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STRONG COMPARISON PRINCIPLE FOR p-HARMONIC

FUNCTIONS IN CARNOT-CARATHEODORY SPACES

LUCA CAPOGNA AND XIAODAN ZHOU

(Communicated by Jeremy Tyson)

Abstract. We extend Bony’s propagation of support argument to C1 solu-
tions of the nonhomogeneous subelliptic p-Laplacian associated to a system of

smooth vector fields satisfying Hörmander’s finite rank condition. As a conse-
quence we prove a strong maximum principle and strong comparison principle
that generalize results of Tolksdorf.

1. Introduction

Let Ω ⊂ R
n be an open and connected set, and consider a family of smooth

vector fields X1, · · · , Xm in R
n satisfying Hörmander’s finite rank condition [6],

(1.1) rank Lie[X1, · · · , Xm](x) = n,

for all x ∈ Ω. We set Xu = (X1u, · · · , Xmu) for any function u : Ω → R for which
the expression is meaningful.

In this paper we will prove a strong comparison principle for solutions of the
class of quasilinear, degenerate elliptic equations

(1.2) Lpu =
m∑
j=1

X∗
j (Aj(Xu)) = f(x, u)

satisfying the structure conditions (3.1) and which includes the p-Laplacian, in the
range p > 1, associated to X1, · · · , Xm and to the Lebesgue measure dx in R

n.
Note that in (1.2) we have let1 X∗

j denote the L2 adjoint of the operator Xj with

respect to the Lebesgue measure; namely, if Xj =
∑m

i=1 a
j
i (x)∂xi

is a smooth vector
field and u is a smooth function, then the adjoint operator X∗

j is given by

X∗
j u =

m∑
i=1

∂xi
(ajiu) = −Xju−

m∑
i=1

∂xi
(aji )u.

Set dj(x) = −
∑m

i=1 ∂xi
(aji (x)) and d(x) = (d1(x), · · · , dm(x)). Note that dj is a

smooth function.
We explicitly note that all the results in this paper continue to hold if one

substitutes the Lebesgue measure dx with any other measure dμ = λ(x)dx with
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λ ∈ C1 density function. In particular the results apply in any sub-Riemannian
manifold for solutions of the subelliptic p-Laplacian associated to a smooth volume
form.

In addition to the structure conditions (3.1), our strong comparison principle
holds under the following hypothesis:

(1.3)
(i) ∂uf ≤ 0 in Ω,

(ii) |f(x, u2 + ε)− f(x, u2)| ≤ Lε, for any ε ∈ [0, ε0], x ∈ Ω

for some positive constants L, ε0. Our main result is the following.

Theorem 1 (Strong comparison principle). Let Ω ⊂ R
n be a connected open set

and consider two weak solutions u1 ∈ C1(Ω̄) and u2 ∈ C2(Ω̄) of (1.2) in Ω, with
|Xu2| ≥ δ in Ω for some δ > 0. We assume that the structure conditions (3.1) and
the hypothesis (1.3) are satisfied. If

u1 ≥ u2 in Ω,

then either u1 = u2 or
u1 > u2 in Ω.

As will be evident from the proof, the regularity assumptions and the lower bound
on |Xu2| are required only in a neighborhood of the contact set. The lower bound
is not required in the nondegenerate case κ > 0. Note that, as in the Euclidean
setting, one cannot relax the conditions on u1, u2, and f unless more hypotheses
are added.

We also prove a nonhomogenous strong maximum/minimum principle. We sup-
pose that f satisfies the following conditions: for all x ∈ Ω and u ∈ R,

(1.4)
(i) ∂uf ≤ 0,

(ii) |f(x, u)| ≤ C̄(κ+ |u|)p−2|u|
for some positive constant C̄ and κ as in the structure conditions (3.1).

Theorem 2 (Strong minimum principle). Let Ω ⊂ R
n be a connected open set and

consider a weak solution u ∈ C1(Ω̄) of (1.2) in Ω. We assume that the structure
conditions (3.1) and the hypothesis (1.4) hold. If

u ≥ 0 in Ω,

then either u = 0 or
u > 0 in Ω.

The proof of these results is at the end of Section 3. Theorems 1 and 2 extend
to the subelliptic setting the strong maximum and comparison principles proved by
Tolksdorff in [7, Propositions 3.2.2 and 3.3.2].

In the subelliptic setting Theorem 1 seems to be new even in the homogeneous
case f = 0. In terms of previous literature on this subject: we recall that the case
p = 2 was established through geometric methods by Bony in his landmark paper
[2]. A proof of the strong maximum principle for the subelliptic p-Laplacian in
H-type groups can be found in [8]. We note however that at the conclusion of that
proof the authors claim that one can always fit a gauge ball tangentially at every
point of the set where the solution attains the maximum. This statement is not
proved in [8], and since gauge balls have zero curvature at the poles, we do not see
how the statement can be proved.
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A strong comparison and maximum principle for smooth solutions of the subel-
liptic p-Laplacian and of the horizontal mean curvature operator has been recently
proved by Cheng, Chiu, Hwang, and Yang in their preprint [4]. Their proof is based
on a linearization approach which is different from our arguments; however it also
ultimately relies on Bony’s argument and holds in every sub-Riemannian manifold.
In comparison to the present paper, on the one hand our results hold for solutions
which do not have to be smooth necessarily,1 but for the comparison principle we
require one of the two solutions to have nonvanishing horizontal gradient. On the
other hand, while we only deal with the p-Laplacian, in [4] the authors also estab-
lish far-reaching results for the mean curvature operator, including some special
cases where |Xv2| is allowed to vanish in a controlled fashion and still conclude a
comparison principle.

The technical core of the proofs in the present paper is in Lemma 7 and consists
of an adaptation of Bony’s argument to our nonlinear setting. In his proof of the
strong maximum principle [2], Bony introduced generalizations of certain standard
results in differential calculus to a nonsmooth setting, namely, a notion of tangent
vector that is appropriate for any closed set, not just for C1 smooth sets. He then
established that the integral lines of smooth tangent vector fields remain within the
set, and so do all the integral lines of their brackets. The key step in his proof is the
observation that all horizontal vector fields (out of which the operator is built) are
tangent to the set where the maximum of a solution is achieved. This immediately
implies that this set is either empty or the whole domain.

In closing we note that both in the elliptic and in the subelliptic case, a cor-
responding strong maximum principle for the homogenous problem f = 0 can be
established immediately from the Harnack inequality (see for instance [1], [5], [3]),
as well as with small modifications of the argument presented here. However, while
in the linear setting one can deduce the strong comparison principle from the strong
maximum principle, this is no longer the case in the nonlinear setting, where a new
approach is needed.

2. Bony’s propagation of support technique

Tolksdorf’s argument in [7, 3.3.2] breaks down in the subelliptic setting, due to
the fact that the horizontal gradient of the barrier functions typically used in this
proof may vanish. The same problem occurs also in the linear setting, for p = 2.
To deal with this issue we follow the outline of the proof of the strong maximum
principle for sub-Laplacians, from Bony’s paper [2], and adapt it to our nonlinear
and nonhomogeneous setting.

We begin by recalling from [2, Definition 2.1] the definition of a nonzero vector
v orthogonal to a set F ⊂ R

n at a point y ∈ ∂F .

Definition 1. Let F be a relatively closed subset of Ω. We say that a vector
v ∈ R

n \ {0} is (exterior) normal to F at a point y ∈ Ω ∩ ∂F if

B(y + v, |v|) ⊂ (Ω \ F ) ∪ {y},

1We recall that in general p-harmonic functions do not enjoy more regularity than the Hölder
continuity of their gradient.
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where B(y+v, |v|) denotes the Euclidean ball centered in u+v, with radius equal
to the Euclidean norm of v. If this inclusion holds, we write v ⊥ F at y. Set

F ∗ = {y ∈ Ω ∩ ∂F : there exists v such that v ⊥ F at y}.

Note that when Ω is connected and ∅ �= F �= Ω, we have F ∗ �= ∅.
We list in the following some of the results and definitions from [2] that play a

role in our proof.

Definition 2. Let X be a vector field in Ω and let F ⊂ Ω be a closed set. We say
that X is tangent to F if, for all x0 ∈ F ∗ and all vectors v normal to F at x0, one
has that their Euclidean product vanishes; i.e., 〈X(x0), v〉 = 0.

The following results are from [2, Theoremes 2.1 and 2.2]:

Theorem 3. Let Ω ⊂ R
n be an open set and let F ⊂ Ω be a closed subset. Let X

be a Lipschitz vector field in Ω. If X is tangent to F , then all its integral curves
that intersect F are entirely contained in F .

Note that the converse of this result is also true and follows from a direct com-
putation.

Theorem 4. Let Ω ⊂ R
n be an open set and let F ⊂ Ω be a closed subset. Let

X1, · · · , Xm be smooth vector fields in Ω. If X1, · · · , Xm are tangent to F , then so
is the Lie algebra they generate.

As a corollary, if X1, · · · , Xm satisfy Hörmander finite rank condition (1.1) and
are all tangent to F , then every curve that touches F is entirely contained in F , so
that either F is the empty set or F = Ω.

3. A Hopf-type comparison principle and proof of Theorem 1

First we state precisely the structure conditions imposed on the left hand side of
(1.2). The functions Aj satisfy the following ellipticity and growth condition: For
p > 1, for a.e. ξ ∈ R

m and for every η ∈ R
m,

(3.1)

m∑
i,j=1

∂Aj

∂ξi
(ξ)ηiηj ≥ β(κ+ |ξ|)p−2|η|2,

m∑
i,j=1

|∂Aj

∂ξi
(ξ)| ≤ γ(κ+ |ξ|)p−2

for some positive constants β, γ, and for κ ≥ 0.
One can easily deduce that there exist positive constants λ,C such that for all

ξ ∈ R
m,

(3.2) 〈Aj(ξ)−Aj(ξ
′), ξ − ξ′〉 ≥ λ

{
(1 + |ξ|+ |ξ′|)p−2|ξ − ξ′|2 if p ≤ 2,

|ξ − ξ′|p if p ≥ 2,

and

(3.3) |Aj(ξ)| ≤ C(κ+ |ξ|)p−2|ξ|.
The subelliptic p-Laplacian

Lpu =
m∑
j=1

X∗
j (|Xu|p−2Xju)
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corresponds to the choice Aj(ξ) = |ξ|p−2ξj for j = 1, · · · ,m.
We will need the following immediate consequence of the monotonicity inequality

(3.2).

Lemma 5 (Weak comparison principle). Let Ω ⊂ R
n be an open and connected set

and let v1, v2 ∈ C1(Ω) satisfy in a weak sense

(3.4)

{
Lpv2 ≤ f(x, v2) in Ω,

Lpv1 ≥ f(x, v1) in Ω,

with Aj satisfying the structure conditions (3.1) and ∂uf(x, u) ≤ 0. If v2 ≤ v1 in
∂Ω, then v2 ≤ v1 in Ω.

Proof. Given an arbitrary ε > 0, we define Eε = {x ∈ Ω|v2(x) > v1(x)+ε}. Assume
that Eε �= ∅; then Eε ⊂ Ω. For all ϕ ∈ C1

c (Ω), we have∫
Ω

〈Aj(Xv2), Xϕ〉 ≤
∫
Ω

f(x, v2)ϕ,∫
Ω

〈Aj(Xv1), Xϕ〉 ≥
∫
Ω

f(x, v1)ϕ.

Subtracting the above two inequalities and setting ϕ(x) = max{v2(x)−v1(x)−ε, 0},
as a consequence of (i) in (1.3) one has∫
Eε

〈Aj(Xv2)−Aj(Xv1), X(v2−v1)〉 ≤
∫
{v2>v1+ε}

(f(x, v2)−f(x, v1))(v2−v1−ε) ≤ 0.

By (3.2), this inequality holds if and only if X(v2 − v1) = 0. Thus, v2 = v1 + C in
Eε. The fact that v2 = v1+ ε on ∂Eε implies that C = ε. It follows that v2 ≤ v1+ ε
in Ω. Letting ε → 0, we get v2 ≤ v1 in Ω. �

Next, we prove an analogue of the classical Hopf comparison principle: Given
a subsolution v2 and a supersolution v1 such that v2 ≤ v1, every vector field
X1, · · · , Xm must be tangent to the contact set F = {v2 = v1}.

Lemma 6 (A Hopf-type comparison principle). Let Ω ⊂ R
n be an open and con-

nected set and let v1 ∈ C1(Ω), v2 ∈ C2(Ω) with |Xv2| ≥ δ in Ω satisfy

(3.5)

⎧⎪⎨
⎪⎩
v2 ≤ v1 in Ω,

Lpv2 ≤ f(x, v2) in Ω.

Lpv1 ≥ f(x, v1) in Ω.

Set F = {x ∈ Ω : v2(x) = v1(x)}. If the structure conditions (3.1) and hypothesis
(1.3) are satisfied and ∅ �= F �= Ω, then for every y ∈ F ∗ and v ⊥ F at y, it follows
that

〈Xi(y),v〉 = 0

for all i = 1, · · · ,m.

Proof. We argue by contradiction and suppose that there exist y ∈ F ∗, a vector
v ⊥ F at y, and i ∈ {1, · · · ,m} such that 〈Xi(y),v〉 �= 0. Let z = y+v and r = |v|.
We define

σi(x) := 〈Xi(x), x− z〉
and a vector field σ(x) = (σ1(x), · · · , σm(x)). Note that this is a smooth vector
field on Ω and σi(y) �= 0.
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We denote by |x−z| the Euclidean distance between the points x, z and proceed

to define b̃(x) = e−α|x−z|2 and

b(x) = α−2(b̃(x)− e−αr2)

in Ω where the value of the positive constant α is to be determined later. Choose
a neighborhood V of y such that 0 < |σ(x)| for x ∈ V ⊂ Ω and denote by
M1,M2,M3,M4 positive constants depending on v2 and F , such that for every
x ∈ V one has |Xjσi(x)| ≤ M1, |XjXi(b + v2)(x)| ≤ M2, and M4 ≤ |σ(x)| ≤ M3

for i, j = 1, · · · ,m.
By a direct calculation, one can deduce that

Xib(x) = −2α−1b̃(x)σi(x),

|Xb(x)| = 2α−1b̃(x)|σ(x)| = 2α−1b̃(x)
( m∑

i=1

σi(x)
2
)1/2

,

XjXib(x) = b̃(x)(4σjσi − 2α−1Xjσi(x)).

Substituting the identities above in the expression for Lpb yields

Lpb(x) = −
m∑
j=1

m∑
i=1

∂Aj

∂ξi
(Xb)XjXib+

m∑
j=1

djAj(Xb)

= −b̃(x)
m∑

i,j=1

(
4
∂Aj

∂ξi
(Xb)σjσi − 2α−1 ∂Aj

∂ξi
(Xb)Xjσi

)
+

m∑
j=1

djAj(Xb).

Applying the structure conditions (3.1) and (3.3) of Aj , it follows that for every

x ∈ V ,

Lpb(x) = −b̃(x)

m∑
i,j=1

(
4
∂Aj

∂ξi
(Xb)σjσi − 2α−1 ∂Aj

∂ξi
(Xb)Xjσi

)
+

m∑
j=1

djAj(Xb)

≤ −b̃(x)
(
4β(κ+ |Xb|)p−2|σ|2 − 2α−1M1γ(κ+ |Xb|)p−2

)

+

m∑
j=1

|dj |C(κ+ |Xb|)p−2|Xb|

= −b̃(x)(κ+ |Xb|)p−2
(
4β|σ|2 − 2α−1M1γ − Cα−1|σ(x)|

)
.

Similarly,

m∑
i,j=1

∂Aj

∂ξi
(Xv2)XjXib ≥ b̃(x)(κ+ |Xv2|)p−2

(
4β|σ|2 − 2α−1M1γ

)
≥ b̃(x)(κ+ |Xv2|)p−2

(
4βM2

4 − 2α−1M1γ
)
.

In view of the nonvanishing hypothesis on |Xv2|, there exist α1 and a positive
constant ε1 such that for α ≥ α1 and x ∈ V ,

|Xb(x)| ≤ 1

2
|Xv2(x)|,

Lpb(x) ≤ 0,



STRONG COMPARISON PRINCIPLE 4271

and

(3.6)
m∑

i,j=1

∂Aj

∂ξi
(Xv2)XjXib(x) ≥ ε1b̃(x).

Since Aj(ξ) is smooth in R
n \ {0}, there exist positive constants C, ε2 such that

(3.7)

m∑
i,j=1

|∂Aj

∂ξi
(X(b+ v2))−

∂Aj

∂ξi
(Xv2)| ≤ C|Xb| ≤ ε2α

−1b̃(x)

for x ∈ V . Thus,

Lp(b+ v2) = −
m∑

i,j=1

∂Aj

∂ξi
(X(b+ v2))XjXi(b+ v2) +

m∑
j=1

djAj(Xb+Xv2)

= −
m∑

i,j=1

(∂Aj

∂ξi
(X(b+ v2))−

∂Aj

∂ξi
(Xv2) +

∂Aj

∂ξi
(Xv2)

)
XjXi(b+ v2)

+

m∑
j=1

djAj(Xb+Xv2)

= −
m∑

i,j=1

(∂Aj

∂ξi
(X(b+ v2))−

∂Aj

∂ξi
(Xv2)

)
XjXi(b+ v2)

−
m∑

i,j=1

∂Aj

∂ξi
(Xv2)XjXib−

m∑
i,j=1

∂Aj

∂ξi
(Xv2)XjXiv2 +

m∑
j=1

djAj(Xb+Xv2)

≤ M2ε2α
−1b̃(x)−ε1b̃(x) + Lpv2 −

m∑
j=1

djAj(Xv2) +

m∑
j=1

djAj(Xb+Xv2)

≤ (−ε1 +M2ε2α
−1)b̃(x) + f(x, v2) +

m∑
j=1

|dj ||Aj(Xb+Xv2)−Aj(Xv2)|

≤ (−ε1 +M2ε2α
−1 + Cα−1|σ(x)|)b̃(x) + f(x, v2)

≤ (−ε1 +M2ε2α
−1 + Cα−1|σ(x)|)b̃(x) + |f(x, b+ v2)− f(x, v2)|

+ f(x, b+ v2)

≤ (−ε1 +M2ε2α
−1 + Cα−1|σ(x)|)b̃(x) + L|b|+ f(x, b+ v2),

where the last inequality follows from (ii) in (1.3). We can now choose α ≥ α1 such
that Lp(b+ v2) ≤ f(x, b+ v2) on V .

Next, we let U = V ∩ B(z, r) and express its boundary as the union of two
components

∂U = Γ1 ∪ Γ2,

where Γ1 = B(z, r) ∩ ∂V and Γ2 = V ∩ ∂B(z, r).
For x ∈ Γ1 ⊂ Ω \ F , we have v2(x) < v1(x). Choose α sufficiently large so that

v2(x)+ b(x) ≤ v1(x) on Γ1 and Lp(v2 + b) ≤ f(x, b+ v2) on U . On the other hand,
since b(x) = 0 when x ∈ Γ2, the estimate v2(x) + b(x) ≤ v1(x) also holds on Γ2.
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Thus one eventually obtains

(3.8)

⎧⎪⎨
⎪⎩
v2 + b ≤ v1 in ∂U,

Lp(v2 + b) ≤ f(x, b+ v2) in U,

Lpv1 ≥ f(x, v1) in U.

The weak comparison principle in Lemma 5 implies that v2 + b ≤ v1 in U . Since y
is a maximum point of v2 − v1 in Ω, necessarily its gradient at y must vanish; i.e.,
∇(v2 − v1)(y) = 0. Finally we invoke the C1 regularity of v1 near the contact set
and we observe that

0 = 〈v,∇(v2 − v1)(y)〉 = lim
t→0+

v2(y + tv)− v1(y + tv)− (v2(y)− v1(y))

t

≤ −〈v,∇b(y)〉

= −2α−1r2e−αr2 < 0.

Since we have arrived at a contradiction the proof is complete. �

By a similar argument, a Hopf-type maximum/minimum principle can be estab-
lished.

Lemma 7 (A Hopf-type minimum principle). Let Ω ⊂ R
n be an open and connected

set and let v ∈ C2(Ω) satisfy

(3.9)

{
v ≥ 0 in Ω,

Lpv ≥ f(x, v) in Ω.

Set F = {x ∈ Ω : v(x) = 0}. If the structure conditions (3.1) and hypothesis (1.4)
are satisfied and ∅ �= F �= Ω, then for every y ∈ F ∗ and v ⊥ F at y, it follows that

〈Xi(y),v〉 = 0

for all i = 1, · · · ,m.

Proof. We argue by contradiction and suppose that there exist y ∈ F ∗, a vector
v ⊥ F at y, and i ∈ {1, · · · ,m} such that 〈Xi(y),v〉 �= 0. Let z = y+v and r = |v|.
We define

σi(x) := 〈Xi(x), x− z〉

and a vector field σ(x) = (σ1(x), · · · , σm(x)). Note that this is a smooth vector
field on Ω and σi(y) �= 0.

We denote by |x−z| the Euclidean distance between the points x, z and proceed

to define b̃(x) = e−α|x−z|2 and

b(x) = k(b̃(x)− e−αr2)

in Ω where the value of the positive constants k and α are to be determined later.
Choose a neighborhood V of y such that 0 < |σ(x)| for x ∈ V ⊂ Ω and denote by
M1,M2,M3 positive constants depending on v2 and F , such that for every x ∈ V
one has |Xjσi(x)| ≤ M1 and M2 ≤ |σ(x)| ≤ M3 for i, j = 1, · · · ,m.
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By elementary calculations and (3.3), we get

Lpb(x) = −
m∑
j=1

m∑
i=1

∂Aj

∂ξi
(Xb)XjXib+

m∑
j=1

djAj(Xb)

≤ −kb̃(x)α2(κ+ |Xb|)p−2
(
4β|σ|2 − 2α−1|Xσ|γ − 2α−1C sup

V

|d||σ(x)|
)

= −kb̃(x)α2(κ+ 2α|σ(x)|kb̃(x))p−2
[
4βM2

2 − 2α−1M1γ − CM3α
−1

]
.

Choosing α sufficiently large, we get that

Lpb(x) ≤ −αβ|b(x)|(κ+ |b(x)|)p−2

≤ −C̄|b(x)|(κ+ |b(x)|)p−2 ≤ f(x, b(x))

for every x ∈ V . Next, we let U = V ∩ B(z, r) and express its boundary as the
union of two components

∂U = Γ1 ∪ Γ2,

where Γ1 = B(z, r) ∩ ∂V and Γ2 = V ∩ ∂B(z, r).
For x ∈ Γ1 ⊂ Ω \ F , we have v(x) > 0. Choose k sufficiently small so that

b(x) ≤ v(x) on Γ1. On the other hand, since b(x) = 0 when x ∈ Γ2, the estimate
b(x) ≤ v(x) also holds on Γ2. Thus one eventually obtains

(3.10)

⎧⎪⎨
⎪⎩
b(x) ≤ v(x) in ∂U,

Lp(b) ≤ f(x, b) in U,

Lpv ≥ f(x, v) in U.

The weak comparison principle in Lemma 5 implies that b(x) ≤ v(x) in U . Since
y is a minimum point of v(x) in Ω, necessarily its gradient at y must vanish; i.e.,
∇v(y) = 0. Finally we observe that in view of the C1 regularity of v, one has

0 = 〈v,∇v(y)〉 = lim
t→0+

v(y + tv)− v(y)

t

≥ lim
t→0+

b(y + tv)− b(y)

t

= 2kαr2e−αr2 > 0,

arriving at a contradiction. �

In view of the Hopf-type comparison principle and Theorem 4, we deduce that
the contact set F = {v2 = v1} must be either all of Ω or the empty set, thus
completing the proof of the strong comparison principle in Theorem 1.

Likewise, the strong maximum principle Theorem 2 follows from the Hopf-type
maximum principle.
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