
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 10, October 2018, Pages 4151–4163
http://dx.doi.org/10.1090/proc/14110

Article electronically published on June 13, 2018

ON AN EFFECTIVE VARIATION OF KRONECKER’S

APPROXIMATION THEOREM AVOIDING ALGEBRAIC SETS

LENNY FUKSHANSKY AND NIKOLAY MOSHCHEVITIN

(Communicated by Matthew A. Papanikolas)

Abstract. Let Λ ⊂ Rn be an algebraic lattice coming from a projective mod-
ule over the ring of integers of a number field K. Let Z ⊂ Rn be the zero
locus of a finite collection of polynomials such that Λ � Z or a finite union of
proper full-rank sublattices of Λ. Let K1 be the number field generated over

K by coordinates of vectors in Λ, and let L1, . . . , Lt be linear forms in n vari-
ables with algebraic coefficients satisfying an appropriate linear independence
condition over K1. For each ε > 0 and a ∈ Rn, we prove the existence of a
vector x ∈ Λ \ Z of explicitly bounded sup-norm such that

‖Li(x)− ai‖ < ε

for each 1 ≤ i ≤ t, where ‖ ‖ stands for the distance to the nearest integer.
The bound on sup-norm of x depends on ε, as well as on Λ, K, Z, and heights
of linear forms. This presents a generalization of Kronecker’s approximation
theorem, establishing an effective result on density of the image of Λ\Z under
the linear forms L1, . . . , Lt in the t-torus Rt/Zt.

1. Introduction

Let 1, θ1, . . . , θt be Q-linearly independent real numbers. The classical approxi-
mation theorem of Kronecker then states that the set of points

{({nθ1}, . . . , {nθt}) : n ∈ Z}
is dense in the t-torus Rt/Zt, where {·} stands for the fractional part of a real
number. This result was originally obtained by Kronecker [23] in 1884 and presents
a deep generalization of Dirichlet’s 1842 theorem on Diophantine approximation [6];
see, for instance, [19] for a detailed exposition of these classical results.

Kronecker’s theorem can also be viewed as a statement on density of the image
of the integer lattice under collection of linear forms in the torus Rt/Zt (compare to
the famous Oppenheim conjecture for quadratic forms). Specifically, if L1, . . . , Lt

are linear forms in n variables with real coefficients bij so that the set of numbers 1
and bij are linearly independent over Q, then for any ε > 0 and a ∈ Rt there exists
x ∈ Zn such that

(1) ‖Li(x)− ai‖ < ε ∀ 1 ≤ i ≤ t,
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where ‖ ‖ stands for the distance to the nearest integer. A nice survey of a wide
variety of results related to Kronecker’s theorem is given in [17]. Classical quantita-
tive results in this direction are related to transference theorems for homogeneous
and inhomogeneous approximation for the system of linear forms Li(x) (see [21],
[3, Chapter V], and [2]). In particular, these results give effective bounds for the
size of the coordinates of the vector x in (1) under the assumption that there are
effective lower bounds for maxi ‖Li(x)‖ in the homogeneous case. Some additional
effective results can also be found in [25], [27].

The main goal of this note is somewhat different. We consider linear forms
with algebraic coefficients and extend the previously known versions of Kronecker’s
theorem in three ways:

(1) allow for the approximating vector x as in equation (1) above to come from
an algebraic lattice Λ,

(2) exclude vectors from a prescribed union Z of projective varieties or sublat-
tices not containing this lattice, that is, we are interested in approximation
vectors x ∈ Λ \ Z,

(3) we obtain effective constants everywhere in our upper bounds.

Effective Diophantine avoidance results, exhibiting solutions to a given problem
outside of a prescribed algebraic set, can be viewed as statements on distribution
of such solutions: not only do small solutions exist, they are also sufficiently well
distributed so that it is not possible to “cut them out” by any finite union of
varieties. In recent years, such results were obtained in the general context of
Siegel’s lemma (also generalizing Faltings’ version of Siegel’s lemma [8], [22], [7])
in [10], [11], [12], [14], [15], [20], and in the context of Cassels’ theorem on small
zeros of quadratic forms and its generalizations in [9], [5], [13], [16]. We will extend
these investigations to Kronecker’s theorem. To obtain effective constants in our
bounds we use Liouville-type inequalities (see Remark 3.1 below for stronger non-
effective inequalities of similar type, which can be derived from Schmidt’s Subspace
Theorem). To give precise statements of our results, we need some notation.

1. The lattice. Let n ≥ 1 be an integer, and for each vector x ∈ Rn define the
sup-norm

|x| := max
1≤i≤n

|xi|.

Let K be a number field of degree d = r1 + 2r2 over Q, where r1 and r2 are
numbers of its real and complex places, respectively, and write OK for its ring of
integers. Let 1 ≤ s ≤ w be integers, and let M ⊂ Kw be an OK -module such
that M⊗K K ∼= Ks. Write DK(M) for the discriminant of M. Define UK(M), a
fractional OK-ideal in K, to be

(2) UK(M) = {α ∈ K : αM ⊆ Ow
K} .

We let ΛK(M) ⊂ Rwd be the lattice of rank sd, which is the image of M under the
standard Minkowski embedding.

2. The projective varieties. Let m ≥ 1 be an integer. For each 1 ≤ i ≤ m, let Si

be a finite set of homogeneous polynomials in R[x1, . . . , xwd] and let Z(Si) be its
zero set in Rwd, that is,

Z(Si) = {x ∈ Rwd : P (x) = 0 for all P ∈ Si}.
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For the collection S := {S1, . . . ,Sm} of finite sets of homogeneous polynomials,
define

(3) ZS :=
m⋃
i=1

Z(Si)

and

(4) MS :=

m∑
i=1

max{degP : P ∈ Si}.

We allow for the possibility that ZS = {0}, in which case we instead take MS = 1.
Notice that ZS is an algebraic set, which is a union of a finite collection of projective
varieties. Assume that the lattice ΛK(M) is not contained in the set ZS .

3. The linear forms. Let K1 = K(ΛK(M)), i.e., K1 is the number field gen-
erated over K by the entries of any basis matrix of the lattice ΛK(M). Let
B := (bij)1≤i≤t,1≤j≤wd be a t × wd matrix with real algebraic entries so that
1, b11, . . . , bt(wd) are linearly independent over K1, and let � = [E : Q] where
E = K1(b11, . . . , bt(wd)). We will also write �v = [Ev : Qv] for the local degree
of E at every place v ∈ M(E). Define t linear forms in wd variables:

(5) Li(x1, . . . , xwd) =

wd∑
j=1

bijxj ∈ R[x1, . . . , xwd] ∀ 1 ≤ i ≤ t.

Our first goal here is to prove the following effective result on density of the image
of the set ΛK(M) \ ZS under the linear forms L1, . . . , Lt in the torus Rt/Zt. Let
h denote the usual Weil height on algebraic numbers, as well as its extension to
vectors with algebraic coordinates; we recall the definition of height along with
other necessary notation in Section 2.

Theorem 1.1. Let a = (a1, . . . , at) ∈ Rt, and let ε > 0. There exist x ∈ ΛK(M) \
ZS and p ∈ Zt such that

|Li(x)− ai − pi| < ε

and

|x| ≤ aK(t, �, s)
(
sdMS |DK(M)| s2

)K+1
(
(wd)

3
2h(B)

)K
cK(M, �, t) ε−�+1,

where the exponent K = �2(t+ 1)− � and the constants are

aK(t, �, s) = 2�t(�−1)+sr1K+ sd−1
2 (t+ 1)3�−1(t!)2�

and

cK(M, �, t) = min
{
h(α)(K+1)sd−1h(α−1)K : α ∈ UK(M)

}
.

One special case of Theorem 1.1 is when ZS is a union of linear spaces, which
means that the point x in question is in ΛK(M) but outside of a union of sublattices
of smaller rank than ΛK(M). What if the rank of such sublattices is equal to the
rank of ΛK(M)? The next theorem addresses this situation.

Theorem 1.2. Let a = (a1, . . . , at) ∈ Rt, and let ε > 0. Let m > 0, let
Γ1, . . . ,Γm ⊂ ΛK(M) be proper sublattices of full rank and respective determi-
nants D1, . . . ,Dm, and let D = D1 · · · Dm. Then for every α ∈ UK(M) there exist
x ∈ ΛK(M) \

⋃m
i=1 Γi and p ∈ Zt such that

|Li(x)− ai − pi| < ε
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and

|x| ≤
(
bK(t, �, s, w)

(
h(α)h(α−1)h(B)Eα

)K D ε−�+1

|DK(M)| sm2
+ 1

)
Eα,

where the exponent K = �2(t+ 1)− �, as in Theorem 1.1, the constant

bK(t, �, s, w) = 2�t(�−1)+K
2 +smr2(t+ 1)3�−1(t!)2�(wd)

3K
2 ,

and where Eα equals

(6) Eα(M,Γ1, . . . ,Γm) := 2
sr1−1

2 h(α)sd−1|DK(M)| s2
(

m∑
i=1

D
Di

−m+ 1

)
+D 1

sd .

Remark 1.1. The bounds of Theorems 1.1 and 1.2 can be recorded in a slightly
weaker simplified form as

|x| � (det ΛK(M))K+1 h(B)KcK(M, �, t) ε−�+1

and

|x| �
(

m∑
i=1

D
Di

)K+2

(detΛK(M))K−m+1h(B)KcK(M, �, t) ε−�+1,

respectively, where the constants in the � Vinogradov notation depend on the
number field K and the integer parameters t, �, s,m. The expression cK(M, �, t)
can be viewed as a certain measure of arithmetic complexity of M; in particular,
if M ⊆ Ow

K , then cK(M, �, t) = 1.

Here is a sketch of the proofs of Theorems 1.1 and 1.2. We first construct
a point y ∈ ΛK(M) of controlled sup-norm, which is outside of ZS or

⋃m
i=1 Γi,

respectively: in the first case, we use the classical Minkowski’s Successive Minima
Theorem and a version of Alon’s Combinatorial Nullstellensatz [1] (we use the
convenient formulation developed in [12]), while in the second we employ a recent
result of Henk and Thiel [20] on points of small norm in a lattice outside of a union
of full-rank sublattices. We use y to construct an infinite sequence of points ny
satisfying the above conditions, and use an effective version of Kronecker’s original
theorem to obtain a value of the index n (depending on ε > 0) for which the required
inequalities on values of linear forms are satisfied. In other words, our avoidance
strategy is to follow the line ny until a necessary point is found. One may wish to
use a similar strategy, but following a higher-dimensional subspace of the ambient
space in the hope of a better bound, however, it is difficult to guarantee avoiding our
fixed algebraic set with such strategy. A convenient effective version of Kronecker’s
theorem that we use is worked out in Section 3. It should be remarked that the
most important feature of approximation results such as our Theorems 1.1 and 1.2
is the exponent on ε in the bounds for |x|. As we show, this exponent is the same
as in the corresponding bound of the effective version of Kronecker’s theorem that
we use.

In Section 2 we introduce the necessary notation and provide all the details of
our setup. We derive an effective version of Kronecker’s theorem in Section 3. We
then prove Theorem 1.1 in Section 4 and Theorem 1.2 in Section 5.
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2. Notation and setup

Let the notation be as in Section 1. Here we introduce some additional notation
needed for our algebraic setup. Let the number field K have discriminant DK , r1
real embeddings σ1, . . . , σr1 of K, and r2 conjugate pairs of complex embeddings
τ1, τ1, . . . , τr2 , τr2 ; then d = r1 + 2r2. For each τk, write �(τk) for its real part and
(τk) for its imaginary part. Let us write M(K) for the set of all places of K.
Then the archimedean places of K are in correspondence with the embeddings of
K, and we choose the absolute values | |v1 , . . . , | |vr1+r2

so that for each a ∈ K

|a|vk = |σk(a)| ∀ 1 ≤ k ≤ r1

and

|a|vr1+k
= |τk(a)| =

√
�(τk(a))2 + (τk(a))2 ∀ 1 ≤ k ≤ r2,

where | | stands for the usual absolute value on R or C, respectively. For each
v ∈ M(K), we write Kv for the completion of K at v, and for each n ≥ 1 we define
a local norm | |v : Kn

v → R by

|a|v := max
1≤j≤n

|aj |v,

for each a = (a1, . . . , an) ∈ Kn
v . Then the extended Weil height on Kn is given by

h(a) =
∏

v∈M(K)

max{1, |a|v}dv/d,

where dv = [Kv : Qv] is the local degree of K at v so that
∑

v|u dv = d for each

u ∈ M(Q).
For each integer n ≥ 1, define the standard Minkowski embedding ρnK : Kn →

Rnd by

ρnK(a) :=
(
σn
1 (a), . . . , σ

n
r1(a),�(τ

n
1 (a)),(τn1 (a)), . . . ,�(τnr2(a)),(τ

n
r2(a))

)
.

We will now use Minkowski’s embedding to construct lattices from OK-modules and
outline some of their main properties; see [13] for further details. Let 1 ≤ s ≤ w
be integers, and let M ⊂ Kw be an OK-module such that M⊗K K ∼= Ks. By the
structure theorem for finitely generated projective modules over Dedekind domains
(see, for instance, [24]),

M =

⎧⎨
⎩

s∑
j=1

βjyj : yj ∈ Ow
K , βj ∈ Ij

⎫⎬
⎭

for some OK-fractional ideals I1, . . . , Is in K. By Proposition 13 on p. 66 of [24],
the discriminant of M is then

(7) DK(M) := DK

s∏
j=1

N(Ij)2,

where N(Ij) is the norm of the fractional ideal Ij .
Let ΛK(M) := ρwK(M) be an algebraic lattice of rank sd in Rwd. Then a direct

adaptation of Lemma 2 on p. 115 of [24] implies that the determinant of ΛK(M) is

(8) det(ΛK(M)) = 2−sr2 |DK(M)| s2 = 2−sr2 |DK | s2
s∏

j=1

N(Ij),
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where the last identity follows by (7) above. Let x ∈ ΛK(M); then x = ρwK(a) for
some a ∈ M and

(9) |x| ≥ 1√
2
h(α)−1

for any α ∈ UK(M) by inequality (54) of [13]. Let v ∈ M(K) be an archimedean
place, and assume first that it corresponds to a real embedding σj for some 1 ≤ j ≤
r1; then |a|v = |x|. On the other hand, if v corresponds to a complex embedding τj

for some 1 ≤ j ≤ r2, then |a|v ≤
(∑wd

j=1 x
2
j

)1/2
≤

√
wd |x|. Hence for each v | ∞,

(10) |x| ≤ |a|v ≤
√
wd |x|.

Let L1, . . . , Lt be the linear forms defined in (5). For each 1 ≤ i ≤ t, we define

|Li|v = max
1≤j≤wd

|bij |v

for each place v ∈ M(E), and define the height of Li to be

h(Li) = h(bi1, . . . , bi(wd)) =
∏

v∈M(E)

max{1, |Li|v}�v/�.

We similarly define the height of the matrix B to be

h(B) = h(b11, . . . , bt(wd));

then h(Li) ≤ h(B) for all 1 ≤ i ≤ t. We are now ready to proceed.

3. An effective version of Kronecker’s theorem

In this section we derive an effective version of Kronecker’s theorem, which we
then use to prove Theorems 1.1 and 1.2. Similar to the setup in the beginning of
Section 1, let 1, θ1, . . . , θt be Q-linearly independent real algebraic numbers. For
each 1 ≤ j ≤ t, let fj(x) ∈ Z[x] be the minimal polynomial of θj of degree dj , let
|fj | be the maximum of absolute values of the coefficients of fj , and let Aj be the
leading coefficient of fj , so Aj ≤ |fj |. By Lemma 3.11 of [28],

1

2dj
|fj | ≤ h(θj)

dj ≤
√
dj + 1 |fj |

for every 1 ≤ j ≤ t. Define A to be the least common multiple of A1, . . . , At, so

(11) A ≤
t∏

j=1

|fj | ≤
t∏

j=1

(2h(θj))
dj .

Let F = Q(θ1, . . . , θt) be a number field of degree e ≥ t + 1; then e ≤
∏t

j=1 dj .
Let θt+1, . . . , θe−1 ∈ F be such that

1 = θ0, θ1, . . . , θt, θt+1, . . . , θe−1

form a Q-basis for F . Let σ1, . . . , σe be the embeddings of F into C. We recall
Liouville inequality. For any m = (m0, . . . ,mt, 0, . . . , 0) ∈ Ze,

(12) Ae
e∏

i=1

∣∣∣∣∣∣
e−1∑
j=0

σi(θj)mj

∣∣∣∣∣∣ ≥ 1,
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and so

(13) Ae

(
(t+ 1) max

1≤i≤e,0≤j≤t
|σi(θj)|

)e−1

|m|e−1‖m1θ1 + · · ·+mtθt‖ ≥ 1.

Now observe that

max
1≤i≤e,0≤j≤t

|σi(θj)| ≤ max
1≤j≤t

h(θj)
dj ,

and so define

(14) C1 = C1(θ1, . . . , θt) :=
(
(t+ 1) max

1≤j≤t
h(θj)

dj

)e−1 t∏
j=1

(2h(θj))
edj .

Then for any 0 �= m ∈ Zt,

(15) ‖m1θ1 + · · ·+mtθt‖ ≥ C−1
1 |m|−e+1.

We will now apply a transference homogeneous-inhomogeneous argument. A trans-
ference principle of this sort was first described in Chapter V, §4 of [3]; the particular
stronger result we are applying here is obtained in [2]. Let us write

M(y) =
t∑

i=1

θiyi

for y = (y1, . . . , yt) ∈ Zt, and let

Lj(x) = θjx, 1 ≤ j ≤ t,

for x ∈ Z. Then (15) guarantees that for any 0 �= y ∈ Zt with |y| ≤ Y ,

‖M(y)‖ ≥ C−1
1 Y −(e−1).

Now applying the transference Lemma 3 of [2] to these linear forms, we have that for
every a = (a1, . . . , at) ∈ Rt there exists x ∈ Z such that |x| ≤ 2−t((t+ 1)!)2C1Y e−1

and

max
1≤j≤t

‖Lj(x)− aj‖ ≤ 2−t((t+ 1)!)2Y −1.

Letting Q =
(
2t((t+ 1)!)−2Y

)e−1
, we obtain that

max
1≤j≤t

‖Lj(x)− αj‖ ≤ Q− 1
e−1

for some 0 �= x ∈ Z with |x| ≤ 2−et((t+1)!)2eC1Q. Taking ε = Q− 1
e−1 immediately

yields the following effective version of Kronecker’s theorem.

Theorem 3.1. Let 1, θ1, . . . , θt be Q-linearly independent real algebraic numbers,
and let e = [Q(θ1, . . . , θt) : Q]. Let C1 be given by (14) above, and let ε > 0. Then
for any (a1, . . . , at) ∈ Rt there exists q ∈ Z \ {0} such that

(16) ‖qθj − aj‖ ≤ ε, 1 ≤ j ≤ t,

and

|q| ≤ 2−et((t+ 1)!)2eC1ε−e+1.

In particular, if h(θj) ≤ H for all 1 ≤ j ≤ t and max{e, d1, . . . , dt} ≤ �, then

|q| ≤
(
2�t(�−1)(t+ 1)3�−1(t!)2�H�2(t+1)−�

)
ε−�+1.
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Remark 3.1. Stronger noneffective results can be derived as corollaries of Schmidt’s
Subspace Theorem. For instance, results discussed in Chapter 6, §2 of [26] together
with the transference principles of Chapter V, §4 of [3] and [2] imply, for any
ε > 0 and a ∈ Rt under the assumptions of Theorem 3.1, the existence of q ∈ Z
satisfying 16 such that

|q| ≤ C′(δ)ε−t−δ,

for any δ > 0, where the constant C′(δ) is noneffective. This would result in the same
exponent on ε in the bounds for |q| in Theorems 1.1 and 1.2, but with noneffective
constants.

4. Proof of Theorem 1.1

Here we present the proof of our first result. Since ΛK(M) � ZS , ΛK(M) �
Z(Si) for all 1 ≤ i ≤ m, and so for each i at least one polynomial Pi in Si is not
identically zero on ΛK(M). Clearly for each 1 ≤ i ≤ m,

Z(Si) ⊆ Z(Pi) :=
{
x ∈ Rwd : Pi(x) = 0

}
.

Define

P (x) =
m∏
i=1

Pi(x)

so that ZS ⊆ Z(P ) and deg(P ) ≤ MS , while ΛK(M) � Z(P ). Indeed, Z(P ) is
the union of hypersurfaces Z(P1), . . . , Z(Pm), and a lattice cannot be covered by
a finite union of hypersurfaces unless it is contained in one of them. We will next
construct a point y ∈ ΛK(M) of controlled sup-norm such that P (y) �= 0.

Let V = spanR ΛK(M) be the sd-dimensional subspace of Rwd spanned by the
lattice ΛK(M). For a positive real number μ, let us write

CV (μ) := {x ∈ V : |x| ≤ μ}
for the sd-dimensional cube with side-length 2μ centered at the origin in V , so
CV (μ) = μCV (1). Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λsd be the successive minima of
ΛK(M) with respect to the cube CV (1). In other words, for each 1 ≤ i ≤ sd,

λi := min {μ ∈ R>0 : dimR spanR (ΛK(M) ∩ CV (μ)) ≥ i} .
Let v1, . . . ,vsd be a collection of linearly independent vectors in ΛK(M) corre-
sponding to these successive minima; then |vi| = λi. Since the volume of the
sd-dimensional cube CV (1) is 2sd, Minkowski’s Successive Minima Theorem (see,
for instance, [4] or [18]) implies that

det(ΛK(M))

(sd)!
≤

sd∏
i=1

|vi| ≤ det(ΛK(M)),

where 1√
2
h(α)−1 ≤ |v1| ≤ · · · ≤ |vsd|, by (9). This means that

(17) |v1| ≤ · · · ≤ |vsd| ≤
(√

2h(α)
)sd−1

det(ΛK(M)).

Let I(MS) = {0, 1, 2, . . . ,MS} be the set of the first MS + 1 nonnegative integers.
For each ξ ∈ I(MS)

sd, define

v(ξ) =

sd∑
i=1

ξivi.
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Then

(18) |v(ξ)| = max
1≤j≤wd

∣∣∣∣∣
sd∑
i=1

ξivij

∣∣∣∣∣ ≤ sd|ξ||vsd| ≤ sdMS

(√
2h(α)

)sd−1

det(ΛK(M)),

by (17). Assume that P (v(ξ)) = 0 for each ξ ∈ I(MS)
sd. Then Theorem 4.2

of [12] implies that P (x) must be identically zero on V , which would contradict
the fact that P does not vanish identically on ΛK(M). Hence there must exist
some ξ ∈ I(MS)

sd such that P does not vanish at the corresponding y := v(ξ),

and |y| ≤ sdMS

(√
2h(α)

)sd−1
det(ΛK(M)) by (18). Since P (x) is a homogeneous

polynomial, it must be true that P (ny) �= 0 for every n ∈ Z>0. On the other hand,
by our construction

ny = n

sd∑
i=1

ξivi ∈ spanZ {v1, . . . ,vsd} ⊆ ΛK(M),

and so {ny}n∈Z>0
gives an infinite sequence of points in ΛK(M) outside of ZS .

For each such point, we have

Li(ny) = nLi(y) ∀ 1 ≤ i ≤ t.

Let us define, for each 1 ≤ i ≤ t,

(19) θi := Li(y) =
wd∑
j=1

bijyj �= 0,

since yj ∈ K1, not all zero, and bij are K1-linearly independent. Notice that
θ1, . . . , θt ∈ E, and hence all of them are algebraic numbers of degree ≤ �.

Let α ∈ UK(M). Then, by (10), for each archimedean v ∈ M(E),

max{1, |θi|v} ≤ max{1, (wd) 3
2 |Li|v|y|} ≤ (wd)

3
2 max{1, |y|}max{1, |Li|v}

≤
√
2 (wd)

3
2h(α)|y|max{1, |Li|v},(20)

by (9). By (18), |y| ≤ sdMS

(√
2h(α)

)sd−1
det(ΛK(M)), and hence

(21) max{1, |θi|v} ≤ sd(wd)
3
2MS

(√
2h(α)

)sd
det(ΛK(M))max{1, |Li|v}.

Now suppose v ∈ M(E) is nonarchimedean. Then αyj is an algebraic integer for
each 1 ≤ j ≤ wd, and hence |αyj |v = |α|v|yj |v ≤ 1, meaning that

max{1, |y1|v, . . . , |ywd|v} ≤ max{1, |α|−1
v }.

Then

max{1, |θi|v} ≤ max{1, |Li|v}max{1, |y1|v, . . . , |ywd|v}
≤ max{1, |α−1|v}max{1, |Li|v}(22)
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for each nonarchimedean v ∈ M(E). Taking a product over all places of E, we
obtain

h(θi) =
∏

v∈M(E)

max{1, |θi|v}
�v
� =

⎛
⎝∏

v|∞
max{1, |θi|v}�v ×

∏
v�∞

max{1, |θi|v}�v
⎞
⎠

1
�

≤ sd(wd)
3
2MS

(√
2h(α)

)sd
det(ΛK(M))h(Li)

∏
v�∞

max{1, |α−1|v}
�v
�

≤ sd(wd)
3
2MS

(√
2h(α)

)sd
h(α−1) det(ΛK(M))h(Li).

Recalling that h(Li) ≤ h(B) for all 1 ≤ i ≤ t, we obtain

(23) h(θi) ≤ 2
sd
2 sd(wd)

3
2MSh(α)

sdh(α−1) det(ΛK(M))h(B)

for each 1 ≤ i ≤ t, where the choice of α ∈ UK(M) is arbitrary.
We will now show that 1, θ1, . . . , θt are Q-linearly independent. Suppose not.

Then there exist c0, c1, . . . , ct ∈ Q, not all zero, such that

c0 =

t∑
i=1

ciθi =

t∑
i=1

wd∑
j=1

ciyjbij ,

where not all ciyj are equal to zero. Recall that y ∈ ΛK(M), meaning that coor-
dinates of y are in K1, hence all ciyj are in K1. This contradicts the assumption
that 1, b11, . . . , b1(wd) are linearly independent over K1. Hence 1, θ1, . . . , θt must be
linearly independent over Q.

Now let a = (a1, . . . , at) ∈ Rt and let ε > 0, as in the statement of our theorem.
Then, by (23) and Theorem 3.1, there exists q ∈ Z and p ∈ Zt such that

|q| ≤ 2�t(�−1)(t+ 1)3�−1(t!)2�

×
(
2

sd
2 sd(wd)

3
2MSh(α)

sdh(α−1) det(ΛK(M))h(B)
)�2(t+1)−�

ε−�+1(24)

and

|qθi − ai − pi| < ε ∀ 1 ≤ i ≤ t.

Letting x = qy, we see that qθi = Li(x) for each 1 ≤ i ≤ t and |x| = |q||y|.
Combining these observations with (18), (24), and (8) and taking a minimum over
all α ∈ UK(M) finishes the proof of the theorem.

5. Proof of Theorem 1.2

Let Γ1, . . . ,Γm be full-rank sublattices of ΛK(M) of respective determinants
D1, . . . ,Dm. Let Ω =

⋂m
i=1 Γi; then Ω also has full rank and

D := D1 · · · Dm ≥ detΩ.

We write λi for the successive minima of ΛK(M) and λi(Ω) for the successive
minima of Ω. Theorem 1.2 of [20] implies that there exists y ∈ ΛK(M) \

⋃m
i=1 Γi

such that

|y| < det ΛK(M)

λ1(Ω)sd−1

(
m∑
i=1

D
Di

−m+ 1

)
+ λ1(Ω).
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Our first goal is to make this bound more explicit in terms of the parameters of M.
First notice that by Minkowski’s Successive Minima Theorem,

λ1(Ω) ≤
(

sd∏
i=1

λi(Ω)

)1/sd

≤ (detΩ)
1/sd ≤ D1/sd.

We also need a lower bound on λ1(Ω). Observe that λ1(Ω) ≥ λ1, while λ1 ≥
1√
2
h(α)−1 for any α ∈ UK(M), by (9) above. Putting these estimates together, we

see that

(25) |y| <
(√

2h(α)
)sd−1

detΛK(M)

(
m∑
i=1

D
Di

−m+ 1

)
+D1/sd

for any α ∈ UK(M).
Since y ∈ ΛK(M) and |ΛK(M) : Γi| = Di/ detΛK(M) for each 1 ≤ i ≤ m, it

follows that

(g|ΛK(M) : Γi|)y =
gDi

detΛK(M)
y ∈ Γi

for every g ∈ Z, and hence(
gD1 · · · Dm

(det ΛK(M))
m

)
y =

(
gD

(det ΛK(M))
m

)
y ∈ Ω

for every g ∈ Z. Therefore, it must be true that(
gD

(detΛK(M))m
+ 1

)
y ∈ ΛK(M) \

m⋃
i=1

Γi

for every g ∈ Z. For brevity, let us write D′ = D
(det ΛK(M))m .

From here on, the argument is largely similar to the proof of Theorem 1.1 above,
but with some notable changes. For each 1 ≤ i ≤ t, let θi be as in (19) for our
choice of y ∈ ΛK(M) \

⋃m
i=1 Γi satisfying (25) as above; then

Li((gD′ + 1)y) = (gD′ + 1)θi ∀ 1 ≤ i ≤ t.

Using (20) with (25) instead of (18), we obtain that

max{1, |θi|v}

≤ (wd)
3
2

((√
2h(α)

)sd
det ΛK(M)

(
m∑
i=1

D
Di

−m+ 1

)
+D 1

sd

√
2h(α)

)
max{1, |Li|v}

for all archimedean v ∈ M(E), while for the nonarchimedean v ∈ M(E),

max{1, |θi|v} ≤ max{1, |α−1|v}max{1, |Li|v},

as in (22). Taking the product over all places of E, we have for every 1 ≤ i ≤ t:

h(θi) ≤ (wd)
3
2

√
2h(α)h(α−1)h(B)

×
((√

2h(α)
)sd−1

detΛK(M)

(
m∑
i=1

D
Di

−m+ 1

)
+D 1

sd

)
,(26)

and 1, θ1, . . . , θt (and hence 1,D′θ1, . . . ,D′θt) are Q-linearly independent by the
same reasoning as in the proof of Theorem 1.1.
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Now let a = (a1, . . . , at) ∈ Rt and let ε > 0, as in the statement of our theorem.
Notice that for each 1 ≤ i ≤ t,

|(gD′ + 1)θi − ai − pi| = |g(D′θi) + (θi − ai)− pi|
for any integers p1, . . . , pt. Then, applying Theorem 3.1 to approximate the vector
(θ1 − a1, . . . , θt − at) by the fractional parts of the integer multiples of the vector
(D′θ1, . . . ,D′θt), we conclude that there exists g ∈ Z and p ∈ Zt such that

|g| ≤ 2�t(�−1)(t+ 1)3�−1(t!)2�

×
(
(wd)

3
2

√
2h(α)h(α−1)h(B)Eα(M,Γ1, . . . ,Γm)

)�2(t+1)−�

ε−�+1,(27)

where Eα(M,Γ1, . . . ,Γm) is as in (6), and

|g(D′θi) + (θi − ai)− pi| < ε ∀ 1 ≤ i ≤ t.

Letting x = (gD′ + 1)y, we see that (gD′ + 1)θi = Li(x) for each 1 ≤ i ≤ t and
|x| = |gD′ + 1||y|. Combining these observations with (25), (27), and (8) finishes
the proof of the theorem.
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