therefore, we cannot prove that
the mapping μ ∈ R

2 �→ u∞ ∈ R
2 is well-defined even for one nontrivial f (when

f = 0, the mapping is trivially the identity). Even if this could be proven, this is
not clear if this well-defined map will be injective or surjective.

3. Function spaces

We first start with the following standard generalization of the Poincaré inequal-
ity; see for example Nečas [15, Theorems 1.5 and 1.9]:

Lemma 3.1. Let Ω ⊂ R
2 be a bounded Lipschitz domain and let λ be a subset of

positive measure of either Ω or ∂Ω. Then, there exists C > 0 depending on Ω and
λ such that ∥∥u∥∥

L2(Ω)
≤ C

(∥∥∇u
∥∥
L2(Ω)

+

∣∣∣∣
 
λ

u

∣∣∣∣
)

,

for all u ∈ Ḣ1(Ω).

Proof. First we note that if u ∈ Ḣ1(Ω), then by the standard Poincaré inequality,
u ∈ H1(Ω), so u ∈ L1(λ) and the mean over λ is well-defined. We use a proof by
contradiction. If the inequality is false, we can find a sequence (un)n∈N

∈ H1(Ω)
such that ‖un‖L2(Ω) = 1 and∥∥∇un

∥∥
L2(Ω)

+

∣∣∣∣
 
λ

un

∣∣∣∣ < 1

n
.

Since H1(Ω) is compactly embedded in L2(Ω), we can find a subsequence also
denoted by (un)n∈N

and u ∈ H1(Ω) such that un ⇀ u weakly in H1(Ω) and

un → u strongly in L2(Ω). Therefore,∥∥∇u
∥∥
L2(Ω)

≤ lim inf
n→∞

∥∥∇un

∥∥
L2(Ω)

= 0 ,

so un → u strongly in H1(Ω) and u is a constant. We can show that 
λ

u = lim
n→∞

 
λ

un = 0 ,

and since λ has positive measure and Ω is connected, we obtain u = 0, in contra-
diction to ‖u‖L2(Ω) = 1. �

In a second step, we determine a generalized Hardy inequality:

Lemma 3.2. Let Ω ⊂ R
2 be an exterior domain having a compact connected Lips-

chitz boundary (in particular Ω = R
2 is allowed), and let λ denote a bounded subset

of positive measure of either Ω or ∂Ω. There exists a constant C > 0 depending
only on Ω and λ such that∥∥uw∥∥

L2(Ω)
≤ C

(∥∥∇u
∥∥
L2(Ω)

+

∣∣∣∣
 
λ

u

∣∣∣∣
)

,

for all u ∈ Ḣ1(Ω), where

w(x) =
1

〈x〉〈log〈x〉〉 , 〈x〉 = 1 + |x| .
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Proof. Let R > 0 be such that R2 \ Ω ⊂ BR and λ ⊂ BR. In this proof C denotes
a positive constant depending only on λ and R, but which might change from line
to line. Let χ be a smooth radial cutoff function such that χ(x) = 1 if x ∈ BR and
χ(x) = 0 if x /∈ B2R. We consider the splitting u = u1 + u2, where u1 = χu and
u2 = (1−χ)u. By using the generalized Poincaré inequality of Lemma 3.1, we first
remark that ∥∥u∥∥

L2(Ω∩B2R)
≤ C

(∥∥∇u
∥∥
L2(Ω∩B2R)

+

∣∣∣∣
 
λ

u

∣∣∣∣
)

.

For the first part, we have∥∥u1w
∥∥
L2(Ω)

=
∥∥χuw∥∥

L2(Ω∩B2R)
≤

∥∥χw∥∥
L∞(Ω∩B2R)

∥∥u∥∥
L2(Ω∩B2R)

≤ C

(∥∥∇u
∥∥
L2(Ω)

+

∣∣∣∣
 
λ

u

∣∣∣∣
)

.

For the second part, we first recall the standard Hardy inequality,∥∥∥∥ u

|x| log(R−1 |x|)

∥∥∥∥
L2(Ω\BR)

≤ 2

R

∥∥∇u
∥∥
L2(Ω\BR)

,

valid for all u ∈ H1(Ω \BR) having vanishing trace of ∂BR; see for example Galdi
[5, Theorem II.6.1]. Since there exists C > 0 such that

w(x) =
1

〈x〉〈log〈x〉〉 ≤ C

|x| log(R−1 |x|) ,

for |x| > R, we obtain∥∥u2w
∥∥
L2(Ω)

=
∥∥u2w

∥∥
L2(Ω\BR)

≤ C
∥∥∇u2

∥∥
L2(Ω)

.

Since ∇u2 = (1− χ)∇u−∇χ⊗ u, we have∥∥∇u2

∥∥
L2(Ω)

≤
∥∥(1− χ)∇u

∥∥
L2(Ω)

+
∥∥∇χ⊗ u

∥∥
L2(Ω∩B2R)

≤
∥∥1− χ

∥∥
L∞(Ω)

∥∥∇u
∥∥
L2(Ω)

+
∥∥∇χ

∥∥
L∞(Ω∩B2R)

∥∥u∥∥
L2(Ω∩B2R)

≤ C
∥∥∇u

∥∥
L2(Ω)

+ C

(∥∥∇u
∥∥
L2(Ω)

+

∣∣∣∣
 
λ

u

∣∣∣∣
)

.

Therefore, putting all the bounds together, we have∥∥uw∥∥
L2(Ω)

≤
∥∥u1w

∥∥
L2(Ω)

+
∥∥u2w

∥∥
L2(Ω)

≤ C

(∥∥∇u
∥∥
L2(Ω)

+

∣∣∣∣
 
λ

u

∣∣∣∣
)

,

and the lemma is proven. �

In view of the result of Lemmas 3.1 and 3.2 with λ = ∂Ω, we see that the
semi-norm of Ḣ1(Ω) defines a norm on C∞

0 (Ω) if ∂Ω �= ∅. Therefore, we have the
following standard result; see for example Galdi [5] or Sohr [18]:

Proposition 3.3. Let Ω ⊂ R
2 be a domain having a compact connected Lipschitz

boundary ∂Ω �= ∅. Then the completion of C∞
0,σ(Ω) in the norm of Ḣ1(Ω) is the

Hilbert space

Ḣ1
0,σ(Ω) =

{
u ∈ Ḣ1

σ(Ω) : Γ∂Ωu = 0
}
,

with the inner product 〈
u,v

〉
Ḣ1

0,σ(Ω)
=

〈
∇u,∇v

〉
L2(Ω)

.
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Moreover, Ḣ1
0,σ(Ω) has the following equivalent norms:∥∥u∥∥

L2(Ω∩BR)
+
∥∥∇u

∥∥
L2(Ω)

,

for any R > 0 such ∂Ω ∩BR �= ∅, and provided that Ω is an exterior domain∥∥uw∥∥
L2(Ω)

+
∥∥∇u

∥∥
L2(Ω)

.

Proof. The proof that the completion of C∞
0,σ(Ω) in the norm of Ḣ1(Ω) is equal to

Ḣ1
0,σ(Ω) is given in Galdi [5, Theorems II.7.3 and III.5.1] or in Sohr [18, Lemma

III.1.2.1]. The equivalence of the norms follows from Lemmas 3.1 and 3.2 with
λ = ∂Ω ∩BR, since λ has positive measure as a nonempty Lipschitz arc. �

When the boundary is trivial, i.e., Ω = R
2, the boundary cannot be used as an

anchor point for the Poincaré inequality, and in particular the semi-norm of Ḣ1(Ω)
does not define a norm on C∞

0 (Ω). The idea is to fix some bounded subset ω ⊂ Ω

of positive measure so that Ḣ1(Ω) is a Hilbert space with the inner product〈
∇u,∇v

〉
L2(Ω)

+

 
ω

u ·
 
ω

v .

For the case Ω = R
2 not covered by Proposition 3.3, we have the following result,

which will play a crucial role in the construction of weak solutions in Ω = R
2:

Proposition 3.4. Let Ω = R
2. Given a bounded subset ω ⊂ Ω of positive measure,

the completion of

C∞
0,σ(Ω, ω) =

{
ϕ ∈ C∞

0,σ(Ω) :

 
ω

ϕ = 0

}

in the norm of Ḣ1(Ω) is the Hilbert space

Ḣ1
0,σ(Ω, ω) =

{
u ∈ Ḣ1

σ(Ω) :

 
ω

u = 0

}
,

with the inner product 〈
u,v

〉
Ḣ1

0,σ(Ω,ω)
=

〈
∇u,∇v

〉
L2(Ω)

.

Moreover, Ḣ1
0,σ(Ω, ω) has the following equivalent norms:∥∥u∥∥

L2(BR)
+
∥∥∇u

∥∥
L2(Ω)

,

for any R > 0 such that ω ⊂ BR, and∥∥uw∥∥
L2(Ω)

+
∥∥∇u

∥∥
L2(Ω)

.

Proof. Let Ḣ1
0,σ(Ω, ω) denote the completion of C∞

0,σ(Ω, ω) in the norm of Ḣ1(Ω).

First of all we remark that Ḣ1
0,σ(Ω, ω) ⊂

{
u ∈ Ḣ1

0,σ(Ω) :
ffl
ω
u = 0

}
. Using the

generalized Poincaré and Hardy inequalities (Lemmas 3.1 and 3.2), we have

∥∥u∥∥2
L2(BR)

≤ C

(∥∥∇u
∥∥2
L2(BR)

+

∣∣∣∣
 
ω

u

∣∣∣∣
2
)

and ∥∥uw∥∥
L2(Ω)

≤ C

(∥∥∇u
∥∥
L2(Ω)

+

∣∣∣∣
 
ω

u

∣∣∣∣
)

,
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for any u ∈ Ḣ1(Ω), which show the claimed equivalence of the norms. Therefore, it

only remains to prove that any u ∈ Ḣ1
0,σ(Ω, ω) can be approximated by functions

in C∞
0,σ(Ω, ω). The proof of this fact follows almost directly by using the proofs

presented in Chapters II and III of Galdi [5], so we only sketch the main steps.
Let ψ : R+ → [0, 1] be a smooth cutoff function such that ψ(r) = 1 if r ≤ 1/2

and ψ(r) = 0 if r ≥ 1. For n > 0 large enough,

ψn(x) = ψ

(
log〈log〈x〉〉
log〈log〈n〉〉

)

is a cutoff function such that ψn(x) = 0 if |x| ≥ n and ψn(x) = 1 if |x| ≤ γn where

γn = exp
(√

〈log〈n〉〉 − 1
)
− 1 .

Explicitly, we have

(3.1) |∇ψn(x)| ≤
‖ψ′‖∞

log〈log〈n〉〉w(x).

Therefore ψnu has compact support, vanishing mean on ω, belongs to H1(Ω),

and converges to u in Ḣ1(Ω) as n → ∞ by using (3.1) and applying Lemma 3.2
(see [5, Theorems II.7.1 and II.7.2]). Moreover, ψnu is divergence-free except on

the annulus γn ≤ |x| ≤ n. There exists a corrector wn ∈ Ḣ1(Ω) having sup-
port in the annulus γn ≤ |x| ≤ n such that ψnu + wn is divergence-free and
‖wn‖Ḣ1(Ω) ≤ C ‖u · ∇ψn‖L2(Ω) with C > 0 independent of n (see [5, Theorem

III.3.1]). Therefore, ψnu + wn has support in Bn, is zero mean on ω, belongs to

Ḣ1
σ(Ω), and converges to u in Ḣ1

σ(Ω) by (3.1) and Lemma 3.2. Now for any n > 0,
there exists a smoothing un ∈ C∞

0,σ(Ω) of ψnu+wn such that

∥∥ψnu+wn − un

∥∥
Ḣ1(Ω)

+
∥∥ψnu+wn − un

∥∥
L2(Bn)

≤ 1

n

(see [5, Theorems III.4.1 and III.4.2]). Hence we have∣∣∣∣
 
ω

un

∣∣∣∣ =
∣∣∣∣
 
ω

(un − ψnu)

∣∣∣∣ ≤
 
ω

|un − ψnu| ≤ |ω|−1/2 ‖ψnu− un‖L2(ω)≤
1

|ω|1/2 n
.

Finally, it is not hard to find two explicit functions vi ∈ C∞
0,σ(Ω) such that

ffl
ω
vi = ei

for i = 1, 2. Therefore un − (v1 ⊗ e1 + v2 ⊗ e2) ·
ffl
ω
un ∈ C∞

0,σ(Ω, ω) converges to

u in Ḣ1
0,σ(Ω, ω) as n → ∞. �

Finally, we discuss conditions under which f can be represented as f = ∇ · F
with F ∈ L2(Ω) and in particular we prove the claims made in Remarks 2.3 and
2.7.

Lemma 3.5. Let Ω ⊂ R
2 be an exterior domain having a compact connected Lip-

schitz boundary ∂Ω �= ∅. Let f ∈ L1
loc(Ω). If the linear form ϕ �→

〈
f ,ϕ

〉
L2(Ω)

is

continuous on Ḣ1
0,σ(Ω), then there exists F ∈ L2(Ω) such that f = ∇ · F in the

following sense: 〈
f ,ϕ

〉
L2(Ω)

= −
〈
F,∇ϕ

〉
L2(Ω)

,

for all ϕ ∈ C∞
0,σ(Ω). In particular this holds when f/w ∈ L2(Ω).
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Proof. By using the Riesz representation theorem, there exists u ∈ Ḣ1
0,σ(Ω) such

that 〈
∇u,∇ϕ

〉
L2(Ω)

=
〈
f ,ϕ

〉
L2(Ω)

,

for all ϕ ∈ Ḣ1
0 (Ω), and we can take F = −∇u. If f/w ∈ L2(Ω), then by Lemma 3.2

with λ = ∂Ω, we have∣∣∣〈f ,ϕ〉L2(Ω)

∣∣∣ ≤ ∥∥f/w∥∥
L2(Ω)

∥∥ϕw∥∥
L2(Ω)

≤ C
∥∥∇ϕ

∥∥
L2(Ω)

,

so the linear form is continuous on Ḣ1
0 (Ω). �

Lemma 3.6. Let Ω = R
2 and let ω ⊂ Ω be a bounded subset of positive measure.

If the linear form ϕ �→
〈
f ,ϕ

〉
L2(Ω)

is continuous on Ḣ1
0,σ(Ω, ω) and

´
Ω
f = 0, then

there exists F ∈ L2(Ω) such that f = ∇ · F in the following sense:〈
f ,ϕ

〉
L2(Ω)

= −
〈
F,∇ϕ

〉
L2(Ω)

,

for all ϕ ∈ C∞
0,σ(Ω). In particular this holds when f/w ∈ L2(Ω) and

´
Ω
f = 0.

Proof. By using the Riesz representation theorem, there exists u ∈ Ḣ1
0,σ(Ω, ω) such

that 〈
∇u,∇ψ

〉
L2(Ω)

=
〈
f ,ψ

〉
L2(Ω)

,

for all ψ ∈ Ḣ1
0,σ(Ω, ω). For any ϕ ∈ C∞

0,σ(Ω), let ψ = ϕ −
ffl
ϕ ∈ Ḣ1

0,σ(Ω, ω), and
therefore 〈

∇u,∇ϕ
〉
L2(Ω)

=
〈
f ,ψ

〉
L2(Ω)

=
〈
f ,ϕ

〉
L2(Ω)

because
´
Ω
f = 0. If in addition f/w ∈ L2(Ω), then by Lemma 3.2 with λ = ω, we

have ∣∣∣〈f ,ψ〉
L2(Ω)

∣∣∣ ≤ ∥∥f/w∥∥
L2(Ω)

∥∥ψw
∥∥
L2(Ω)

≤ C
∥∥∇ψ

∥∥
L2(Ω)

,

for any ψ ∈ Ḣ1
0,σ(Ω, ω). �

Remark 3.7. The hypothesis
´
Ω
f = 0 is needed only for Ω = R

2 and not if ∂Ω �= ∅.
This fact is linked to the Stokes paradox, since the existence proof given below works
equally well for the Stokes equation. For Ω = R

2, it is well known that the Stokes
equations have a solution in Ḣ1

σ(Ω) if and only if
´
Ω
f = 0. Otherwise, the solutions

of the Stokes equations in Ω = R
2 grow like log |x| at infinity; hence the Stokes

equations have no solutions in Ḣ1
σ(Ω). If Ω �= R

2, the Stokes equations always

admit a solution in Ḣ1
σ(Ω) regardless of the mean of f .

4. Proof of existence

The main idea to construct weak solutions in Ω = R
2 is to construct for each

n ∈ N large enough a particular weak solution in the ball Bn having a prescribed
mean on a bounded subset of positive measure ω ⊂ Ω. This can be done by choosing
a suitable constant cn on the artificial boundary ∂Bn.

Proposition 4.1. Assume that the hypotheses of Theorem 2.6 hold. For any μ ∈
R

2 and n ∈ N large enough such that ω ⊂ Bn, there exist cn ∈ R
2 and a weak

solution un ∈ Ḣ1
σ(Bn) of the Navier–Stokes equations (1.1) in Bn such that:

(1) un|∂Bn
= μ+ cn in the trace sense ;

(2)
∥∥∇un

∥∥2
L2(Bn)

=
〈
F,∇un

〉
L2(Bn)

;

(3)
ffl
ω
un = μ .
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Proof. For any vector field v ∈ L1
loc(ω), we denote by v̄ the mean of v on ω,

v̄ =
ffl
ω
v = 1

|ω|
´
ω
v. We look for a solution of the form un = μ + vn − v̄n with

vn ∈ Ḣ1
0,σ(Bn) so that the third condition of the proposition automatically holds.

We have un|∂Bn
= μ− v̄n, so the first condition is satisfied by choosing cn = −v̄n.

Therefore, it remains to prove the existence of vn ∈ Ḣ1
0,σ(Bn) such that

(4.1)
〈
∇vn,∇ϕ

〉
L2(Bn)

+
〈(
μ+ vn − v̄n

)
· ∇vn,ϕ

〉
L2(Bn)

=
〈
F,∇ϕ

〉
L2(Bn)

,

for all ϕ ∈ C∞
0,σ(Bn).

Since∣∣∣〈F,∇ϕ
〉
L2(Bn)

∣∣∣ ≤ ∥∥F∥∥
L2(Bn)

∥∥∇ϕ
∥∥
L2(Bn)

≤
∥∥F∥∥

L2(Ω)

∥∥ϕ∥∥
Ḣ1

0,σ(Bn)
,

for all ϕ ∈ Ḣ1
0,σ(Bn), by using the Riesz representation theorem, there exists Rn ∈

Ḣ1
0,σ(Bn), such that 〈

Rn,ϕ
〉
Ḣ1

0,σ(Bn)
=

〈
F,∇ϕ

〉
L2(Bn)

,

for all ϕ ∈ C∞
0,σ(Ω).

The bilinear map Bn defined by〈
Bn(v,w),ϕ

〉
Ḣ1

0,σ(Bn)
=

〈
(v − v̄) · ∇w,ϕ

〉
L2(Bn)

is continuous on L4(Bn),∣∣∣〈Bn(v,w),ϕ
〉
Ḣ1

0,σ(Bn)

∣∣∣ ≤ ∣∣∣〈(v − v̄) · ∇ϕ,w
〉
L2(Bn)

∣∣∣
≤

(∥∥v∥∥
L4(Bn)

+
∥∥v̄∥∥

L4(Bn)

)∥∥w∥∥
L4(Bn)

∥∥ϕ∥∥
Ḣ1

0,σ(Bn)

≤
(
1 +

πn2

|ω|

)∥∥v∥∥
L4(Bn)

∥∥w∥∥
L4(Bn)

∥∥ϕ∥∥
Ḣ1

0,σ(Bn)
,

because ∥∥v̄∥∥
L4(Bn)

≤ π1/4n1/2 |v̄| ≤ π1/4n1/2

|ω|

ˆ
Bn

|v| ≤ πn2

|ω|
∥∥v∥∥

L4(Bn)
.

The linear map Ln defined by〈
Ln(v),ϕ

〉
Ḣ1

0,σ(Bn)
=

〈
μ · ∇v,ϕ

〉
L2(Bn)

is also continuous on L4(Bn),∣∣∣〈Ln(v),ϕ
〉
Ḣ1

0,σ(Bn)

∣∣∣ ≤ ∣∣∣〈μ · ∇ϕ,v
〉
L2(Bn)

∣∣∣ ≤ ∥∥μ∥∥
L4(Bn)

∥∥v∥∥
L4(Bn)

∥∥ϕ∥∥
Ḣ1

0,σ(Bn)
.

Therefore, the map An : Ḣ1
0,σ(Bn) → Ḣ1

0,σ(Bn) defined by An(v) = Bn(v,v) +

Ln(v) is continuous on Ḣ1
0,σ(Bn) when equipped with the L4-norm, hence com-

pletely continuous on Ḣ1
0,σ(Bn), since Ḣ

1
0,σ(Bn) is compactly embedded in L4(Bn).

We have〈
vn +An(vn)−Rn,ϕ

〉
Ḣ1

0,σ(Bn)
=
〈
∇vn,∇ϕ

〉
L2(Bn)

+
〈(
μ+ vn − v̄n

)
· ∇vn,ϕ

〉
L2(Bn)

−
〈
F,∇ϕ

〉
L2(Bn)

,

so the weak formulation (4.1) is equivalent to the functional equation

(4.2) vn +An(vn)−Rn = 0
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in Ḣ1
0,σ(Bn). From the Leray–Schauder fixed point theorem (see for example

Gilbarg and Trudinger [6, Theorem 11.6]), to prove the existence of a solution
to (4.2) it is sufficient to prove that the set of solutions v of the equation

(4.3) vn + λ (An(vn)−Rn) = 0

is uniformly bounded in λ ∈ [0, 1]. To this end, we take the scalar product of (4.3)
with vn,〈

∇vn,∇vn

〉
L2(Bn)

+ λ
〈(
μ+ vn − v̄n

)
· ∇vn,vn

〉
L2(Bn)

= λ
〈
F,∇vn

〉
L2(Bn)

.

By integrating by parts, we obtain〈
∇vn,∇vn

〉
L2(Bn)

= λ
〈
F,∇vn

〉
L2(Bn)

,

so ∥∥∇vn

∥∥
L2(Bn)

≤
∥∥F∥∥

L2(Bn)
≤

∥∥F∥∥
L2(Ω)

.

�

Now we can prove the existence of weak solutions in Ω = R
2 by using the method

of invading domains:

Proof of Theorem 2.6. By Proposition 4.1, for any n ∈ N, there exists cn ∈ R
2 and

a weak solution un ∈ Ḣ1
σ(Bn) satisfying the three conditions of this proposition.

We write un = μ + vn, so extending vn to Ω by setting vn = cn on Ω \ Bn, we
have ∥∥∇vn

∥∥2
L2(Ω)

=
〈
F,∇vn

〉
L2(Ω)

,

 
ω

vn = 0 ,

and (vn)n∈N
is bounded by ‖F‖L2(Ω) in the function space Ḣ1

0,σ(Ω, ω) defined by

Proposition 3.4. Therefore, there exists a subsequence also denoted by (vn)n∈N

which converges weakly to v ∈ Ḣ1
0,σ(Ω, ω). Let u = μ+v. We directly obtain that∥∥∇u

∥∥2
L2(Ω)

=
∥∥∇v

∥∥2
L2(Ω)

≤ lim inf
n→∞

∥∥∇vn

∥∥2
L2(Ω)

and

lim
n→∞

〈
F,∇vn

〉
L2(Ω)

=
〈
F,∇v

〉
L2(Ω)

=
〈
F,∇u

〉
L2(Ω)

,

so the energy inequality (2.2) is proven.
We now prove that the limit u is a weak solution to the Navier–Stokes equations

in Ω. Let ϕ ∈ C∞
0,σ(Ω). There exists m ∈ N such that the support of ϕ is contained

in Bm. In view of Proposition 3.4, (vn)n∈N
is bounded in H1(Bm), so there exists

a subsequence also denoted by (vn)n∈N
which converges strongly to v in L4(Bm),

since H1(Bm) is compactly embedded in L4(Bm). Since un = μ + vn is a weak
solution in Bn, we have〈

∇un,∇ϕ
〉
L2(Bm)

+
〈
un · ∇un,ϕ

〉
L2(Bm)

=
〈
F,∇ϕ

〉
L2(Bm)

,

for any n ≥ m, and it only remains to show that this equation remains valid in the
limit n → ∞. Let ψ = ϕ −

ffl
ω
ϕ, where by Proposition 3.4, ψ ∈ Ḣ1

0,σ(Ω, ω). By
definition of the weak convergence,

lim
n→∞

〈
∇un,∇ϕ

〉
L2(Bm)

= lim
n→∞

〈
vn,ψ

〉
Ḣ1

0,σ(Ω,ω)

=
〈
v,ψ

〉
Ḣ1

0,σ(Ω,ω)
=

〈
∇u,∇ϕ

〉
L2(Bm)

.
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Since ϕ has compact support in Bm, we have∣∣∣〈un · ∇un − u · ∇u,ϕ
〉
L2(Bm)

∣∣∣
≤

∣∣∣〈(un − u) · ∇un,ϕ
〉
L2(Bm)

∣∣∣+ ∣∣∣〈u · (∇un −∇u) ,ϕ
〉
L2(Bm)

∣∣∣
≤

∣∣∣〈(vn − v) · ∇vn,ϕ
〉
L2(Bm)

∣∣∣+ ∣∣∣〈u · ∇ϕ,vn − v
〉
L2(Bm)

∣∣∣
≤

(∥∥∇vn

∥∥
L2(Bm)

∥∥ϕ∥∥
L4(Bm)

+
∥∥u∥∥L4(Bm)

∥∥∇ϕ
∥∥
L2(Bm)

)∥∥vn − v
∥∥
L4(Bm)

,

so

lim
n→∞

〈
un · ∇un,ϕ

〉
L2(Bm)

=
〈
u · ∇u,ϕ

〉
L2(Bm)

,

and u satisfies (2.1). �

5. Proof of uniqueness

We first start with the following approximation lemma:

Lemma 5.1. For Ω = R
2, if ṽ ∈ Ḣ1

σ(Ω) satisfies ṽ/w ∈ L∞(Ω), then there

exists a sequence (ṽn)n∈N
⊂ C∞

0,σ(Ω) such that ṽn → ṽ strongly in Ḣ1
σ(Ω) and

u⊗ ṽn → u⊗ ṽ strongly in L2(Ω) for any u ∈ Ḣ1
σ(Ω).

Proof. First of all we need a better Sobolev cutoff than the one used in the proof of
Proposition 3.4. Let η : R+ → [0, 1] be a smooth cutoff function such that η(r) = 1
if r ≤ 1/2 and η(r) = 0 if r ≥ 1. For n > 0 large enough,

ηn(x) = η

(
log〈log〈log〈x〉〉〉
log〈log〈log〈n〉〉〉

)
is a cutoff function such that ηn(x) = 0 if |x| ≥ n and ηn(x) = 1 if |x| ≤ γn where

γn = exp
(
exp

(√
〈log〈log〈n〉〉〉 − 1

)
− 1

)
− 1 .

Explicitly, we have

(5.1)
∣∣∇ηn(x)

∣∣ ≤ ‖η′‖∞
log〈log〈log〈n〉〉〉

1

〈x〉〈log〈x〉〉〈log〈log〈x〉〉〉
and

(5.2)
∣∣∇2ηn(x)

∣∣ ≤ 4 ‖η′‖∞ + 2 ‖η′′‖∞
log〈log〈log〈n〉〉〉

1

〈x〉2〈log〈x〉〉〈log〈log〈x〉〉〉 .

By the trace formula, ṽ is integrable on the segment [0,x] for any x ∈ Ω since
ṽ ∈ H1

loc(Ω), and we can define the stream function associated to ṽ by the following
curvilinear integral (see for example Galdi [5, Lemma IX.4.1]):

ψ̃(x) =

ˆ x

0

ṽ⊥ · dx .

Since ṽ/w ∈ L∞(Ω), we obtain the following bound on the stream function:

(5.3)
∣∣∣ψ̃(x)∣∣∣ ≤ C

ˆ |x|

0

1

〈r〉〈log〈r〉〉 dr ≤ C log〈log〈x〉〉 .

Now let ṽn = ∇⊥
(
ηnψ̃

)
. We have ṽ − ṽn = (1− ηn) ṽ − ψ̃∇⊥ηn, so∥∥u⊗

(
ṽ − ṽn

)∥∥
L2(Ω)

≤
∥∥(1− ηn

)
u⊗ ṽ

∥∥
L2(Ω)

+
∥∥ψ̃u⊗∇ηn

∥∥
L2(Ω)

.
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The first term goes to zero as n → ∞ since u ⊗ ṽ ∈ L2(Ω) because uw ∈ L2(Ω)

and ṽ/w ∈ L∞(Ω). Using the bound (5.1) on ∇ηn and the bound (5.3) on ψ̃, we
obtain ∥∥ψ̃u⊗∇ηn

∥∥
L2(Ω)

≤ C

log〈log〈log〈n〉〉〉
∥∥uw∥∥

L2(Ω)
,

so the second term also goes to zero as n → ∞, since uw ∈ L2(Ω) in view of
Lemma 3.2. Finally, we have∥∥∇ṽ −∇ṽn

∥∥
L2(Ω)

≤
∥∥(1− ηn

)
∇ṽ

∥∥
L2(Ω)

+ 2
∥∥∇ηn ⊗ ṽ

∥∥
L2(Ω)

+
∥∥ψ̃∇2ηn

∥∥
L2(Ω)

.

The first term goes to zero since ∇ṽ ∈ L2(Ω). For the second term, using (5.1) we
have ∥∥∇ηn ⊗ ṽ

∥∥
L2(Ω)

≤ C

log〈log〈log〈n〉〉〉
∥∥ṽw∥∥

L2(Ω)
,

and using (5.2) for the third term,∥∥ψ̃∇2ηn
∥∥
L2(Ω)

≤ C

log〈log〈log〈n〉〉〉
∥∥〈x〉−2

∥∥
L2(Ω)

,

so both converge to zero and ṽn → ṽ in Ḣ1
σ(Ω). Finally, the sequence (ṽn)n∈N

can
be smoothed by using the standard mollification technique. �

Using the previous lemma, we can replace ϕ by ṽ in the definition of the weak
solution u:

Lemma 5.2. If u is a weak solution in Ω = R
2, then〈

∇u,∇ṽ
〉
L2(Ω)

+
〈
u · ∇u, ṽ

〉
L2(Ω)

=
〈
F,∇ṽ

〉
L2(Ω)

,

for any ṽ ∈ Ḣ1
σ(Ω) satisfying ṽ/w ∈ L∞(Ω).

Proof. Let (ṽn)n∈N
⊂ C∞

0,σ(Ω) be the approximation of ṽ constructed in Lemma 5.1.
Since u is a weak solution, we have

(5.4)
〈
∇u,∇ṽn

〉
L2(Ω)

+
〈
u · ∇u, ṽn

〉
L2(Ω)

=
〈
F,∇ṽn

〉
L2(Ω)

.

Since ∣∣∣〈u · ∇u, ṽ − ṽn

〉
L2(Ω)

∣∣∣ ≤ ∥∥∇u
∥∥
L2(Ω)

∥∥u⊗
(
ṽ − ṽn

)∥∥
L2(Ω)

,

by Lemma 5.1 we obtain the claimed result by passing to the limit in (5.4). �

We can also replace ϕ by u in the definition of the weak solution ũ:

Lemma 5.3. If ũ = u∞ + ṽ is a weak solution in Ω = R
2 with u∞ ∈ R

2 and
ṽ/w ∈ L∞(Ω), then〈

∇ṽ,∇u
〉
L2(Ω)

−
〈
ũ · ∇u, ṽ

〉
L2(Ω)

=
〈
F,∇u

〉
L2(Ω)

,

for any u ∈ Ḣ1
σ(Ω).

Proof. By Proposition 3.4, let (un)n∈N
⊂ C∞

0,σ(Ω) be a sequence converging to u

in Ḣ1
σ(Ω). Since ũ = u∞ + ṽ is a weak solution, we have〈

∇ṽ,∇un

〉
L2(Ω)

+
〈
ũ · ∇ṽ,un

〉
L2(Ω)

=
〈
F,∇un

〉
L2(Ω)

or, after an integration by parts,〈
∇ṽ,∇un

〉
L2(Ω)

−
〈
ũ · ∇un, ṽ

〉
L2(Ω)

=
〈
F,∇un

〉
L2(Ω)

.
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We can easily pass to the limit in the first and last terms. For the second term, we
have∣∣∣〈ũ · ∇ (u− un) , ṽ

〉
L2(Ω)

∣∣∣≤∥∥ũ⊗ṽ
∥∥
L2(Ω)

∥∥∇u−∇un

∥∥
L2(Ω)

≤C
∥∥∇u−∇un

∥∥
L2(Ω)

,

and the lemma is proven. �

We now prove the following consequence of the integration by parts:

Lemma 5.4. For Ω = R
2, if ṽ ∈ Ḣ1

σ(Ω) satisfies ṽ/w ∈ L∞(Ω), then〈
u · ∇ṽ, ṽ

〉
L2(Ω)

= 0 ,

for any u ∈ Ḣ1
σ(Ω).

Proof. Let (ṽn)n∈N
⊂ C∞

0,σ(Ω) be the approximation of ṽ constructed in Lemma 5.1.
By integrating by parts, we have

(5.5)
〈
u · ∇ṽ, ṽn

〉
L2(Ω)

+
〈
u · ∇ṽn, ṽ

〉
L2(Ω)

= 0 .

We have ∣∣∣〈u · ∇ṽ,v − ṽn

〉
L2(Ω)

∣∣∣ ≤ ∥∥∇ṽ
∥∥
L2(Ω)

∥∥u⊗
(
ṽ − ṽn

)∥∥
L2(Ω)

and ∣∣∣〈u · ∇
(
ṽ − ṽn

)
, ṽ

〉
L2(Ω)

∣∣∣ ≤ ∥∥u⊗ ṽ
∥∥
L2(Ω)

∥∥∇ṽ −∇ṽn

∥∥
L2(Ω)

,

so by using Lemma 5.1, we can pass to the limit in (5.5) and the lemma is proven.
�

We now can prove our weak-strong uniqueness results by using some standard
method ([5, Theorem X.3.2]; [9, Theorem 6]):

Proof of Theorem 2.9. Let ṽ = ũ− u∞, v = u− u∞, and d = u− ũ = v − ṽ. By
Lemma 5.2, we have〈

∇v,∇ṽ
〉
L2(Ω)

+
〈
u · ∇v, ṽ

〉
L2(Ω)

=
〈
F,∇ũ

〉
L2(Ω)

,

and by Lemma 5.3,〈
∇ṽ,∇v

〉
L2(Ω)

−
〈
ũ · ∇v, ṽ

〉
L2(Ω)

=
〈
F,∇u

〉
L2(Ω)

,

so we obtain∥∥∇d
∥∥2
L2(Ω)

=
∥∥∇u

∥∥2
L2(Ω)

+
∥∥∇ũ

∥∥2
L2(Ω)

−
〈
∇v,∇ṽ

〉
L2(Ω)

−
〈
∇v,∇ṽ

〉
L2(Ω)

=
∥∥∇u

∥∥2
L2(Ω)

−
〈
F,∇ũ

〉
L2(Ω)

+
∥∥∇ũ

∥∥2
L2(Ω)

−
〈
F,∇u

〉
L2(Ω)

+
〈
d · ∇v, ṽ

〉
L2(Ω)

.

Using the energy inequality (2.2) for both weak solutions and Lemma 5.4,∥∥∇d
∥∥2
L2(Ω)

≤
〈
d · ∇v, ṽ

〉
L2(Ω)

=
〈
d · ∇d, ṽ

〉
L2(Ω)

≤
∥∥∇d

∥∥
L2(Ω)

∥∥dṽ∥∥
L2(Ω)

,

so by Lemma 3.2 we obtain∥∥∇d
∥∥
L2(Ω)

≤
∥∥dṽ∥∥

L2(Ω)
≤

∥∥dw∥∥
L2(Ω)

∥∥ṽ/w∥∥
L∞(Ω)

≤ Cδ
∥∥∇d

∥∥
L2(Ω)

,

since by hypothesis
ffl
ω
d = 0. Therefore, for δ < C−1, ∇d = 0, i.e., d = 0. �
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