
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 10, October 2018, Pages 4139–4150
http://dx.doi.org/10.1090/proc/14112

Article electronically published on June 29, 2018

K-THEORY OF LINE BUNDLES AND SMOOTH VARIETIES

C. HAESEMEYER AND C. WEIBEL

Abstract. We give a K-theoretic criterion for a quasi-projective variety to
be smooth. If L is a line bundle corresponding to an ample invertible sheaf on
X, it suffices that Kq(X) ∼= Kq(L) for all q ≤ dim(X) + 1.

Let X be a quasi-projective variety over a field k of characteristic 0. The main
result of this paper gives a K-theoretic criterion for X to be smooth. For affine
X, such a criterion was given in [CHW08]: it suffices that X be Kd+1-regular for
d = dim(X), i.e., that Kd+1(X) ∼= Kd+1(X × Am) for all m. If X is affine, we
also showed that Kd+1-regularity of X is equivalent to the condition that Ki(X) ∼=
Ki(X × A1) for all i ≤ d+ 1.

We also showed that Kd+1-regularity is insufficient for quasi-projective X; see
[CHW08, Thm. 0.2]. In this paper we prove:

Theorem 0.1. Let X be quasi-projective over a field k of characteristic 0 of di-
mension d, and let L = Spec(Sym L) be the line bundle corresponding to an ample
invertible sheaf L on X.

If Ki(L) ∼= Ki(X) for all i ≤ n, then X is regular in codimension < n.
If Ki(L) ∼= Ki(X) for all i ≤ d+ 1, then X is regular.

For example, if Ki(L) ∼= Ki(X) for all i ≤ d, then X has at most isolated
singularities.

In the affine case, of course, every line bundle is ample, and when L = A1
R we

recover our previous result, proven in [CHW08, 0.1]:

Corollary 0.2. If R is essentially of finite type over a field of characteristic 0 and
Ki(R) ∼= Ki(R[t]) for all i ≤ n, then R is regular in codimension < n.

The affine assumption in this corollary is critical. In [CHW08], we gave an
example of a curve Y which isKn-regular for all n, but which is not regular; no affine
open U is even reduced. However, K1(X) �= K1(L) for the line bundle associated
to an ample L; see Example 4.1 below. In Theorem 4.3 we give a surface X which
is Kn-regular for all n, but which is not regular and such that K0(X) �= K0(L) for
the line bundle associated to an ample L; it is a cusp bundle over an elliptic curve.

As in our previous papers [CHSW08, CHW08, CHWW10], our technique is to
compare K-theory to cyclic homology using cdh-descent and the Chern character.
The parts of cdh descent we need are developed in Section 1 and applied to give a
formula for the cyclic homology of line bundles in Section 2. The main theorem is
proven in Section 3, and two examples are given in Section 4.
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Notation. If E is a presheaf of spectra, we write πnE for the presheaf of abelian
groups X �→ πnE(X); we say that a spectrum E is n-connected if πqE = 0 for
all q ≤ n. For example, Kn(X) is the homotopy group πnK(X) of the spectrum
K(X).

Similarly, if E is a cochain complex of presheaves, we may regard it as a presheaf
of spectra via Dold-Kan [Wei94, ch. 10]. Thus πiE(X) is another notation for
H−iE(X). We will use the cochain shift convention E[i]n = Ei+n, so that the spec-
trum corresponding to E[1] is the suspension of the spectrum of E, and πnE[1] =
πn−1E. Thus if E is n-connected, then E[1] is (n+ 1)-connected.

1. Zariski and cdh descent

In this paper, we fix a field of characteristic 0 and work with the category Sch
of schemes X of finite type over the field. We will be interested in the Zariski and
cdh topologies on Sch.

If τ is a Grothendieck topology on Sch, there is an “injective τ -local” model
structure on the category Psh(Ch(Ab)) of presheaves of cochain complexes of
abelian groups on Sch. In this model structure, a map A → B is a cofibration if
A(X) → B(X) is an injection for allX, and it is a weak equivalence ifHnA → HnB
induces an isomorphism on the associated τ -sheaves. The fibrant replacement of
A in this model structure is written as A → Hτ (−, A). We say that A satisfies
τ -descent if the canonical map A(X) → Hτ (X,A) is a quasi-isomorphism for all X.
There is a parallel notion of τ -descent for presheaves of spectra.

If A is a sheaf, then A → Hτ (−, A) is an injective resolution; it follows that
Hn

τ (X,A) = HnHτ (X,A) for all n. For a complex A, the hypercohomology group
Hn

τ (X,A) equals HnHτ (X,A). See [CHSW08, 3.3] for these facts.
The inclusion of complexes of sheaves (for a topology τ ) into complexes of

presheaves induces an injective τ -local model structure on complexes of sheaves,
and the inclusion is a Quillen equivalence; see [Jar15, 5.9].

For the Zariski, Nisnevich, and cdh topologies, there is a parallel “injective τ -
local” model structure on the category Psh(Ch(Oτ )) of presheaves of complexes of
Oτ -modules, and the functor forgetting the module structure is a Quillen adjunc-
tion. In particular, if A is a presheaf of complexes of Oτ -modules, the forgetful
functor sends its fibrant Oτ -module replacement to a presheaf that is objectwise
weak equivalent to Hτ (−, A).

Example 1.1. Let k be a subfield of our fixed base field. (For example, k could
be Q.) The Hochschild complex HH/k satisfies Zariski descent by [WG91, 0.4].
By definition, the cochain complex HH(X/k) is concentrated in negative cohomo-

logical degrees and has the Zariski sheaf O⊗kn+1
X in cohomological degree −n; its

cohomology sheaves are quasi-coherent. When k is understood, we drop the ‘/k’
from the notation. We sometimes regard HH as a sheaf of spectra, using Dold-
Kan, and use the notation HHq(X) = πqHH(X) for H−q

zar(X,HH). Recall from
[WG91, 4.6] that if X is noetherian, then HHq(X) = 0 for q < − dim(X).

If E is a complex of Zariski sheaves of O-modules on Sch /X, we may assume
that Hzar(−, E) is a complex of Zariski sheaves of O-modules, and similarly for
Hcdh(−, E). (See [Jar15, 8.6].) Thus it makes sense to form the sheaf tensor
product Hτ (−, E)⊗zar L with a Zariski sheaf L of OX -modules.
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If E is a Zariski sheaf of OX -modules on X, then there is a Zariski sheaf E′

of O-modules on Sch /X, unique up to unique isomorphism, such that for every
f : Y → X in Sch /X the restriction of E′ to the small Zariski site of Y is naturally
isomorphic to the sheaf f∗E. In this paper we will always work with this sheaf on
the big site, so for example “an invertible sheaf L on X” will indicate the sheaf on
the big site associated in this way to an invertible sheaf on X.

Lemma 1.2. If L is an invertible sheaf on X, ⊗zarL is an auto-equivalence of
the category Sh(Ch(Ozar))/X of sheaves of complexes of Ozar-modules on Sch /X
which preserves cofibrations, fibrations, and weak equivalences.

Proof. The functor ⊗zarL−1 is a quasi-inverse to ⊗zarL. Since L is flat, ⊗zarL
preserves injections. Since L is locally trivial on X (and hence on any X-scheme),
and A⊗zarOX

∼= A, ⊗zarL preserves weak equivalences. Now suppose that C → D
is a Zariski-local fibration; we want to see that C ⊗zar L → D ⊗zar L is a Zariski-
local fibration. By invertibility, it suffices to observe that if A → B is a trivial
cofibration of Ozar modules, then so is A ⊗zar L−1 → B ⊗zar L−1, a fact we have
just verified. �
Corollary 1.3. If L is an invertible sheaf on X and A is a complex of Zariski
sheaves of O-modules, then there is a quasi-isomorphism on Sch /X:

Hzar(−, A)⊗zar L �−→ Hzar(−, A⊗zar L).
Proof. This follows immediately from Lemma 1.2. �

We write (a∗, a∗) for the usual adjunction between Zariski and cdh sheaves as-
sociated to the change-of-topology morphism a : (Sch /k)cdh → (Sch /k)zar and its
restrictions a : (Sch /X)cdh → (Sch /X)zar. Thus if F is a sheaf of Ocdh-modules on
(Sch /X)cdh, a∗F is the underlying sheaf of Ozar-modules, and for any Zariski sheaf
E of OX -modules on X, we may form the Zariski sheaf a∗F ⊗OX

E on Sch /X.
Recall from [EGA, 0I(5.4.1)] that a Zariski sheaf E of OX -modules is locally free

if each point of X has an open neighborhood U such that E|U is a free OU -module,
possibly of infinite rank.

Lemma 1.4. If E is a locally free sheaf on X and F is a cdh sheaf of Ocdh-modules,
then a∗F ⊗OX

E is a cdh sheaf on (Sch /X).

Proof. Since the question is local on X, we may replace X by an open subscheme
to assume that E is free. Because the cdh-topology on Sch /X is noetherian, and
therefore arbitrary direct sums of sheaves are sheaves, we are reduced to the trivial
case E = OX when a∗F ⊗OX

E = a∗F . �
Definition 1.5. If F is a cdh sheaf of Ocdh-modules, we will write F ⊗zar E for
the cdh sheaf a∗F ⊗OX

E.

Note that H∗
zar(X,F ⊗zar E) �= H∗

zar(X,F) ⊗ E(X). For example, E(X) = 0
does not imply that (F ⊗zar E)(X) = 0.

Lemma 1.6. If E is locally free on X, then ⊗zarE preserves weak equivalences and
cofibrations for complexes of cdh sheaves of Ocdh-modules on Sch /X.

Proof. As in the proof of Lemma 1.4, we may replace X by an open subscheme and
assume that E is a sheaf of free modules. Since A⊗zar E is a sum of copies of A,
it follows that A �→ A⊗zar E preserves weak equivalences and cofibrations. �
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Definition 1.7. Given a cochain complex A of presheaves of abelian groups on
Sch and a scheme X, we write FA(X) for the homotopy fiber (the shifted mapping
cone) of the canonical map A(X) → Hcdh(X,A), so for each X there is a long exact
sequence

· · ·Hn−1
cdh (X,A) → HnFA(X) → HnA(X) → Hn

cdh(X,A) → Hn+1FA(X) · · · .
If A is a complex of sheaves (in some topology) of O-modules, then Hcdh(−, A) can
be represented by a complex of sheaves of O-modules as well (see [Jar15, 8.1]), and
hence so can FA. We also write FK(X) for the homotopy fiber of K(X) → KH(X).
(Recall that KH is equivalent to the cdh-fibrant replacement of K by [Hae04] or
[Cis13], so this notation is consistent.)

It is well known that HH, HC, and K-theory satisfy Zariski descent. It follows
that FHH , FHC , and FK also satisfy Zariski descent.

Proposition 1.8. If L is an invertible sheaf on X and A is a complex of Zariski
sheaves of O-modules on Sch /X, then

Hcdh(−, A)⊗zar L
�−→ Hcdh(−, A⊗zar L).

Consequently, FA ⊗zar L �−→ FA⊗L.

Proof. Arguing as in the proof of Lemma 1.2, Lemma 1.4 shows that ⊗zarL pre-
serves cdh-local fibrations (in addition to cofibrations and weak equivalences). The
first statement follows immediately from this. Because ⊗zarL is exact, the second
statement follows from the triangles

FA → A → Hcdh(−, A) → and FA⊗L → A⊗ L → Hcdh(−, A⊗ L) → . �
Lemma 1.9. Let Ai be cochain complexes of presheaves on Sch /X. Then for every
X-scheme Y , the canonical maps⊕

i
Hzar(Y,Ai) → Hzar(Y,

⊕
i
Ai)

and ⊕
i
Hcdh(Y,Ai) → Hcdh(Y,

⊕
i
Ai)

are quasi-isomorphisms.

Proof. These sites are noetherian, and thus cohomology in them commutes with
direct limits. �

2. Homology of line bundles

Suppose that R is a (commutative) noetherian algebra over a field k of character-
istic 0. In [CHWW10, 3.2, 4.1], we showed that NK(R) = K(R[t])/K(R) is weakly
equivalent to NFHC/Q(R)[1] as well as FHH/Q(R)[1] ⊗R tR[t]. In this section, we
replace R[t] by the symmetric algebra R[L] = SymR(L) of a rank 1 projective R-
module and the ideal tR[t] by LR[L]. More generally, if L is an invertible sheaf on
a scheme X, we replace X × A1 by the line bundle L = Spec(SymX L).

Lemma 2.1. Let L be a rank 1 projective R-module. Then the symmetric algebra
R[L] = SymR(L) satisfies:

HH(R[L]) � HH(R)⊗R R[L] ⊕ HH(R)[1]⊗R LR[L],

HC(R[L]) � HC(R) ⊕ HH(R)⊗R LR[L].
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Similarly, if X is a scheme over R and X[L] denotes X ×R Spec(R[L]), then

HH(X[L]) � HH(X)⊗R R[L] ⊕ HH(X)[1]⊗R LR[L]),

HC(X[L]) � HC(X) ⊕ HH(X)⊗R LR[L].

Note that, as an R-module, LR[L] = R[L]⊗R L is just
⊕∞

j=1 L
⊗j .

Proof. The cochain complex HH(R[L]) ends: → R[L]⊗R[L]
0→ R[L] → 0. There-

fore there are natural maps from R[L] and R[L] ⊗ L[1] to HH(R[L]). Using the
shuffle product, we get a natural map μ(R) from the direct sum of HH(R)⊗RR[L]
and HH(R) ⊗R (R[L] ⊗ L)[1] to HH(R[L]). For each prime ideal ℘ of R, we
have R℘[L] ∼= R℘[t] and μ(R℘) is a quasi-isomorphism by the Künneth formula
[Wei94, 9.4.1]. It follows that μ(R) is a quasi-isomorphism. The formula for
HC(R[L]) follows by induction on the SBI sequence using [Wei94, 9.9.1], just as it
does for HC(R[t]) (see [CHWW10, sec. 1]).

If X is a scheme over R, the same argument applies to π∗HH(OX [L]), the direct

image along X[L]
π→ X of the cochain complex HH(OX [L]) on X[L] of sheaves

with quasi-coherent cohomology described in Example 1.1. Because π is affine, we
have a quasi-isomorphism

Hzar(X[L], HH(OX [L])) ∼= Hzar(X, π∗HH(OX [L])).

Now the assertions about X[L] follow from Corollary 1.3 and Lemma 1.9. �

Corollary 2.2. FHC(R[L]) ∼= FHC(R) ⊕
⊕∞

j=1

(
FHH ⊗R L⊗j

)
(R).

Proof. Suppose that X is a scheme over R. Then

Hcdh(X[L], HH) ∼= Hcdh(X,HH(−[L]))

and similarly for HC. Indeed, when X is smooth as a scheme over k, this follows
from the analogous statement in the Zariski topology (observed in the proof of
Lemma 2.1) and the result, proved in [CHW08, Theorem 2.4], that Hochschild and
cyclic homology satisfy cdh descent on smooth schemes. The equivalence for general
X follows using resolution of singularities, induction on the dimension of X, and
the fact that X[L] → X is a smooth morphism.

The assertion of the corollary now follows from Lemma 2.1, Proposition 1.8, and
Lemma 1.9. �

Now suppose that X is a scheme of finite type over a field of characteristic 0,
containing k, and write HH, HC, etc., for HH/k, HC/k, etc.

Lemma 2.3. Let L be a line bundle over X, and write FHH for the cochain complex
of Zariski sheaves on X associated to the complex of presheaves U �→ FHH(L|U ).
Then FHH(L)

�→ Hzar(X,FHH).

Proof. As observed after Definition 1.7, the presheaf of complexes FHH satisfies
Zariski descent: FHH(L)�Hzar(L, FHH). By [Tho85, 1.56],

Hzar(L, FHH)
�→ Hzar(X,FHH).

�

In what follows, we write ⊗ for the tensor product of OX -modules.
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Proposition 2.4. Let L be the line bundle Spec(Sym L) on X associated to an
invertible sheaf L, and let p : L → X be the projection. Write K(L, X) for the
relative K-theory spectrum K(L)/K(X) and similarly for HC. Then we have quasi-
isomorphisms:

HC(L) � HC(X)⊕Hzar(X,HH ⊗ Sym(L)⊗ L),
Hcdh(X, p∗HC) � Hcdh(X,HC)⊕Hcdh(X,HH ⊗ Sym(L)⊗ L),

FHC(L) � FHC(X) ⊕
⊕∞

j=1

(
FHH ⊗ L⊗j

)
(X),

K(L, X) � FHC/Q(L, X)[1].

Proof. Using Zariski descent, we may assume that X = Spec(R) for some R. The
first two quasi-isomorphisms are immediate from Lemma 2.1, while the third is
immediate from Corollary 2.2. By Theorem 1.6 of [CHW08],

K(L)/K(X) ∼= FK(L)/FK(X) � FHC/Q(L)[1]/FHC/Q(X)[1].

This shows the final weak equivalence. �
Now suppose that R is a commutative Q-algebra. Then Kn(R[L], R) is a Q-

module [Wei87], and the Adams operations give an R-module decomposition

Kn(R[L], R) ∼=
∞⊕
i=0

K(i)
n (R[L], R)

with K
(0)
n (R[L], R) = 0 for all n. The relative terms FK(R) ∼= FHC(R)[1] have a

similar decomposition, and F
(i)
K (R[L], R) � F

(i−1)
HC (R[L], R)[1].

As in [CHWW10, 5.1], we define the typical piece TKn(R) to be H1−n(FHH(R))

and set TK
(i)
n (R) = H1−n(F

(i−1)
HH (R)). Since these groups were detemined in

[CHWW10], we may rephrase the last part of Proposition 2.4 as follows:

Corollary 2.5. If R is a commutative Q-algebra, Kn(R[L], R) ∼= TKn(R)⊗RLR[L]
and

K(i)
n (R[L]) ∼= K(i)

n (R)⊕ TK(i)
n (R)⊗R LR[L].

Moreover,

TK(i)
n (R) ∼=

{
HH

(i−1)
n−1 (R), if i < n,

Hi−n−1
cdh (R,Ωi−1), if i ≥ n+ 2.

(The formulas for TK
(n)
n and TK

(n+1)
n are more complicated; see [CHWW10].)

The following special case n=0 of Corollary 2.5, which is an analogue of [CHWW10,
(0.5)], shows that we cannot twist out the example in [CHW08, Thm. 0.2].

Corollary 2.6. Let L be a rank 1 projective R-module, where R is a d-dimensional
commutative Q-algebra, with seminormalization R+, and let R[L] be the twisted
polynomial ring. Then

K0(R[L], R) ∼=
(
(R+/R)⊕

d−1⊕
p=1

H
p
cdh(R,Ωp)

)
⊗R LR[L].

In particular, K0(R) = K0(R[t]) if and only if K0(R) = K0(R[L]).

Proof. This follows from the fact thatHcdh(X,HH(i)) ∼= Ra∗a
∗Ωi[−i], so that when

i > 1 we have K
(i)
0 (R[L], R) ∼= Hi−1

cdh (R,Ωi−1)⊗R LR[L]; see [CHW08, 2.2]. �
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Remark 2.7. Corollary 2.5 shows that K∗(R[L], R) is a graded R[L]-module. As
in [CHWW10], this reflects the fact that locally R[L] is a polynomial ring and
K∗(R[t], R) has a continuous module structure over the ring of big Witt vectors
W (R), compatible with the operations Vn and Fn. When Q ⊂ R, such modules are

graded R[t]-modules. Since H0(SpecR, W̃ ) = W (R), patching the structures via
Zariski descent proves that K∗(R[L], R) is a graded R[L]-module.

When X is no longer affine, this Zariski descent argument shows that

Kn(L, X) = ⊕H1−n(X,FHH ⊗zar L⊗i)

is a graded module over S = ⊕H0(X,L⊗i). This is clear from Proposition 2.4.
Previously, using [Wei87], it was only known that the Kn(L, X) are continuous

modules over H0(X, W̃ ) = W (k) =
∏∞

1 k.

3. Proof of Theorem 0.1

In order to use Proposition 2.4, we need to analyze Hn
zar

(
X,FHH/Q ⊗ Lj

)
. For

this, we use the hypercohomology spectral sequence (see [Wei94, 5.7.10])

(3.1) Ep,q
2 = Hp

zar(X,HqE) ⇒ Hp+q
zar (X,E).

Here E is a cochain complex which need not be bounded below, and (by abuse
of notation) the E2 term denotes cohomology with coefficients in the Zariski sheaf
associated to HqE. The spectral sequence converges if X is noetherian and finite
dimensional. When E = FHH ⊗Lj , we have HqE = Hq(FHH)⊗Lj , because Lj is
flat.

In this section, we write k for our (fixed) base field of characteristic zero. When
discussing Hochschild homology (or cyclic homology, or differentials, etc. ) relative
to Q, we will suppress the base from the notation. For example, if X is a k-scheme,
then HHn(X) and Ωn

X will mean HHn(X/Q) and Ωn
X/Q.

Lemma 3.2. If X is noetherian and finite dimensional, and E is a complex of
Zariski sheaves such that Hp

zar(X,HqE) = 0 for 1 ≤ p ≤ dim(X) and p+q = s, s+1,
then Hs

zar(X,E) ∼= H0
zar(X,HsE).

Proof. This is immediate from the hypercohomology spectral sequence (3.1). �

In the remainder of this section, we will write Hp(X,−) for Hp
zar(X,−). By a

“quasi-coherent” (or “coherent”) sheaf on Sch /k we mean a Zariski sheaf whose
restriction to every small Zariski site is quasi-coherent (or coherent).

Recall that when Q ⊆ k, the Hochschild homology complex relative to k decom-
poses into a direct sum of weight pieces HH(j)(−/k); this induces decompositions
on Hcdh(−, HH(/k)), the fiber FHH(/k), and on their cohomology sheaves and
hypercohomology groups as well. As in [CHW08], we use versions of a spectral
sequence introduced by Kassel and Sletsjøe in [KS92] to obtain information about
FHH(/k) from information about FHH .

Lemma 3.3 (Kassel-Sletsjøe). Let Q ⊆ k and p ≥ 1 be fixed, and let X be a scheme
over k. Then there are bounded cohomological spectral sequences of quasi-coherent
sheaves on Sch /k (p > s ≥ 0):

Es,t
1 = Ωs

k ⊗k H2s+t−pHH(p−s)(−/k) ⇒ Hs+t−pHH(p)(−/Q)
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(for s+ t ≤ 0) and

Es,t
1 = Ωs

k ⊗k Hs+t(Ra∗Ω
(p−s)
(−/k),cdh) ⇒ Hs+t(Ra∗Ω

p
cdh)

and a morphism of spectral sequences between them. If k has finite transcendence
degree, then both spectral sequences are spectral sequences of coherent sheaves.

We remark that the second spectral sequence is just the Zariski sheafification of
the spectral sequence in [CHW08, 4.2].

Proof. If X = Spec(R), the homological spectral sequence in [KS92, 4.3a] is

pE
1
−i,i+j = Ωi

k ⊗k HH
(p−i)
p−i+j(R/k) ⇒ HH

(p)
p+j(R)

(0 ≤ i < p, j ≥ 0); see [CHW08, 4.1].
We claim that this is a spectral sequence of R-modules, compatible with lo-

calization of R. Indeed, following the construction in [KS92, Thm. 3.2], the exact
couple underlying the spectral sequence is constructed by choosing Q-cofibrant sim-
plicial resolutions P• → k and Q• → R and then filtering the differential modules
Ωp

Q•/Q
by certain Q•-submodules, leading to a filtration of Ωp

Q•/Q
⊗Q• R by R-

modules. (Although the filtration steps are defined as certain P•-submodules in
[KS92, sec. 3], they are in fact Q•-submodules.) The identification of the associ-
ated graded via [KS92, Lem. 3.1] is easily checked to be a R-module isomorphism.
The whole construction commutes with localization because forming differential
modules does. Thus (using a functorial choice of Q-cofibrant simplicial resolutions)
we may sheafify this construction for the Zariski topology, resulting in a filtered
cochain complex of sheaves of OX -modules on X with quasi-coherent cohomology
sheaves. Setting � = i+ j, the spectral sequence in the affine case is

pE
1
−i,� = Ωi

k ⊗k HH
(p−i)
p+�−2i(R/k) ⇒ HH

(p)
p+�−i(R), � ≥ i.

As sheafification is exact, we can identify the spectral sequence associated to the
filtered cochain complex of sheaves constructed above by sheafifying this spectral
sequence. Reindexing cohomologically, with s = i and t = −�, we have

pEs,t
1 = Ωs

k ⊗k H
2s+t−p(HH(p−s))(−/k) ⇒ Hs+t−p(HH(p)).

This yields the first spectral sequence. To obtain the second, we apply the func-
tor Ra∗a

∗ to the filtered cochain complex of sheaves used to produce the first
one. The result is a tower of cochain complexes of sheaves, and it follows from
[CHW08, Lem. 2.8] that these cochain complexes have quasi-coherent cohomology
sheaves. That the spectral sequence associated to this tower of cochain complexes
has the indicated form follows from the quasi-isomorphisms a∗HH(p) ∼= Ωp

cdh[p].
The morphism between the spectral sequences is induced by the unit of the adjunc-
tion (a∗, Ra∗).

Finally, if k has finite transcendence degree, then the E1-terms of both spectral
sequences are coherent (apply [CHW08, Lem. 2.8] again for the second one) and
hence so are the abutments. �

Corollary 3.4. There is a bounded spectral sequence of quasi-coherent sheaves

Es,t
1 = Ωs

k ⊗k H2s+t−p(F
(p−s)
HH/k) ⇒ Hs+t−p(F

(p)
HH).

If k has finite transcendence degree, this is a spectral sequence of coherent sheaves.
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Proof. The morphism of spectral sequences in Lemma 3.3 comes from a morphism

HH(p) → HH
(p)
cdh of filtered complexes of quasi-coherent sheaves on Sch /k. By a

lemma of Eilenberg–Moore [Wei94, Ex. 5.4.4], there is a filtration on the [shifted]

mapping cone F
(p)
HH of HH(p) → HH

(p)
cdh, yielding a spectral sequence converging

to H∗(FHH). This is the displayed spectral sequence. �
Proposition 3.5. Assume that k has finite transcendence degree. If L is an ample
line bundle on X, then for every n and p ≥ 0 there is an N0 = N0(n, p) such that

for all N > N0 the Zariski sheaf HnF
(p)
HH ⊗L⊗N is generated by its global sections,

and Hq(X,HnF
(p)
HH ⊗ L⊗N ) = 0 for all q > 0.

Proof. The complex F
(0)
HH is quasi-isomorphic to the cone of the map from the

structure sheaf O to Ra∗a
∗O and thus has coherent cohomology by [CHSW08,

Lem. 6.5]. If p > 0, then by Corollary 3.4 the cohomology sheaves in question are
coherent as well. Now apply Serre’s Theorem B. �

Let L be an ample sheaf on X and let L be the line bundle Spec(Sym L). Recall
that for any Y , FHC(Y ) is n-connected if and only if FHH(Y ) is n-connected; see
[CHW08, 1.7]. If L is a line bundle over X, we define FHH/k(L, X) to be the
cokernel of the canonical split injection FHH/k(X) → FHH/k(L), and similarly for
cyclic homology.

Theorem 3.6. If FHC(L, X) is n-connected for some ample line bundle L on X,
then FHH(L, X) is n-connected and:

(1) The Zariski sheaf FHH is n-connected on X.
(2) X is regular in codimension ≤ n.
(3) If FHC(L, X) is d-connected for d = dim(X), then X is regular.

Proof. There is a finitely generated subfield k0 of k, a k0-scheme X0, and an ample
line bundle L0 such that X = X0 ⊗k0

k and L = L0 ⊗k0
k. The Künneth formula

for Hochschild homology implies (see [CHWW10, Thm. 6.4]) that FHH(L, X) =
FHH(L0, X0)⊗Ω∗

k/k0
, whence FHH(L, X) is n-connected if and only if FHH(L0, X0)

is. Thus we may assume that k has finite transcendence degree.

(1) Recall [CHW08, 2.1] that FHH(L, X) =
∏

F
(p)
HH(L, X). Thus it suffices to fix

p and show that F
(p)
HH is n-connected. Set GN = LN ⊗F

(p)
HH , and note that HqGN =

LN ⊗ HqF
(p)
HH . By Proposition 3.5 and Lemma 3.2, Hs(X,GN) ∼= H0(X,HsGN )

for s ≥ −n and N large enough (how large may depend on s).
By assumption and Zariski descent on X, the groups

πsF
(p)
HH(L, X) = H−s

zar(X,F
(p)
HH(L|−,−)) = H−s

zar(X,F
(p)
HH(L|−)/F

(p)
HH)

vanish for s ≤ n. By Lemma 2.4, this implies that for all N > 0:

H0(X,H−sGN ) ∼= H−s(X,GN) = H−s(X,LN ⊗ F
(p)
HH) = 0, s ≤ n.

Since L is ample, the sheaves HsGN = LN ⊗HsF
(p)
HH are generated by their global

sections H0(X,HsGN ) for large N and s ≥ −n. This implies that the sheaves

LN ⊗HsF
(p)
HH vanish and hence that the sheaves HsF

(p)
HH vanish for s ≥ −n. This

proves (1).
Given (1), the stalks FHH(OX,x) are n-connected. We proved in [CHW08, 4.8]

that this implies that each FHH/k(OX,x) is n-connected. If dim(OX,x) ≥ n, we
proved in [CHW08, 3.1] that OX,x is smooth over k and hence regular. �
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Variant 3.7. Let X, L, and L be as in Proposition 3.6. Suppose that FHC/k(L, X)
is n-connected. Then the proof of Theorem 3.6 goes through to show that:

(1) The sheaf FHH/k is n-connected.
(2) X is regular in codimension ≤ n.
(3) If FHH/k(L, X) is d-connected for d = dim(X), then X is regular.

Proof of Theorem 0.1. Suppose that Ki(L) ∼= Ki(X) for all i ≤ n. By Proposition
2.4, FHC/Q(L, X) is (n− 1)-connected. By Theorem 3.6, FHH/Q(L, X) is (n− 1)-
connected and X is regular in codimension < n. �

4. Two examples

We conclude with two quick examples. Let E be an elliptic curve over Q with
basepoint Q, and let P be a point such that P − Q does not have finite order in
Pic(E).

Example 4.1. Consider the non-reduced scheme Y = Spec(OE ⊕ J), where J is
the invertible sheaf O(P − Q). We showed in [CHW08, 0.2] that Y is Kn-regular
for all n, because Kn(Y × A1) ∼= Kn(Y ) ∼= Kn(E) for all n.

Let L be the sheaf O(Q) and set L = SpecY (SymL). Then
K1(L) ∼= K1(Y )⊕Q[x, y].

Indeed,

K1(L)/K1(Y ) ∼= H0(L,O∗)/H0(Y,O∗) ∼=
⊕
n≥1

H0(E, J ⊗ Ln) ∼= Q[x, y],

since dimH0(E, J ⊗ Ln) = n by Riemann–Roch.

For our second example, recall that if R is a regular Q-algebra and J is a rank 1
projective R-module and A is the subring R[J2, J3] of R[J ] = SymR(J), then
Spec(A) is an affine cusp bundle over Spec(R). Set V0 = V1 = 0, and for n ≥ 2, set

Vn(R) =

{
J6(i−1) ⊕ (J6(i−2) ⊗ Ω2

R)⊕ · · · ⊕ (R⊗ Ωn−2
R ), n = 2i ≥ 2;

J6(i−1) ⊗ Ω1
R ⊕ (J6(i−2) ⊗ Ω3

R)⊕ · · · ⊕ (R⊗ Ωn−2
R ), n = 2i+ 1 ≥ 3.

In particular, V2(R) = R and V3(R) = Ω1
R. Let us write K̃n(A) for Kn(A)/Kn(R).

Proposition 4.2. If A = R[J2, J3] and R is a regular Q-algebra, then

K̃n(A) ∼= (J5 ⊕ J6)⊗ Vn(R)⊕ (J ⊗ Ωn
R).

In particular, K̃0(A) ∼= J , K̃1(A) ∼= J ⊗ Ω1
R, and

K̃2(A) ∼= (J5 ⊕ J6)⊕ (J ⊗ Ω2
R).

Proof. For J = R, this is Theorem 9.2 of [GRW89], which holds for any regular
Q-algebra R (not just for any field). In order to pass to R[J2, J3], we need more
detail. Using the classical Mayer-Vietoris sequence for A ⊂ R[J ], it is easy to see
that K0(A)/K0(R) ∼= J and K1(A)/K1(R) ∼= J ⊗ Ω1

R.
For n ≥ 2 the factors in Kn(A) come from HHn−1(A) via the maps HH∗(A) →

HC∗(A) and K̃n(A) → H̃Cn−1(A). The summand J⊗Ωn
R ofKn(A) comes from the

J ⊗ Ω1
R in K1(A) (or HH0(A,R[J ], J)) by multiplication by HHn−1(R) ∼= Ωn−1

R .
The Vn factors come from the explicit description of the corresponding cyclic ho-

mology cycles (coming from cycles in Hochschild homology HHn−1(A)) in Lemma
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4.3, Remark 4.7, and Example 5.8 of [GRW89]. Locally, J is generated by an ele-
ment t; we set x = t2 ∈ J2, y = t3 ∈ J3 so that y2 = x3. The summands J5 and J6

ofK2(A) are locally generated by the cycles z = 2x[y]+3y[x] and tz = 2y[y]+3x2[x]
inHH1(A). Multiplication by Ωn−2

R gives the summands (J5⊕J6)⊗Ωn−2
R inKn(A).

Now consider the summand J6 in the degree 2 part A⊗3 of the Hochschild
complex for A, locally generated by the element w = [y|y] − x[x|x] − [x2|x]. The
product zwi−1 is a cycle in HH2i−1(A) and locally generates a summand J5+6(i−1)

of HH2i−1(A), corresponding to the factor J5+6(i−1) of the summand J5 ⊗ V2i(R)
of K2i(A). As above, multiplication by Ω∗

R gives the rest of the summands. �

Remark 4.2.1. In the spirit of Corollary 2.5, we note that NKn(A) ∼= TKn(A)⊗R

LR[L], where

TKn(A) = K̃n(A)⊕ K̃n(A).

Theorem 4.3. Let J be the invertible sheaf O(P−Q) on the ellipic curve E and let
X denote the affine cusp bundle SpecE(OE [J

2, J3]) over E. (X has a codimension 1
singular locus.) If J does not have finite order in Pic(E), then X is Kn-regular for
all integers n: for all m ≥ 0 we have

Kn(X) ∼= Kn(X × Am) ∼= Kn(E).

On the other hand, if L = SymE(O(Q)) ×E X, then K−1(L) = K−1(X), but
K0(L) �= K0(X).

Proof. Since ΩE
∼= OE , Vn(OE) is a sum of terms J i for i > 0; the same is true for

the pushforward of the sheaf Vn(OE [t1, . . . , tm]) to E. Recall that Hp(E, Jr) = 0
for all r �= 0, because J does not have finite order in the Picard group. From the
Zariski descent spectral sequence

Ep,q
2 =Hp(E,K−q(OE [J

2, J3][t1, . . . , tm])/K−q(OE)) ⇒ K−p−q(X×Am)/K−p−q(E)

we see that Kn(X × Am) ∼= Kn(E) for all n.

On the other hand, Proposition 4.2 yields K̃−1(L) ∼=
⊕

j≥1H
1(E, J⊗Lj), where

L = O(Q) and

K̃0(L) ∼=
⊕
j≥1

H0(E, J ⊗ Lj)⊕ K̃−1(L).

The first group is zero; the second is non-zero because L is ample. �
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[CHWW11] G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, A negative answer to a

question of Bass, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1187–1200. MR2748413
[DB81] Philippe Du Bois, Complexe de de Rham filtré d’une variété singulière (French),
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10, 321–333. MR1317123

[Tho85] R. W. Thomason, Algebraic K-theory and étale cohomology, Ann. Sci. École Norm.
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