On an effective variation of Kronecker’s approximation theorem avoiding algebraic sets
HTML articles powered by AMS MathViewer
- by Lenny Fukshansky and Nikolay Moshchevitin
- Proc. Amer. Math. Soc. 146 (2018), 4151-4163
- DOI: https://doi.org/10.1090/proc/14110
- Published electronically: June 13, 2018
- PDF | Request permission
Abstract:
Let $\Lambda \subset \mathbb R^n$ be an algebraic lattice coming from a projective module over the ring of integers of a number field $K$. Let $\mathcal Z \subset \mathbb R^n$ be the zero locus of a finite collection of polynomials such that $\Lambda \nsubseteq \mathcal Z$ or a finite union of proper full-rank sublattices of $\Lambda$. Let $K_1$ be the number field generated over $K$ by coordinates of vectors in $\Lambda$, and let $L_1,\dots ,L_t$ be linear forms in $n$ variables with algebraic coefficients satisfying an appropriate linear independence condition over $K_1$. For each $\varepsilon > 0$ and $\boldsymbol a \in \mathbb R^n$, we prove the existence of a vector $\boldsymbol x \in \Lambda \setminus \mathcal Z$ of explicitly bounded sup-norm such that \begin{equation*} \| L_i(\boldsymbol x) - a_i \| < \varepsilon \end{equation*} for each $1 \leq i \leq t$, where $\|\ \|$ stands for the distance to the nearest integer. The bound on sup-norm of $\boldsymbol x$ depends on $\varepsilon$, as well as on $\Lambda$, $K$, $\mathcal Z$, and heights of linear forms. This presents a generalization of Kronecker’s approximation theorem, establishing an effective result on density of the image of $\Lambda \setminus \mathcal Z$ under the linear forms $L_1,\dots ,L_t$ in the $t$-torus $\mathbb R^t/\mathbb Z^t$.References
- Noga Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1999), no. 1-2, 7–29. Recent trends in combinatorics (Mátraháza, 1995). MR 1684621, DOI 10.1017/S0963548398003411
- Yann Bugeaud and Michel Laurent, On exponents of homogeneous and inhomogeneous Diophantine approximation, Mosc. Math. J. 5 (2005), no. 4, 747–766, 972. MR 2266457, DOI 10.17323/1609-4514-2005-5-4-747-766
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708
- J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR 1434478
- Wai Kiu Chan, Lenny Fukshansky, and Glenn R. Henshaw, Small zeros of quadratic forms outside a union of varieties, Trans. Amer. Math. Soc. 366 (2014), no. 10, 5587–5612. MR 3240936, DOI 10.1090/S0002-9947-2014-06235-1
- L. G. P. Dirichlet, Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen, S. B. Preuss. Akad. Wiss., pages 93–95, 1842.
- Bas Edixhoven, Arithmetic part of Faltings’s proof, Diophantine approximation and abelian varieties (Soesterberg, 1992) Lecture Notes in Math., vol. 1566, Springer, Berlin, 1993, pp. 97–110. MR 1289009, DOI 10.1007/978-3-540-48208-6_{1}1
- Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, DOI 10.2307/2944319
- Lenny Fukshansky, Small zeros of quadratic forms with linear conditions, J. Number Theory 108 (2004), no. 1, 29–43. MR 2078655, DOI 10.1016/j.jnt.2004.05.001
- Lenny Fukshansky, Integral points of small height outside of a hypersurface, Monatsh. Math. 147 (2006), no. 1, 25–41. MR 2199121, DOI 10.1007/s00605-005-0333-0
- Lenny Fukshansky, Siegel’s lemma with additional conditions, J. Number Theory 120 (2006), no. 1, 13–25. MR 2256792, DOI 10.1016/j.jnt.2005.11.009
- Lenny Fukshansky, Algebraic points of small height missing a union of varieties, J. Number Theory 130 (2010), no. 10, 2099–2118. MR 2660883, DOI 10.1016/j.jnt.2010.03.018
- Lenny Fukshansky and Glenn Henshaw, Lattice point counting and height bounds over number fields and quaternion algebras, Online J. Anal. Comb. 8 (2013), 20. MR 3103840
- Éric Gaudron, Géométrie des nombres adélique et lemmes de Siegel généralisés, Manuscripta Math. 130 (2009), no. 2, 159–182 (French, with English and French summaries). MR 2545512, DOI 10.1007/s00229-009-0282-3
- Éric Gaudron and Gaël Rémond, Lemmes de Siegel d’évitement, Acta Arith. 154 (2012), no. 2, 125–136 (French). MR 2945657, DOI 10.4064/aa154-2-2
- Éric Gaudron and Gaël Rémond, Espaces adéliques quadratiques, Math. Proc. Cambridge Philos. Soc. 162 (2017), no. 2, 211–247 (French, with English summary). MR 3604914, DOI 10.1017/S0305004116000438
- Steven M. Gonek and Hugh L. Montgomery, Kronecker’s approximation theorem, Indag. Math. (N.S.) 27 (2016), no. 2, 506–523. MR 3479169, DOI 10.1016/j.indag.2016.02.002
- P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- Martin Henk and Carsten Thiel, Restricted successive minima, Pacific J. Math. 269 (2014), no. 2, 341–354. MR 3238478, DOI 10.2140/pjm.2014.269.341
- Vojtěch Jarník, On linear inhomogeneous Diophantine approximations, Rozpravy II. Třídy České Akad. 51 (1941), no. 29, 21 (Czech). MR 21015
- Robert Jan Kooman, Faltings’s version of Siegel’s lemma, Diophantine approximation and abelian varieties (Soesterberg, 1992) Lecture Notes in Math., vol. 1566, Springer, Berlin, 1993, pp. 93–96. MR 1289008, DOI 10.1007/978-3-540-48208-6_{1}0
- L. Kronecker. Näherungsweise ganzzahlige Auflösung linearer Gleichungen. Monatsber. Königlich. Preuss. Akad. Wiss. Berlin, pages 1179–1193, 1271–1299, 1884.
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- G. Malojovich, An effective version of Kronecker’s theorem on simultaneous Diophantine approximation, Technical report, City University of Hong Kong, 1996. http://www.labma.ufrj.br/~gregorio/papers/kron.pdf.
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- T. Vorselen, On Kronecker’s theorem over the adéles, Master’s thesis, Universiteit Leiden, 4 2010.
- Michel Waldschmidt, Diophantine approximation on linear algebraic groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 326, Springer-Verlag, Berlin, 2000. Transcendence properties of the exponential function in several variables. MR 1756786, DOI 10.1007/978-3-662-11569-5
Bibliographic Information
- Lenny Fukshansky
- Affiliation: Department of Mathematics, Claremont McKenna College, 850 Columbia Avenue, Claremont, California 91711
- MR Author ID: 740792
- Email: lenny@cmc.edu
- Nikolay Moshchevitin
- Affiliation: Steklov Mathematical Institute of the Russian Academy of Sciences, Gubkina 8, 119991, Moscow, Russia
- MR Author ID: 290213
- Email: moshchevitin@gmail.com
- Received by editor(s): August 1, 2017
- Received by editor(s) in revised form: January 29, 2018
- Published electronically: June 13, 2018
- Additional Notes: The first author was supported by the NSA grant H98230-1510051 and Simons Foundation grant #519058.
The second author was supported by RNF Grant No. 14-11-00433. - Communicated by: Matthew A. Papanikolas
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 4151-4163
- MSC (2010): Primary 11H06, 11G50, 11J68, 11D99
- DOI: https://doi.org/10.1090/proc/14110
- MathSciNet review: 3834646