GAP AND RIGIDITY THEOREMS OF λ-HYPERSURFACES

QIANG GUANG
(Communicated by Guofang Wei)

Abstract

We study λ-hypersurfaces that are critical points of a Gaussian weighted area functional $\int_{\Sigma} e^{-\frac{|x|^{2}}{4}} d A$ for compact variations that preserve weighted volume. First, we prove various gap and rigidity theorems for complete λ-hypersurfaces in terms of the norm of the second fundamental form $|A|$. Second, we show that in one dimension, the only smooth complete and embedded λ-hypersurfaces in \mathbb{R}^{2} with $\lambda \geq 0$ are lines and round circles. Moreover, we establish a Bernstein-type theorem for λ-hypersurfaces which states that smooth λ-hypersurfaces that are entire graphs with polynomial volume growth are hyperplanes. All the results can be viewed as generalizations of results for self-shrinkers.

1. Introduction

We follow the notation of [6] and call a hypersurface $\Sigma^{n} \subset \mathbb{R}^{n+1}$ a λ-hypersurface if it satisfies

$$
\begin{equation*}
H-\frac{\langle x, \mathbf{n}\rangle}{2}=\lambda, \tag{1.1}
\end{equation*}
$$

where λ is any constant, H is the mean curvature, \mathbf{n} is the outward pointing unit normal, and x is the position vector.
λ-hypersurfaces were first studied by McGonagle and Ross in [19, where they investigated the following isoperimetric type problem in a Gaussian weighted Euclidean space:

Let $\mu(\Sigma)$ be the weighted area functional defined by $\mu(\Sigma)=\int_{\Sigma} e^{-\frac{|x|^{2}}{4}} d A$ for any hypersurface $\Sigma^{n} \subset \mathbb{R}^{n+1}$. Consider the variational problem of minimizing $\mu(\Sigma)$ among all Σ enclosing a fixed Gaussian weighted volume. Note that the variational problem is not to consider Σ enclosing a specific fixed weighted volume, but to consider variations that preserve the weighted volume.

It turns out that critical points of this variational problem are λ-hypersurfaces and the only smooth stable ones are hyperplanes; see 19 .

In [6, Cheng and Wei introduced the notation of λ-hypersurfaces by studying the weighted volume-preserving mean curvature flow. They proved that λ hypersurfaces are critical points of the weighted area functional for the weighted volume-preserving variations. Moreover, they defined an F-functional of λ-hypersurfaces and studied the F-stability, which extends a result of Colding and Minicozzi [10.

[^0]Example 1.1. We give three examples of λ-hypersurfaces in \mathbb{R}^{3} :
(1) The sphere $\mathbb{S}^{2}(r)$ with radius $r=\sqrt{\lambda^{2}+4}-\lambda$.
(2) The cylinder $\mathbb{S}^{1}(r) \times \mathbb{R}$, where $\mathbb{S}^{1}(r)$ has radius $\sqrt{\lambda^{2}+2}-\lambda$.
(3) The hyperplane in \mathbb{R}^{3}.

Note that when $\lambda=0, \lambda$-hypersurfaces are just self-shrinkers and they can be viewed as a generalization of self-shrinkers in some sense.

It is well known that self-shrinkers play a key role in the study of mean curvature flow ("MCF"), since they describe the singularity models of the MCF. In one dimension, smooth complete embedded self-shrinking curves are totally understood and they are just lines and round circles by the work of Abresch and Langer [1]. In higher dimensions, self-shrinkers are more complicated and there are only a few examples; see [2], 16, 20, and 21. There are many classification and rigidity results of self-shrinkers under certain assumptions. Ecker and Huisken [13] proved that if a self-shrinker is an entire graph with polynomial volume growth, then it is a hyperplane. Later, Wang [22] removed the condition of polynomial volume growth. In [10, Colding and Minicozzi proved that the only smooth complete embedded self-shrinkers with polynomial volume growth and $H \geq 0$ in \mathbb{R}^{n+1} are generalized cylinders $\mathbb{S}^{k} \times \mathbb{R}^{n-k}$.

In this paper, we study λ-hypersurfaces from three aspects: gap and rigidity results, the one-dimensional case, and the entire graphic case.

First, partially motivated by the work of Chern, do Carmo, and Kobayashi [8] on minimal submanifolds of a sphere with the second fundamental form of constant length, we consider smooth closed embedded λ-hypersurfaces $\Sigma^{2} \subset \mathbb{R}^{3}$ with $|A|=$ constant and $\lambda \geq 0$. We prove that they are just round spheres. It can be thought of as a generalization of the result that any smooth self-shrinker in \mathbb{R}^{3} with $|A|=$ constant is a generalized cylinder; see [12] and [14].
Theorem 1.2. Let $\Sigma^{2} \subset \mathbb{R}^{3}$ be a smooth closed and embedded λ-hypersurface with $\lambda \geq 0$. If the second fundamental form of Σ^{2} is of constant length, i.e., $|A|=$ constant, then Σ^{2} is a round sphere.

The proof of Theorem 1.2 has two key ingredients. The first ingredient is to consider the point where the norm of the position vector $|x|$ achieves its minimum. This will give that the genus is 0 . The second ingredient is an interesting result from [15] that any smooth closed special W-surface of genus 0 is a round sphere.

The second main result is the following gap theorem for λ-hypersurfaces in terms of the norm of the second fundamental form $|A|$.
Theorem 1.3. If $\Sigma^{n} \subset \mathbb{R}^{n+1}$ is a smooth complete embedded λ-hypersurface satisfying $H-\frac{\langle x, \mathbf{n}\rangle}{2}=\lambda$ with polynomial volume growth, which satisfies

$$
\begin{equation*}
|A| \leq \frac{\sqrt{\lambda^{2}+2}-|\lambda|}{2} \tag{1.2}
\end{equation*}
$$

then Σ is one of the following:
(1) a round sphere \mathbb{S}^{n},
(2) a cylinder $\mathbb{S}^{k} \times \mathbb{R}^{n-k}$ for $1 \leq k \leq n-1$,
(3) a hyperplane in \mathbb{R}^{n+1}.

Remark 1.4. Note that when $\lambda=0$, then Σ is a self-shrinker satisfying $|A|^{2} \leq 1 / 2$. So this theorem implies the gap theorem of Cao and $\mathrm{Li}[3$ in the codimension one
case. Cheng, Ogata, and Wei 5] obtained a gap theorem for λ-hypersurfaces in terms of $|A|$ and H, which also generalizes Cao and Li's result.

We also give the following Bernstein-type theorem for λ-hypersurfaces, which generalizes Ecker and Huisken's result [13].

Theorem 1.5. If a λ-hypersurface $\Sigma^{n} \subset \mathbb{R}^{n+1}$ is an entire graph with polynomial volume growth satisfying $H-\frac{\langle x, \mathbf{n}\rangle}{2}=\lambda$, then Σ is a hyperplane.

In the last part, we turn to the one-dimensional case. Following an argument in [18], we show that just as self-shrinkers in \mathbb{R}^{2}, the only smooth complete and embedded λ-hypersurfaces (λ-curves) in \mathbb{R}^{2} with $\lambda \geq 0$ are lines and round circles.

Theorem 1.6. Any smooth complete embedded λ-hypersurface (λ-curve) γ in \mathbb{R}^{2} satisfying $H-\frac{\langle x, \mathbf{n}\rangle}{2}=\lambda$ with $\lambda \geq 0$ must either be a line or a round circle.

In contrast to embedded self-shrinking curves, the dynamical pictures suggest that there exist some embedded λ-curves with $\lambda<0$ which are not round circles. There also exist Abresch-Langer-type curves for immersed λ-curves; see [4] for more details.

Remark 1.7. λ-hypersurfaces with $\lambda \geq 0$ are special cases of hypersurfaces with non-negative rescaled mean curvature, i.e., $H-\frac{1}{2}\langle x, \mathbf{n}\rangle \geq 0$. Such hypersurfaces behave nicely under the rescaled mean curvature flow. In particular, if Σ_{0} is a closed hypersurface with nonnegative rescaled mean curvature, then the nonnegative rescaled mean curvature is preserved under the rescaled mean curvature flow. Moreover, if $H-\frac{1}{2}\langle x, \mathbf{n}\rangle>0$ holds at least at one point of Σ_{0}, then the rescaled mean curvature flow will develop a singularity in finite time; see [9 for more details.

2. Background and preliminaries

In this section, we recall some background and collect several useful formulas for λ-hypersurfaces. Throughout this paper, we always assume hypersurfaces to be smooth complete embedded, without boundary, and with polynomial volume growth.
2.1. Notion and conventions. Let $\Sigma \subset \mathbb{R}^{n+1}$ be a hypersurface. Then ∇_{Σ}, div, and Δ are the gradient, divergence, and Laplacian, respectively, on Σ. \mathbf{n} is the outward unit normal, $H=\operatorname{div}_{\Sigma} \mathbf{n}$ is the mean curvature, A is the second fundamental form, and x is the position vector. With this convection, the mean curvature H is n / r on the sphere $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}$ of radius r. If e_{i} is an orthonormal frame for Σ, then the coefficients of the second fundamental form are defined to be $a_{i j}=\left\langle\nabla_{e_{i}} e_{j}, \mathbf{n}\right\rangle$.
2.2. Simons-type identity. Now we will derive a Simons-type identity for λ hypersurfaces which plays a key role in our proof of Theorem [1.3, First, recall the operators \mathcal{L} and L from [10] defined by

$$
\begin{gathered}
\mathcal{L}=\Delta-\frac{1}{2}\langle x, \nabla \cdot\rangle \\
L=\Delta-\frac{1}{2}\langle x, \nabla \cdot\rangle+|A|^{2}+\frac{1}{2} .
\end{gathered}
$$

Lemma 2.1. If $\Sigma^{n} \subset \mathbb{R}^{n+1}$ is a λ-hypersurface satisfying $H-\frac{\langle x, \mathbf{n}\rangle}{2}=\lambda$, then

$$
\begin{gather*}
L A=A-\lambda A^{2} \tag{2.1}\\
L H=H+\lambda|A|^{2} \tag{2.2}\\
\mathcal{L}|A|^{2}=2\left(\frac{1}{2}-|A|^{2}\right)|A|^{2}-2 \lambda\left\langle A^{2}, A\right\rangle+2|\nabla A|^{2} \tag{2.3}
\end{gather*}
$$

Remark 2.2. More general results of the above formulas were already obtained by Colding and Minicozzi; see Proposition 1.2 in [11]. For completeness we also include a proof here. Note that when $\lambda=0$, these formulas are just Simons' equations for self-shrinkers in 10 .

Proof of Lemma 2.1. Recall that for a general hypersurface, the second fundamental form A satisfies

$$
\begin{equation*}
\Delta A=-|A|^{2} A-H A^{2}-H e s s_{H} . \tag{2.4}
\end{equation*}
$$

Now we fix a point $p \in \Sigma$ and choose a local orthonormal frame e_{i} for Σ such that its tangential covariant derivatives vanish. So at this point, we have $\nabla_{e_{i}} e_{j}=a_{i j} \mathbf{n}$. Thus,

$$
\begin{align*}
2 \text { Hess }_{H}\left(e_{i}, e_{j}\right) & =\nabla_{e_{j}} \nabla_{e_{i}}\langle x, \mathbf{n}\rangle=\left\langle x,-a_{i k} e_{k}\right\rangle_{j} \\
& =-a_{i k j}\left\langle x, e_{k}\right\rangle-a_{i j}-a_{i k} a_{j k}\langle x, \mathbf{n}\rangle \tag{2.5}\\
& =-\left(\nabla_{x^{T}} A\right)\left(e_{i}, e_{j}\right)-A\left(e_{i}, e_{j}\right)-\langle x, \mathbf{n}\rangle A^{2}\left(e_{i}, e_{j}\right) .
\end{align*}
$$

Combining (2.4) with (2.5) gives

$$
L A=\Delta A-\frac{1}{2} \nabla_{x^{T}} A+\left(\frac{1}{2}+|A|^{2}\right) A=A-\left(H-\frac{\langle x, \mathbf{n}\rangle}{2}\right) A^{2}=A-\lambda A^{2} .
$$

This gives (2.1) and taking the trace gives (2.2). For (2.3), we have that

$$
\begin{aligned}
\mathcal{L}|A|^{2} & =2\langle\mathcal{L} A, A\rangle+2|\nabla A|^{2} \\
& =2|A|^{2}-2 \lambda\left\langle A^{2}, A\right\rangle-2\left(\frac{1}{2}+|A|^{2}\right)|A|^{2}+2|\nabla A|^{2} \\
& =2\left(\frac{1}{2}-|A|^{2}\right)|A|^{2}-2 \lambda\left\langle A^{2}, A\right\rangle+2|\nabla A|^{2} .
\end{aligned}
$$

This completes the proof.
We also need the following lemma.
Lemma 2.3. If $\Sigma^{n} \subset \mathbb{R}^{n+1}$ is a smooth λ-hypersurface, then

$$
\mathcal{L}|x|^{2}=2 n-|x|^{2}-2 \lambda\langle x, \mathbf{n}\rangle .
$$

Proof. Recall that for any hypersurface, we have $\Delta x=-H \mathbf{n}$. Therefore,

$$
\begin{aligned}
\left.\mathcal{L}|x|^{2}=\Delta|x|^{2}-\left.\frac{1}{2}\langle x, \nabla| x\right|^{2}\right\rangle & =2\langle\Delta x, x\rangle+2|\nabla x|^{2}-\left|x^{T}\right|^{2} \\
& =-2 H\langle x, \mathbf{n}\rangle+2 n-\left|x^{T}\right|^{2} \\
& =2 n-|x|^{2}-2 \lambda\langle x, \mathbf{n}\rangle .
\end{aligned}
$$

2.3. Weighted integral estimates for $|A|$. In this subsection, we prove a result which will justify the integration when hypersurfaces are noncompact and with bounded $|A|$.
Proposition 2.4. If $\Sigma^{n} \subset \mathbb{R}^{n+1}$ is a complete λ-hypersurface with polynomial volume growth satisfying $|A| \leq C_{0}$, then

$$
\int_{\Sigma}|\nabla A|^{2} e^{-\frac{|x|^{2}}{4}}<\infty
$$

The proof of Proposition 2.4 relies on the following two lemmas from 10 which show that the linear operator \mathcal{L} is self-adjoint in a weighted L^{2} space.
Lemma 2.5 (10). If $\Sigma \subset \mathbb{R}^{n+1}$ is a hypersurface, u is a C^{1} function with compact support, and v is a C^{2} function, then

$$
\int_{\Sigma} u(\mathcal{L} v) e^{-\frac{|x|^{2}}{4}}=-\int_{\Sigma}\langle\nabla u, \nabla v\rangle e^{-\frac{|x|^{2}}{4}} .
$$

Lemma 2.6 (10$]$). Suppose that $\Sigma \subset \mathbb{R}^{n+1}$ is a complete hypersurface without boundary. If u, v are C^{2} functions with

$$
\int_{\Sigma}(|u \nabla v|+|\nabla u||\nabla v|+|u \mathcal{L} v|) e^{-\frac{|x|^{2}}{4}}<\infty
$$

then we get

$$
\int_{\Sigma} u(\mathcal{L} v) e^{-\frac{\mid x x^{2}}{4}}=-\int_{\Sigma}\langle\nabla u, \nabla v\rangle e^{-\frac{|x|^{2}}{4}}
$$

Proof of Proposition 2.4. By Lemma 2.1 and $|A| \leq C_{0}$, we have

$$
\begin{align*}
\mathcal{L}|A|^{2} & =2\left(\frac{1}{2}-|A|^{2}\right)|A|^{2}-2 \lambda\left\langle A^{2}, A\right\rangle+2|\nabla A|^{2} \\
& \geq 2\left(\frac{1}{2}-|A|^{2}\right)|A|^{2}-2|\lambda||A|^{3}+2|\nabla A|^{2} \geq 2|\nabla A|^{2}-C, \tag{2.6}
\end{align*}
$$

where C is a positive constant depending only on λ and C_{0}. We allow C to change from line to line. For any smooth function ϕ with compact support, we integrate (2.6) against $\frac{1}{2} \phi^{2}$.

By Lemma 2.5 we obtain that

$$
-2 \int_{\Sigma} \phi|A|\langle\nabla \phi, \nabla| A| \rangle e^{-\frac{|x|^{2}}{4}} \geq \int_{\Sigma} \phi^{2}\left(|\nabla A|^{2}-C\right) e^{-\frac{\mid x x^{2}}{4}}
$$

Using the absorbing inequality $\epsilon a^{2}+\frac{b^{2}}{\epsilon} \geq 2 a b$ gives

$$
\begin{equation*}
\int_{\Sigma}\left(\epsilon \phi^{2}|\nabla| A| |^{2}+\frac{1}{\epsilon}|A|^{2}|\nabla \phi|^{2}\right) e^{-\frac{|x|^{2}}{4}} \geq \int_{\Sigma} \phi^{2}\left(|\nabla A|^{2}-C\right) e^{-\frac{|x|^{2}}{4}} \tag{2.7}
\end{equation*}
$$

Now we choose $|\phi| \leq 1,|\nabla \phi| \leq 1$, and $\epsilon=1 / 2$. Combining this with $|\nabla A| \geq|\nabla| A| |$, we see that (2.7) gives

$$
\int_{\Sigma}\left(4|A|^{2}+C\right) e^{-\frac{|x|^{2}}{4}} \geq \int_{\Sigma} \phi^{2}|\nabla A|^{2} e^{-\frac{|x|^{2}}{4}}
$$

The conclusion follows from the monotone convergence theorem and the fact that Σ has polynomial volume growth.

A direct consequence of Proposition 2.4 and Lemma 2.6 is the following corollary.

Corollary 2.7. If $\Sigma^{n} \subset \mathbb{R}^{n+1}$ is a complete λ-hypersurface with polynomial volume growth satisfying $|A| \leq C_{0}$, then

$$
\int_{\Sigma} \mathcal{L}|A|^{2} e^{-\frac{|x|^{2}}{4}}=0
$$

3. Closed λ-hypersurfaces with the second fundamental form of constant length

This section is devoted to proving Theorem 1.2, Recall that if $\Sigma^{2} \subset \mathbb{R}^{3}$ is a smooth complete embedded self-shrinker with $|A|=$ constant, then one can show that Σ is a generalized cylinder $\mathbb{S}^{k} \times \mathbb{R}^{2-k}$ for some $k \leq 2$; see 12] and [14. One way to prove this is to consider the point where the norm of position vector $|x|$ achieves its minimum. For λ-hypersurfaces, we will also use this idea to prove Theorem 1.2, In addition, we need some important results from [15].

First, we recall the following ingredients from (15).
Definition 3.1. A surface in \mathbb{R}^{3} is called a special Weingarten surface (special W-surface) if its Gauss curvature and mean curvature 113 and H, are connected by an identity

$$
F(K, H)=0
$$

in which F satisfies the following condition:

- The function $F(K, H)$ is defined and of class C^{2} on the portion $4 K \leq H^{2}$ of the (K, H)-plane and satisfies

$$
F_{H}+H F_{K} \neq 0 \quad \text { when } \quad 4 K=H^{2} .
$$

In [15, Hartman and Wintner proved the following theorem for special W surfaces.

Theorem 3.2 ([15). Let S be a (small piece of a) special W-surface of class C^{2}. Then, unless S is part of a plane or a sphere, the umbilical points (if any) are isolated and their indices are negative.

A direct consequence is the following result which serves as a key ingredient in the proof of Theorem 1.2 ,

Theorem 3.3 ([15). If a closed orientable surface S of genus 0 is a special W surface of class C^{2}, then S is a round sphere.

One may easily check that a closed surface with $|A|=$ constant is a special W-surface. Hence, by Theorem 3.3, we have the following corollary.

Corollary 3.4. Let $\Sigma^{2} \subset \mathbb{R}^{3}$ be a smooth closed embedded surface of genus 0 . If $|A|=$ constant, then Σ is a round sphere.
3.1. Proof of Theorem 1.2, By Corollary 3.4, in order to prove Theorem 1.2 , all we need to show is that any closed λ-hypersurface with constant $|A|$ has genus 0 . In the proof of Theorem 1.2, we also need the following gap result for closed λ-hypersurfaces. The proof will be given in Section 4.2,

[^1]Theorem 3.5. Let $\Sigma^{n} \subset \mathbb{R}^{n+1}$ be a smooth closed λ-hypersurface with $\lambda \geq 0$. If Σ satisfies

$$
\begin{equation*}
|A|^{2} \leq \frac{1}{2}+\frac{\lambda\left(\lambda+\sqrt{\lambda^{2}+2 n}\right)}{2 n} \tag{3.1}
\end{equation*}
$$

then Σ is a round sphere with radius $\sqrt{\lambda^{2}+2 n}-\lambda$.
Now, we are ready to prove Theorem 1.2
Proof of Theorem 1.2, First, by the Gauss-Bonnet Formula, the Minkowski Integral Formulas and the Stokes' theorem, we have

$$
\begin{gather*}
\int_{\Sigma} H^{2}=\int_{\Sigma}|A|^{2}+8 \pi(1-g), \tag{3.2}\\
\int_{\Sigma} H\langle x, \mathbf{n}\rangle=2 \operatorname{Area}(\Sigma) \\
\int_{\Sigma}\langle x, \mathbf{n}\rangle=3 \operatorname{Volume}(\Omega)
\end{gather*}
$$

where g is the genus of Σ and Ω is the region enclosed by Σ.
Combining above identities, we deduce that

$$
\begin{equation*}
\int_{\Sigma} H^{2} \geq\left(\lambda^{2}+1\right) \int_{\Sigma}=\left(\lambda^{2}+1\right) \operatorname{Area}(\Sigma) \tag{3.3}
\end{equation*}
$$

Next, we consider the point $p \in \Sigma$ where $|x|$ achieves its minimum. By Lemma 2.3, at point p, we have

$$
\begin{equation*}
H^{2}(p) \leq \frac{2+\lambda^{2}+\lambda \sqrt{\lambda^{2}+4}}{2} \tag{3.4}
\end{equation*}
$$

At point p, we can choose a local orthonormal frame $\left\{e_{1}, e_{2}\right\}$ such that the second fundamental form $a_{i j}=\lambda_{i} \delta_{i j}$ for $i, j=1,2$. Thus, we have

$$
\begin{equation*}
|\nabla H|^{2}=\left(a_{111}+a_{221}\right)^{2}+\left(a_{112}+a_{222}\right)^{2} . \tag{3.5}
\end{equation*}
$$

Since $|A|^{2}=$ constant, we see that

$$
\begin{equation*}
a_{11} a_{111}+a_{22} a_{221}=a_{11} a_{112}+a_{22} a_{222}=0 \tag{3.6}
\end{equation*}
$$

Note that at point $p,|\nabla H|=0$. This implies

$$
a_{111}+a_{221}=a_{112}+a_{222}=0
$$

Combining this with (3.5) and (3.6), we get

$$
a_{111}\left(a_{11}-a_{22}\right)=a_{222}\left(a_{11}-a_{22}\right)=0
$$

If $a_{11}=a_{22}$, then by (3.4), we have

$$
|A|^{2}=\frac{H^{2}}{2} \leq \frac{2+\lambda^{2}+\lambda \sqrt{\lambda^{2}+4}}{4} .
$$

By Theorem [3.5, this implies that Σ is a round sphere.
If $a_{111}=a_{222}=0$, then $|\nabla A|^{2}=0$. Hence,

$$
\left(\frac{1}{2}-|A|^{2}\right)|A|^{2}=\lambda\left\langle A^{2}, A\right\rangle
$$

Thus, we have

$$
\left(|A|^{2}-\frac{1}{2}\right)|A|^{2}=-\lambda\left\langle A^{2}, A\right\rangle \leq \lambda|A|^{3}
$$

Therefore,

$$
|A|^{2} \leq \frac{1+\lambda^{2}+\lambda \sqrt{\lambda^{2}+2}}{2}
$$

Combining this with (3.2) and (3.3) gives

$$
\left(\lambda^{2}+1\right) \operatorname{Area}(\Sigma) \leq \int_{\Sigma} H^{2} \leq \frac{1+\lambda^{2}+\lambda \sqrt{\lambda^{2}+2}}{2} \operatorname{Area}(\Sigma)+8 \pi(1-g)
$$

Observe that

$$
\lambda^{2}+1>\frac{1+\lambda^{2}+\lambda \sqrt{\lambda^{2}+2}}{2} ;
$$

then we get that the genus $g=0$. By Corollary 3.4, we conclude that Σ is a round sphere. This completes the proof.

Remark 3.6. Note that our method does not apply to higher dimensions. It is desirable that one may remove the conditions of closedness and $\lambda \geq 0$ to prove that any λ-hypersurface $\Sigma^{2} \subset \mathbb{R}^{3}$ with $|A|=$ constant is a generalized cylinder. We also conjecture that in higher dimensions, all λ-hypersurfaces with $|A|=$ constant must be generalized cylinders.

4. Gap theorems for λ-hypersurfaces

In this section, we prove the gap theorems for λ-hypersurfaces.
4.1. Proof of Theorem 1.3. Now we give the proof of Theorem 1.3

Proof of Theorem 1.3. By Lemma 2.1, we have

$$
\begin{aligned}
\frac{1}{2} \mathcal{L}|A|^{2} & =\left(\frac{1}{2}-|A|^{2}\right)|A|^{2}-\lambda\left\langle A^{2}, A\right\rangle+|\nabla A|^{2} \\
& \geq\left(\frac{1}{2}-|A|^{2}\right)|A|^{2}-|\lambda||A|^{3}+|\nabla A|^{2}
\end{aligned}
$$

Then Proposition 2.4 and Corollary 2.7 give

$$
\begin{equation*}
0=\int_{\Sigma} \mathcal{L}|A|^{2} e^{-\frac{|x|^{2}}{4}} \geq \int_{\Sigma}\left(\frac{1}{2}-|A|^{2}-|\lambda||A|\right)|A|^{2} e^{-\frac{|x|^{2}}{4}}+\int_{\Sigma}|\nabla A|^{2} e^{-\frac{|x|^{2}}{4}} \tag{4.1}
\end{equation*}
$$

Note that when

$$
|A| \leq \frac{\sqrt{\lambda^{2}+2}-|\lambda|}{2}
$$

we have

$$
\frac{1}{2}-|A|^{2}-|\lambda||A| \geq 0
$$

This implies that the first term of (4.1) on the right-hand side is nonnegative. Therefore, (4.1) implies that all inequalities are equalities. Moreover, we have

$$
|\nabla A|=\left(\frac{1}{2}-|A|^{2}-|\lambda||A|\right)|A|^{2}=0
$$

By Theorem 4 of Laswon [17] that every smooth hypersurface with $\nabla A=0$ splits isometrically as a product of a sphere and a linear space, we finish the proof.

By the proof of Theorem [1.3 we have the following gap result.

Corollary 4.1. If $\Sigma^{n} \subset \mathbb{R}^{n+1}$ is a smooth complete embedded λ-hypersurface satisfying $H-\frac{\langle x, \mathbf{n}\rangle}{2}=\lambda$ with polynomial volume growth, which satisfies

$$
|A|<\frac{\sqrt{\lambda^{2}+2}-|\lambda|}{2}
$$

then Σ is a hyperplane in \mathbb{R}^{n+1}.
4.2. Gap theorems for closed λ-hypersurfaces. In Theorem 1.3, when Σ^{n} is a round sphere, this forces $\lambda=0$. We address this issue by providing the gap theorem for closed λ-hypersurfaces with $\lambda \geq 0$, i.e., Theorem [3.5] which is used in the proof of Theorem [1.2. Now we give the proof of Theorem 3.5]

Proof of Theorem 3.5. Since Σ is closed, we consider the point p where $|x|$ achieves its maximum. At point p, x and \mathbf{n} are in the same direction. This implies $2 H(p)=$ $2 \lambda+|x|(p)$.

By (3.1), we have

$$
\left(\lambda+\frac{|x|(p)}{2}\right)^{2}=H^{2}(p) \leq n|A|^{2} \leq n\left(\frac{1}{2}+\frac{\lambda\left(\lambda+\sqrt{\lambda^{2}+2 n}\right)}{2 n}\right) .
$$

This gives

$$
\begin{equation*}
\max _{\Sigma}|x| \leq|x|(p) \leq \sqrt{\lambda^{2}+2 n}-\lambda \tag{4.2}
\end{equation*}
$$

By Lemma 2.3, we have

$$
\mathcal{L}|x|^{2}=2 n-|x|^{2}-2 \lambda\langle x, \mathbf{n}\rangle .
$$

Combining this with (4.2), the maximum principle gives that Σ is a round sphere.
4.3. A Bernstein-type theorem for λ-hypersurfaces. The aim of this subsection is to prove Theorem [1.5 which generalizes Ecker and Huisken's result [13]. The key ingredient is that for a λ-hypersurface Σ, the function $\langle v, \mathbf{n}\rangle$ is an eigenfunction of the operator L with eigenvalue $1 / 2$, where $v \in \mathbb{R}^{n+1}$ is any constant vector. Note that the result is also true for self-shrinkers. This eigenvalue result was also obtained by McGonagle and Ross [19].
Lemma 4.2. If $\Sigma \subset \mathbb{R}^{n+1}$ is a λ-hypersurface, then for any constant vector $v \in$ \mathbb{R}^{n+1}, we have

$$
L\langle v, \mathbf{n}\rangle=\frac{1}{2}\langle v, \mathbf{n}\rangle .
$$

Proof. Set $f=\langle v, \mathbf{n}\rangle$. Working at a fixed point p and choosing e_{i} to be a local orthonormal frame, we have

$$
\nabla_{e_{i}} f=\left\langle v, \nabla_{e_{i}} \mathbf{n}\right\rangle=-a_{i j}\left\langle v, e_{j}\right\rangle .
$$

Differentiating again and using the Codazzi equation gives that

$$
\nabla_{e_{k}} \nabla_{e_{i}}=-a_{i j k}\left\langle v, e_{j}\right\rangle-a_{i j} a_{j k}\langle v, \mathbf{n}\rangle .
$$

Therefore,

$$
\begin{equation*}
\Delta f=\langle v, \nabla H\rangle-|A|^{2} f \tag{4.3}
\end{equation*}
$$

Using the equation of λ-hypersurfaces, we have

$$
\begin{equation*}
\langle v, \nabla H\rangle=\left\langle v,-\frac{1}{2} a_{i j}\left\langle x, e_{j}\right\rangle e_{i}\right\rangle=\frac{1}{2}\langle x, \nabla f\rangle . \tag{4.4}
\end{equation*}
$$

Combining (4.3) and (4.4), we obtain that

$$
L f=\Delta f-\frac{1}{2}\langle x, \nabla f\rangle+\left(\frac{1}{2}+|A|^{2}\right) f=\frac{1}{2} f
$$

We now give the proof of Theorem 1.5 ,
Proof of Theorem 1.5. Since Σ is an entire graph, we can find a constant vector v such that $f=\langle v, \mathbf{n}\rangle>0$. Let $u=1 / f$. Then we have

$$
\nabla u=-\frac{\nabla f}{f^{2}} \text { and } \Delta u=-\frac{\Delta f}{f^{2}}+\frac{2|\nabla f|^{2}}{f^{3}}
$$

By Lemma 4.2, we can easily get

$$
\mathcal{L} u=|A|^{2} u+\frac{2|\nabla u|^{2}}{u}
$$

Since Σ has polynomial volume growth, we get

$$
\int_{\Sigma}\left(|A|^{2} u+\frac{2|\nabla u|^{2}}{u}\right) e^{-\frac{|x|^{2}}{4}}=0
$$

Therefore, $|A|=0$ and Σ is a hyperplane in \mathbb{R}^{n+1}.
Remark 4.3. A similar result is also obtained later by Cheng and Wei [7] under the assumption of properness instead of polynomial volume growth. Note that they proved properness of λ-hypersurfaces implies polynomial volume growth; see Theorem 9.1 in [6].

5. Embedded λ-HYpersurfaces in \mathbb{R}^{2}

In this section, we will follow the argument in [18] to show that any λ-hypersurface (λ-curve) in \mathbb{R}^{2} with $\lambda \geq 0$ must either be a line or a round circle, i.e., Theorem 1.6 .

Proof of Theorem 1.6. Suppose s is an arclength parameter of γ; then the curvature is $H=-\left\langle\nabla_{\gamma^{\prime}} \gamma^{\prime}, \mathbf{n}\right\rangle$. Note that $\nabla_{\gamma^{\prime}} \mathbf{n}=H \gamma^{\prime}$, so we have

$$
2 H^{\prime}=\nabla_{\gamma^{\prime}}\langle x, \mathbf{n}\rangle=H\left\langle x, \gamma^{\prime}\right\rangle
$$

If at some point $H=0$, then $H^{\prime}=0$. By the uniqueness theorem of ODE, we conclude that $H \equiv 0$, and, thus, γ is just a line. Therefore, we may assume that H is always nonzero and possibly reversing the orientation of the curve to make $H>0$, i.e., γ is strictly convex.

Differentiating $|x|^{2}$ gives

$$
\left(|x|^{2}\right)^{\prime}=2\left\langle x, \gamma^{\prime}\right\rangle=4 \frac{H^{\prime}}{H}
$$

Thus $H=C e^{\frac{|x|^{2}}{4}}$ for some constant $C>0$.
Since the curve is strictly convex, we introduce a new variable θ by $\theta=$ $\arccos \left\langle\mathbf{E}_{1}, n\right\rangle$.

Differentiating with respect to the arclength parameter gives

$$
\begin{gathered}
\partial_{s} \theta=-H \\
H_{\theta}=-\frac{H^{\prime}}{H}=-\frac{\left\langle x, \gamma^{\prime}\right\rangle}{2}
\end{gathered}
$$

and

$$
\begin{equation*}
H_{\theta \theta}=\frac{\partial_{s} H_{\theta}}{-H}=\frac{1-2 H(H-\lambda)}{2 H}=\frac{1}{2 H}-H+\lambda . \tag{5.1}
\end{equation*}
$$

Multiplying the above equation by $2 H_{\theta}$, we get

$$
\partial_{\theta}\left(H_{\theta}^{2}+H^{2}-\log H-2 \lambda H\right)=0
$$

Therefore, the quantity

$$
E=H_{\theta}^{2}+H^{2}-\log H-2 \lambda H
$$

is a constant.
Consider the function $f(t)=t^{2}-\log t-2 \lambda t, t>0$. It is easy to verify that

$$
f(t) \geq f\left(\frac{\lambda+\sqrt{\lambda^{2}+2}}{2}\right)
$$

Hence,

$$
E \geq f\left(\frac{\lambda+\sqrt{\lambda^{2}+2}}{2}\right)
$$

If $E=f\left(\frac{\lambda+\sqrt{\lambda^{2}+2}}{2}\right)$, then H is constant and γ must be a round circle.
Now we assume that $E>f\left(\frac{\lambda+\sqrt{\lambda^{2}+2}}{2}\right)$. Note that $H=C e^{\frac{|x|^{2}}{4}}$ and $H \leq|x / 2|+$ $|\lambda|$. Then H has an upper bound and $|x|$ is bounded. By the embeddedness and completeness of γ, we conclude that γ must be closed, simple, and strictly convex.

If γ is not a round circle, then we consider the critical points of the curvature H. By our assumption that $E>f\left(\frac{\lambda+\sqrt{\lambda^{2}+2}}{2}\right)$, when $H_{\theta}=0$, we have $H_{\theta \theta}=$ $\frac{1}{2 H}-H+\lambda \neq 0$. So the critical points are not degenerate. By the compactness of the curve, they are finite and isolated.

Without loss of generality, we may assume $H(0)=H_{\max }$ and $H(\bar{\theta})$ is the first subsequent critical point of H for $\bar{\theta}>0$. Combining the fact that the curvature is strictly decreasing in the interval $[0, \bar{\theta}]$ with the second-order ODE of the function H is symmetric with respect to $\theta=0$ and $\theta=\bar{\theta}$, we conclude that $H(\bar{\theta})$ must be the minimum of the curvature.

By the four-vertex theorem, we know that γ has at least four pieces like the one described above. Since our curve is closed and embedded, the curvature H is periodic with period $T<\pi$ and $\frac{T}{2}=\bar{\theta}$.

Next, we will evaluate an integral to produce a contradiction.
Since $H_{\theta \theta}=\frac{1}{2 H}-H+\lambda$, we have

$$
\left(H^{2}\right)_{\theta \theta \theta}+4\left(H^{2}\right)_{\theta}=\frac{2 H_{\theta}}{H}+6 \lambda H_{\theta}
$$

Now we consider the following integral:

$$
2 \int_{0}^{\frac{T}{2}} \sin 2 \theta \frac{H_{\theta}}{H} d \theta=\int_{0}^{\frac{T}{2}} \sin 2 \theta\left[\left(H^{2}\right)_{\theta \theta \theta}+4\left(H^{2}\right)_{\theta}-6 \lambda H_{\theta}\right] d \theta .
$$

Integration by parts gives

$$
\begin{aligned}
2 \int_{0}^{\frac{T}{2}} \sin 2 \theta \frac{H_{\theta}}{H} d \theta= & \left.\sin 2 \theta\left(H^{2}\right)_{\theta \theta}\right|_{0} ^{\frac{T}{2}}-2 \int_{0}^{\frac{T}{2}} \cos 2 \theta\left(H^{2}\right)_{\theta \theta} d \theta+4 \int_{0}^{\frac{T}{2}} \sin 2 \theta\left(H^{2}\right)_{\theta} d \theta \\
& -6 \lambda \int_{0}^{\frac{T}{2}} \sin 2 \theta H_{\theta} d \theta
\end{aligned}
$$

Hence,

$$
\begin{aligned}
2 \int_{0}^{\frac{T}{2}} \sin 2 \theta \frac{H_{\theta}}{H} d \theta & =2 \sin T\left[H_{\theta}^{2}\left(\frac{T}{2}\right)+H\left(\frac{T}{2}\right) H_{\theta \theta}\left(\frac{T}{2}\right)\right]-\left.2 \cos 2 \theta\left(H^{2}\right)_{\theta}\right|_{0} ^{\frac{T}{2}} \\
& -6 \lambda \int_{0}^{\frac{T}{2}} \sin 2 \theta H_{\theta} d \theta \\
& =2 \sin T H\left(\frac{T}{2}\right) H_{\theta \theta}\left(\frac{T}{2}\right)-6 \lambda \int_{0}^{\frac{T}{2}} \sin 2 \theta H_{\theta} d \theta
\end{aligned}
$$

By (5.1) and $H_{\theta}(0)=H_{\theta}\left(\frac{T}{2}\right)=0$, we get

$$
\begin{equation*}
2 \int_{0}^{\frac{T}{2}} \sin 2 \theta \frac{H_{\theta}}{H} d \theta=2 \sin T\left[\frac{1}{2}-H^{2}\left(\frac{T}{2}\right)+\lambda H\left(\frac{T}{2}\right)\right]-6 \lambda \int_{0}^{\frac{T}{2}} \sin 2 \theta H_{\theta} d \theta \tag{5.2}
\end{equation*}
$$

Since H is decreasing from 0 to $\frac{T}{2}$ and $\sin 2 \theta$ is nonnegative, the left-hand side of (5.2) is nonpositive. For the right-hand side, the first term is nonnegative since $H\left(\frac{T}{2}\right)$ is a minimum, and $\lambda \geq 0$ implies the second term is nonpositive. So the right-hand side of (5.2) is nonnegative, and this gives a contradiction. Therefore, we conclude that γ is a round circle.

Remark 5.1. For the noncompact case, we do not need the condition $\lambda \geq 0$ to prove it is a line, and we do need $\lambda \geq 0$ for the closed case. When $\lambda<0$, there exist some embedded λ-curves which are not round circles; see 4].

Acknowledgment

The author would like to thank Professor William Minicozzi for his valuable and constant support.

References

[1] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom. 23 (1986), no. 2, 175-196. MR 845704
[2] Sigurd B. Angenent, Shrinking doughnuts, Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl., vol. 7, Birkhäuser Boston, Boston, MA, 1992, pp. 21-38. MR 1167827
[3] Huai-Dong Cao and Haizhong Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. Partial Differential Equations 46 (2013), no. 3-4, 879-889. MR3018176
[4] Jui-En Chang, 1-dimensional solutions of the λ-self shrinkers, Geom. Dedicata 189 (2017), 97-112. MR 3667341
[5] Qing-Ming Cheng, Shiho Ogata, and Guoxin Wei, Rigidity theorems of λ-hypersurfaces, Comm. Anal. Geom. 24 (2016), no. 1, 45-58. MR3514553
[6] Qing-Ming Cheng and Guoxin Wei, Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow, arXiv:1403.3177 (2014).
[7] Qing-Ming Cheng and Guoxin Wei, The gauss image of λ-hypersurfaces and a Bernstein type problem, arXiv:1410.5302 (2014).
[8] S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968), Springer, New York, 1970, pp. 59-75. MR0273546
[9] Tobias Holck Colding, Tom Ilmanen, William P. Minicozzi II, and Brian White, The round sphere minimizes entropy among closed self-shrinkers, J. Differential Geom. 95 (2013), no. 1, 53-69. MR3128979
[10] Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) $\mathbf{1 7 5}$ (2012), no. 2, 755-833. MR2993752
[11] Tobias Holck Colding and William P. Minicozzi II, Uniqueness of blowups and Łojasiewicz inequalities, Ann. of Math. (2) 182 (2015), no. 1, 221-285. MR3374960
[12] Qi Ding and Y. L. Xin, The rigidity theorems of self-shrinkers, Trans. Amer. Math. Soc. $\mathbf{3 6 6}$ (2014), no. 10, 5067-5085. MR3240917
[13] Klaus Ecker and Gerhard Huisken, Mean curvature evolution of entire graphs, Ann. of Math. (2) $\mathbf{1 3 0}$ (1989), no. 3, 453-471. MR 1025164
[14] Qiang Guang, Self-shrinkers with second fundamental form of constant length, Bull. Aust. Math. Soc. 96 (2017), no. 2, 326-332. MR3703914
[15] Philip Hartman and Aurel Wintner, Umbilical points and W-surfaces, Amer. J. Math. 76 (1954), 502-508. MR0063082
[16] Stephen Kleene and Niels Martin Møller, Self-shrinkers with a rotational symmetry, Trans. Amer. Math. Soc. 366 (2014), no. 8, 3943-3963. MR3206448
[17] H. Blaine Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187-197. MR0238229
[18] Carlo Mantegazza, Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. MR2815949
[19] Matthew McGonagle and John Ross, The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space, Geom. Dedicata 178 (2015), 277-296. MR3397495
[20] Niels Martin Møller, Closed self-shrinking surfaces in \mathbf{R}^{3} via the torus, arXiv:1111.7318 (2011).
[21] Xuan Hien Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow. I, Trans. Amer. Math. Soc. 361 (2009), no. 4, 1683-1701. MR2465812
[22] Lu Wang, A Bernstein type theorem for self-similar shrinkers, Geom. Dedicata 151 (2011), 297-303. MR2780753

Department of Mathematics, University of California Santa Barbara, Santa Barbara, California 93106

Email address: guang@math.ucsb.edu

[^0]: Received by the editors October 11, 2017, and, in revised form, January 29, 2018.
 2010 Mathematics Subject Classification. Primary 53C44, 53C42.

[^1]: ${ }^{1}$ In [15], they use the average rather than the sum of the principal curvatures.

