
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 10, October 2018, Pages 4099–4104
http://dx.doi.org/10.1090/proc/14095

Article electronically published on May 15, 2018

A MORE INTUITIVE PROOF OF A SHARP VERSION

OF HALÁSZ’S THEOREM

ANDREW GRANVILLE, ADAM J. HARPER, AND KANNAN SOUNDARARAJAN

(Communicated by Matthew A. Papanikolas)

Abstract. We prove a sharp version of Halász’s theorem on sums
∑

n≤x f(n)

of multiplicative functions f with |f(n)| ≤ 1. Our proof avoids the “average
of averages” and “integration over α” manoeuvres that are present in many of
the existing arguments. Instead, motivated by the circle method, we express
∑

n≤x f(n) as a triple Dirichlet convolution and apply Perron’s formula.

1. Introduction

Given a multiplicative function f : N → C, for each x ≥ 2 let its summatory
function be

S(x) :=
∑
n≤x

f(n) and Fx(s) :=
∏
p≤x

(
1 +

∞∑
k=1

f(pk)

pks

)

denote the corresponding truncated Euler product.
In this note we shall prove the following form of Halász’s theorem on mean values

of multiplicative functions taking values in the unit disc.

Theorem 1. For f, Fx, and S(·) as above, suppose that |f(n)| ≤ 1 for all integers
n ≥ 1. Define the quantity L(x) by setting

L(x)2 :=
∑

|N |≤log2 x+1

1

N2 + 1
sup

|t−N |≤1/2

|Fx(1 + it)|2.

Then we have

|S(x)| � x
L(x)

log x
log

(
100

log x

L(x)

)
+ x

log log x

log x
.

Note that |Fx(1+it)| ≤
∏

p≤x(1−1/p)−1 = (eγ+o(1)) log x, from which it follows

that L(x) ≤ 6 log x for large x. Thus the quantity 100(log x)/L(x) appearing in
Theorem 1 is bounded away from 1.
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Theorem 1 is essentially the same as the version of Halász’s theorem proved by
Montgomery [6] (if we note that |Fx(1 + it)|2 � |F (1 + 1

log x + it)|2, where F (s)

denotes the full Euler product over all primes) and is known to be quantitatively
sharp (see the papers of Granville and Soundararajan [3] and Montgomery [6]).
See Halász’s papers [4, 5] for his original arguments, which were refined by Mont-
gomery [6], and see Chapter III.4 of Tenenbaum [7] for an elegant textbook treat-
ment with added precision.

Our proof here is, hopefully, more intuitive and easier to motivate than the
existing proofs, although it also has important features in common with several
of them. We begin by expressing S(x) as a triple Dirichlet convolution and using
Perron’s formula to relate our triple Dirichlet convolution to the Dirichlet series
Fx(s) and two other Dirichlet polynomials. This is done by analogy with the circle
method, as we want to use a pointwise bound for Fx(s) and obtain a mean square
bound for the remaining two Dirichlet polynomials. To carry everything out with
little loss, we break the Dirichlet convolution into subsums which depend on the
size of one of the variables p. Our proof avoids the “average of averages” step in
many other treatments of Halász’s theorem, and in particular it avoids the arguably
slightly obscure “integration over α” device from many of the treatments.

Our longer companion paper [2] uses a similar strategy to prove various gener-
alisations of Halász’s theorem, including for multiplicative functions bounded by
divisor functions, and to treat sums over short intervals and arithmetic progres-
sions. However we give here the original argument, stripped of the technicalities in
the more general argument of [2] (compare, for example, the more complicated but
more easily generalisable triple convolution in [2]).

2. A lemma concerning prime numbers

We will need some basic information about the integrals of Dirichlet polynomials
supported on the primes. We record a suitable result here.

Lemma 1. Uniformly for any complex numbers (an)
∞
n=1 and any T ≥ 1, we have

∫ T

−T

∣∣∣∣∣
∑

T 2≤n≤x

anΛ(n)

n1+it

∣∣∣∣∣
2

dt �
∑

T 2≤n≤x

|an|2Λ(n)
n

.

Proof. This follows by inserting a smooth weight Φ(t/T ) into the integral, expand-
ing out, and applying a Brun–Titchmarsh upper bound for primes in short intervals
at a suitable point. See Lemma 2.6 of [2], for example, for a full proof, or Lemme
3.1 of Tenenbaum [8], who attributes such results to Gallagher. �

Mean value results and majorant principles of this kind are often used in multi-
plicative number theory and proved in very similar ways (see, e.g., the Lemma in
section 2 of Montgomery [6]); some would be sufficient for our purposes. However
the most standard mean value theorem for Dirichlet polynomials, which implies

that
∫ T

−T
|
∑

n≤x
an

nit |2dt =
∑

n≤x |an|2(2T + O(n)), would not suffice because in

Lemma 1 it would yield a multiplier Λ(n)2, rather than Λ(n), on the right hand
side.
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3. Proof of Theorem 1: The combinatorial part

We begin by expressing S(x) as a triple Dirichlet convolution, up to an acceptable
error. Since log n =

∑
d|n Λ(d) we have∑

n≤x

f(n) logn =
∑
d≤x

Λ(d)
∑

m≤x/d

f(md) =
∑

mp≤x

f(m)f(p) log p+O(x),

the error term arising from bounding trivially the contribution of prime power
values of d and the terms with (m, d) > 1. Since∑

n≤x

log(x/n) = O(x),

we deduce that

S(x) =
1

log x

∑
n≤x

f(n)(logn+ log x/n) =
1

log x

∑
mp≤x

f(m)f(p) log p+O
( x

log x

)
.

This is a double multiplicative convolution, since we have the two variables p and
m in the sum.

We repeat the above argument to arrive at a triple convolution. For technical
convenience we begin by discarding those primes p for which p ≤ log4 x or p > x/2

from the sum, which gives rise to an acceptable error term O(x log log x
log x ). For primes

p in the range log4 x < p ≤ x/2, we use the above argument to replace the sum
over m ≤ x/p by a double convolution; that is,

∑
m≤x/p

f(m) = S(x/p) =
1

log(x/p)

∑
nq≤x/p

f(n)f(q) log q +O
( x

p log x/p

)
.

Therefore

S(x) =
1

log x

∑
log4 x<p≤ x

2

f(p) log p
∑

m≤x/p

f(m) +O
(
x
log log x

log x

)

=
1

log x

∑
log4 x<p≤ x

2

f(p) log p

log(x/p)

∑
nq≤x/p

f(n)f(q) log q +O
(
x
log log x

log x

)
,(3.1)

since ∑
log4 x<p≤ x

2

log p

p log(x/p)
� log log x.

We have arrived at the desired triple multiplicative convolution.
The range of q in (3.1) is severely restricted when p is large, which will lead to

bigger error terms, so it pays to treat summands differently depending on the size of
p. We achieve this by partitioning up the range of the primes p ∈ P = [(log x)4, x/2]

into the intervals Pk = P ∩ (x1−e1−k

, x1−e−k

], where k runs through the integers
from 1 to log log x+ O(1). Define

Sk(x) =
∑

pqn≤x
p∈Pk

f(p) log p

log(x/p)
f(n)f(q) log q
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so that (3.1) implies that

S(x) � 1

log x

log log x+O(1)∑
k=1

|Sk(x)|+ x
log log x

log x
.

Since each |f(p)f(q)f(n)| ≤ 1, we may bound Sk(x) trivially as follows:

|Sk(x)| ≤
∑
pq≤x
p∈Pk

log p

log(x/p)
log q

∑
n≤x/pq

1

≤ x
∑
p∈Pk

log p

p log(x/p)

∑
q≤x/p

log q

q

� x
∑

x1−e1−k<p≤x1−e−k

log p

p
� e−kx log x.

Thus the sum of |Sk(x)| over all integers k > log(100 log x/L(x)) (where L(x) is as
in the statement of Theorem 1) leads to a bound that is acceptable for Theorem 1.

To complete the proof of Theorem 1, it therefore suffices to show that

(3.2) Sk(x) � xL(x) + x

for all positive integers k ≤ log(100 log x/L(x)).

Remark 3.1. Partitioning the range for p and applying the triangle inequality might
appear to be wasteful. However, in the worst case, there is no loss in introducing

absolute values, since the arguments of the values of the f(p) with p > x1−e−1

could

have been chosen, given the values f(qk) for q ≤ x1−e−1

, so that f(p) times the sum
over qn ≤ x/p all point in exactly the same direction. Indeed, extremal examples
for Halász’s theorem can behave precisely in this way, as in the introduction to
Montgomery’s paper [6].

Remark 3.2. If the multiplicative function f(n) is supported only on numbers with
all their prime factors ≤ x0.999, say (that is, the x0.999-smooth numbers), then there
will only be a bounded number of terms k in our decomposition of the p-sum. For
such functions f , Halász’s theorem can be improved, using (3.2), to

|S(x)| � x

log x
(L(x) + 1),

after taking a little more care in handling the discarded contribution from the
primes p ≤ log4 x. As far as we know, this has not been noted previously.

4. Proof of Theorem 1: The analytic part

It remains to prove (3.2). If pqn is a term appearing in the definition of Sk(x),

then note that p lies in Pk, the prime q is constrained to q ≤ xe1−k

(since pq ≤ x),
and n (which is less than x) is an integer with all prime factors below x. Therefore,
using a truncated Perron formula (see the Lemma in Chapter 17 of [1]), we get

(4.1) Sk(x) =
1

2πi

∫ 1+iT

1−iT

∑
p∈Pk

f(p) log p

ps log(x/p)

∑
q≤xe1−k

f(q)

qs
(log q)Fx(s)

xs

s
ds+ E,
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where the error term E satisfies

E �
∑
p∈Pk

∑
q≤xe1−k

∑
n

p|n =⇒ p≤x

log p

log(x/p)
(log q)

( x

pqn

)
min

(
1,

1

T | log(x/pqn)|
)
.

We shall take T = (log x)2. First we bound E, splitting terms according to whether
1/2 ≤ x/(pqn) ≤ 2 or not. The first type contributes (since | log x/(pqn)| 	
|x− pqn|/x here)

�
∑
p∈Pk

∑
q≤2x/p

log p

log(x/p)
log q

∑
x/(2pq)≤n≤2x/(pq)

min
(
1,

x

T |x− pqn|
)

�
∑
p∈Pk

∑
q≤2x/p

log p

log(x/p)
log q

(
1 +

x

Tpq
log T

)
� x.

The second type contributes (since | log x/(pqn)| 	 1 here)

� 1

T

∑
p∈Pk

log p

log(x/p)

∑
q≤xe1−k

log q
∑

p|n =⇒ p≤x

x

pqn
� x.

Thus E � x, which is acceptable for (3.2).
Turning now to the main term in (4.1), using the triangle inequality followed

by the Cauchy–Schwarz inequality, we may bound the integral there by � x
√
I1I2,

where

I1 =

∫ 1+i(log x)2

1−i(log x)2

∣∣∣ ∑
p∈Pk

f(p) log p

ps log(x/p)

∣∣∣2|ds|
and

I2 =

∫ 1+i(log x)2

1−i(log x)2

∣∣∣ ∑
q≤xe1−k

f(q)

qs
log q

∣∣∣2|Fx(s)|2
|ds|
|s|2 .

Splitting the integral in I2 into intervals of length 1, we may bound it by

I2 �
∑

|h|≤log2 x+1

1

h2 + 1
sup

|t−h|≤1/2

|Fx(1 + it)|2
∫ 1+i(h+1/2)

1+i(h−1/2)

∣∣∣ ∑
q≤xe1−k

f(q)

qs
log q

∣∣∣2|ds|.
Recalling that q runs over primes, we can apply Lemma 1 with T = 1, aq = f(q)q−ih

for primes q, and aq = 0 otherwise, and deduce that

I2 �
∑

|h|≤log2 x+1

1

h2 + 1
sup

|t−h|≤1/2

|Fx(1 + it)|2
∑

q≤xe1−k

log q

q

� L(x)2 e−k log x.

To bound I1, we use Lemma 1 again (noting that Pk only has primes larger than
(log x)4 for all k) to obtain

I1 �
∑
p∈Pk

log p

p log2(x/p)
� e2k

log2 x

∑
x1−e1−k<p≤x1−e−k

log p

p
� ek

log x
.

Combining the foregoing estimates, we obtain (3.2) and therefore the bound claimed
in Theorem 1. �
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