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AVOIDING ALGEBRAIC INTEGERS OF BOUNDED HOUSE

IN ORBITS OF RATIONAL FUNCTIONS

OVER CYCLOTOMIC CLOSURES

EVAN CHEN

(Communicated by Matthew A. Papanikolas)

Abstract. Let k be a number field with cyclotomic closure kc, and let h ∈
kc(x). For A ≥ 1 a real number, we show that

{α ∈ kc : h(α) ∈ Z has house at most A}
is finite for many h. We also show that for many such h the same result holds
if h(α) is replaced by orbits h(h(· · ·h(α))). This generalizes a result proved
by Ostafe that concerns avoiding roots of unity, which is the case A = 1.

1. Introduction

1.1. Rational functions and set avoidance. We begin with the following gen-
eral definition.

Definition 1.1. Let F be a subfield of C, and let P be a subset of C. Let h ∈ F (x)
be a rational function, and let hn denote the function composition of h applied n
times (n = 0, 1, 2, . . . ).

• We say that h is P -avoiding (over F ) if

# {α ∈ F | h(α) ∈ P} < ∞.

• We say that h is strongly P -avoiding (over F ) if

# {α ∈ F | hn(α) ∈ P for some n ≥ 1} < ∞.

Let U ⊆ C denote the set of roots of unity and let k be a number field. We will
denote its cyclotomic closure k(U) by kc. This paper will concern avoidance over
kc.

We say a rational function h(x) ∈ kc(x) is special if h is conjugate, with respect
to a Möbius transformation (i.e., via PGL2(k

c)), to either ±xd or the Chebyshev
polynomial Td(x) which is uniquely determined by the equation Td(

1
2 (t + t−1)) =

1
2 (t

d + t−d).
The question of U-avoidance and strong U-avoidance has been examined by

Dvornicich and Zannier. For example, as a consequence of [2, Corollary 1], we
have the following result.
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Theorem (From [2, Corollary 1]). Let h = p/q ∈ kc(x), where p, q ∈ kc[x].
Assume that p(x) − ymq(x) is irreducible over kc for all positive integers m ≤
max(deg p, deg q). Then h is U-avoiding over kc.

Ostafe [7] proved the following result for strong U-avoidance.

Theorem ([7, Theorem 1.2]). Let h = p/q ∈ k(x), where p, q ∈ k[x]. Assume h is
U-avoiding over kc, and deg p > deg q + 1. Assume also that max(deg p, deg q) ≥ 2
and p(x)−ymq(x) as a polynomial in x does not have a root in kc(y) for all positive
integers m ≤ deg(p). Then h is strongly U-avoiding unless h is special.

In this paper we investigate a generalization of these results proposed by Ostafe
(see [7, §4]). In order to state it, we need to define the following.

Definition 1.2. The house of an algebraic number α, denoted α , is the maximum
value of |β| across the Q-Galois conjugates β of α.

For A ≥ 1 a real number, let PA denote the set of algebraic integers α which
have house at most A.

For example every algebraic integer has house at least 1, and by Kronecker’s
theorem (the main result of [5], see also [4]) we have P1 = U.

We answer the following question.

Question. For A ≥ 1 and h ∈ kc(x), under what conditions can one show that h
is (strongly) PA-avoiding?

1.2. Summary of results. The degree of a nonconstant rational function h with
coefficients in some field F is defined to be [F (x) : F (h(x))]. Consequently, note
that deg(h1 ◦ h2) = deg h1 deg h2. If h is written as a quotient of relatively prime
polynomials p/q, then deg h = max(deg p, deg q).

Our results on PA-avoidance can be summarized as follows.

Theorem 1.3. Let k be a number field, A ≥ 1 and ε > 0. Let h ∈ kc(x) be a
rational function.

• Then h is PA-avoiding unless there exists S ∈ kc(x) such that h(S(x))
equals a Laurent polynomial with d terms, where

d �k,ε A
2+ε.

• If deg h 	k,A 1, then we can also assume degS ≤ 2.

This theorem has an effective and more explicit form given as Theorem 2.5 and
Theorem 2.7.

A corollary of Theorem 1.3 is the following.

Corollary 1.4. Let k be a number field and A ≥ 1. If h has more than two poles,
then h is PA-avoiding.

Using this result, we will deduce the following generalization of a result of Ostafe
[7, Theorem 1.2], and give a simple proof using Theorem 2.5.

Theorem 1.5. Let h = p/q ∈ k(x), where p, q ∈ k[x]. Let A ≥ 1. Assume h is
PA-avoiding over kc, and deg p > deg q+ 1. Then h is strongly PA-avoiding unless
h is special.
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1.3. Outline. The rest of the paper is structured as follows. In Section 2, we
state the Loxton theorem, namely Theorem 2.1, and use this to give a more precise
version of Theorem 1.3 as Theorem 2.5 and Theorem 2.7. In Section 3, we introduce
several auxiliary results which will be used in our proofs.

In Section 4 we prove Theorem 2.5 and Theorem 2.7, as well as Corollary 1.4;
these are our results on PA-avoidance. Finally, Section 5 gives the proof of Theo-
rem 1.5, which is our result on strong PA-avoidance.

2. Full statement of results on PA-avoidance

In order to recall the full version of Theorem 1.3, we first need to state the
following extension of a theorem of Loxton [6, Theorem 1].

Theorem 2.1 (Loxton theorem, [2, Theorem L]). There exists a function L : R+

→ R+ with the following property. For every number field k, we can fix a real
number B > 0 and a finite subset E ⊆ k of cardinality at most [k : Q] so that every
algebraic integer α in kc can be written as

d∑
i=1

eiξi,

where ei ∈ E, ξi ∈ U, and d ≤ L (B · α ).

In light of this, it will be convenient to make the following definition.

Definition 2.2. For every number field k we fix a pair (B,E) (depending only on
k) as above. We will call this the Loxton pair for k. The Loxton function L will
also remain fixed through the paper.

Remark 2.3. The exact nature of L is not important for our purposes. However,
it is possible to choose L (x) = Oε(x

2+ε). Moreover, in the case k = Q one can
select E = {1}. See [6] for more details.

Definition 2.4. Let h ∈ kc(x) and fix (B,E) a Loxton pair for k. Suppose that
there exist a nonconstant S ∈ kc(x), integers ni, roots of unity βi ∈ U, and ei ∈ E
which satisfy

d∑
i=1

βieix
ni = h(S(x)).

In this case, we call the rational function
∑

βieix
ni a witness for h.

If A ≥ 1 is a real number, the witness is called A-short if d ≤ L (AB).

Observe that, if there exists a witness for h, then h is seen to not be PA-avoiding
for sufficiently large A, by simply selecting x ∈ U. We will prove the following
result.

Theorem 2.5. Let h(x) ∈ kc(x) be nonconstant, and A ≥ 1. Then h is PA-avoiding
unless there exists an A-short witness for h.

According to Remark 2.3 above, the case k = Q has a particularly nice phrasing.

Corollary 2.6. Let h(x) ∈ Qc(x) be nonconstant and A ≥ 1. Then h is PA-
avoiding unless there exists S ∈ Qc(x) such that h(S(x)) is equal to a Laurent
polynomial p ∈ Z[U][x, x−1] with |p(1)| �ε A

2+ε.
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As stated, these results do not give any bound on the size of the degree of a
witness. However, the following theorem shows that “most” of h(x) ∈ kc(x) are in
fact PA-avoiding.

Theorem 2.7. Let k be a number field with Loxton pair (B,E). Let A ≥ 1 and let
h(x) ∈ kc(x) be nonconstant. Suppose that

• deg h > 2016 · 5L (AB)+1, or
• h is a polynomial and deg h > (2L (AB) + 1)2.

Then h is PA-avoiding unless it has an A-short witness h(S(x)) for which degS ≤ 2.

Remark 2.8. In fact, if h ∈ kc[x] is a polynomial which is not PA-avoiding, one
can find an A-short witness of the form h(ax+ b+ cx−1) for some a, b, c ∈ kc (see
Theorem 3.3).

Remark 2.9. The constants involved in Theorem 2.7 come from Fuchs-Zannier [3],
reproduced in the next section as Theorem 3.3.

3. Background

To prove the main result, we will need other auxiliary results, which we collect
in this section.

3.1. Tools from arithmetic geometry. In what follows, fix k a number field,
and Gm = Spec k[x, x−1] as usual. By a torsion coset of Gd

m, we mean a translate
β ·T of a subtorus T (i.e., a connected algebraic group) by a torsion point β of Gd

m.

Theorem 3.1 ([2, Torsion Points Theorem]). Let V be an algebraic subvariety of
Gd

m defined over Q. Then the Zariski closure of the set of torsion points in V is a
finite union of torsion cosets of Gd

m.

We also use a special case of [2, Theorem 1].

Theorem 3.2. Let k be a number field. Let V/k be an affine variety irreducible
over kc and let

π : V → Gr
m

be a morphism of finite degree, defined over k. Assume the set of torsion points of
π(V (kc)) is Zariski-dense in Gr

m.
Then, there exists an isogeny μ : Gr

m → Gr
m and a birational map ρ : Gr

m ��� V ,
both defined over kc, such that the diagram

Gr
m V

Gr
m

ρ

μ
π

commutes (over kc).

Proof. We define the set

J = {η ∈ V (kc) : π(η) is a torsion point of Gr
m}.

Thus π(J) consists exactly of all torsion points of π(V (kc)), so it is Zariski-dense
by hypothesis. Since π is of finite degree, it follows that J is Zariski-dense in V as
well. Then we can apply [2, Theorem 1], where the torsion coset T in question is
the entire Gr

m. �
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3.2. Results on compositions of rational functions. We recall the following
results of Fuchs and Zannier [3]. These results hold in much more generality if kc

is replaced by any field of characteristic zero, but we will not need that generality
for our purposes.

Theorem 3.3 ([3, Main Theorem and Theorem 2]). Let p, q, h ∈ kc(x) be rational
functions with p = h ◦ q, Denote by 	 the sum of the number of terms in the
numerator and denominator of p.

• Assume q is not of the shape λ(axn + bx−n) for a, b ∈ kc, λ ∈ PGL2(k
c),

n ∈ Z>0. Then,

deg h ≤ 2016 · 5�.
• Suppose p ∈ kc[x, x−1] \ kc[x] is a Laurent polynomial with 	 nonconstant
terms for some 	 ≥ 0. Suppose moreover that h ∈ kc[x] is a polynomial and
q ∈ kc[x, x−1], where q(x) is not of the shape axn+b+cx−n for a, b, c ∈ kc,
n ∈ Z>0. Then,

deg h ≤ 2(2	− 1)(	− 1).

Corollary 3.4 ([3, Corollary on pg. 177]). Let q ∈ kc(x) be nonconstant, and let
h ∈ kc(x) with deg h ≥ 3 be not special. Then for any integer n ≥ 3, the sum of the
number of terms in the numerator and denominator of the rational function hn ◦ q
is at least

log5

(
(deg h)n−2

2016

)
.

3.3. Estimates on sizes of orbits. We will use the following result, which is
based on [7, §1.3].

Lemma 3.5. Let k be a number field and let h = p/q ∈ k(x) be a rational function.
Assume deg p > deg q + 1.

Then, there exist a real number T > 0 and an integer D (depending only on h)
with the following properties. For any algebraic number α,

• If hn(α) ≤ A for some n ≥ 1, then

hj(α) ≤ max(T,A) for j = 0, . . . , n− 1.

• If hn(α) is an algebraic integer for some n ≥ 1, then Dhj(α) is an algebraic
integer for j = 0, 1, . . . , n− 1.

Proof. Suppose that hn(α) = γ.
First, since deg p− deg q �= 1 we can pick 0 �= c ∈ Q (depending only on h) such

that

h(x) = c−1 · h̃(cx)
and moreover h̃ is “monic” in the sense that h̃ = p̃/q̃ and

p̃(x) = xd + ad−1x
d−1 + · · ·+ a0,

q̃(x) = xe + be−1x
e−1 + · · ·+ b0.

(It is possible that c /∈ k; in this case we enlarge k to contain c.) Now, for any
j = 0, . . . , n we have

hj(x) = c−1 · h̃j(cx).

In particular, h̃j(cα) = cγ.
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The first part now follows from applying [7, Corollary 2.7], to cA, cα, and h̃,
using the condition deg p− deg q > 1.

We proceed to the second part. Assume γ is an algebraic integer. Note that by
replacing the value of n, it suffices just to show that Dα is an algebraic integer for
some integer D depending only on h.

Let ν be an arbitrary finite place of k. Then [7, Corollary 2.5] implies that if
‖cα‖ν > max{1, ‖ai‖ν , ‖bi‖ν}, then the sequence∥∥∥h̃j(cα)

∥∥∥
ν

for j = 0, 1, 2, . . .

is strictly increasing. Thus, in particular we must have

‖cα‖ν ≤ max (1, ‖ai‖ν , ‖bi‖ν , ‖cγ‖ν)

or else we contradict the fact that h̃j(cα) = cγ.
Now, let D be an integer for which Dc−1, Dc−1ai, Dc−1bi are all algebraic

integers. Multiplying the previous inequality by Dc−1, we obtain

‖Dα‖ν ≤ max
(∥∥Dc−1

∥∥
ν
,
∥∥Dc−1ai

∥∥
ν
,
∥∥Dc−1bi

∥∥
ν
, ‖Dγ‖ν

)
≤ 1.

Since this is true for every finite place ν, it follows that Dα is an integer. Moreover,
since D depends only on c, ai, bi and not on γ, it follows that D depends only on
h, which proves our assertion. �

4. Proof of results on PA-avoidance

Proof of Theorem 2.5. Assume h is not PA-avoiding, so h(kc) contains infinitely
many elements of PA. By Theorem 2.1 and the pigeonhole principle, we can fix
d ≤ L (AB) and ei ∈ E such that there exist infinitely many elements y ∈ kc and
ξ1, . . . , ξd ∈ U satisfying

h(y) =
d∑

i=1

eiξi.

Take Gd+1
m equipped with coordinates (x1, . . . , xd, y). Letting h = p/q for p, q ∈

kc[x], consider the subvariety

V ⊆ Gd+1
m

defined by the equation

p(y) = q(y)
d∑

i=1

eixi.

Moreover, let Ud denote the set of torison points of Gd
m and let Π : V → Gd

m be
the projection onto the first d coordinates. We now consider the following iterative
procedure. Initially, let

W0 = V, β0 = 1 ∈ Gd
m, and T0 = Gd

m

so the torsion coset β0T0 is all of Gd
m. So we have Π(W0) ⊆ β0T0 and

#(Π(W0) ∩ Ud) = ∞. Then we recursively perform the following procedure for
i = 0, 1, 2, . . . .
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• Consider the infinite set β−1
i Π(Wi) ∩ Ud ⊆ Ti. By Theorem 3.1 applied to

the subvariety Ti, its Zariski closure consists of finitely many torsion cosets.
Hence by pigeonhole principle, we may pick a particular torsion coset, say
β′Ti+1, containing infinitely many elements of Ud. Now set βi+1 = βiβ

′.
Then we conclude that βi+1Ti+1 is the closure of some infinite subset of
Π(Wi) ∩ Ud.

• Now consider the preimage Π−1(βi+1Ti+1), which is a closed subvariety of
Wi. Then by pigeonhole principle, we can set Wi+1 to be any irreducible
component of Wi such that #(Π(Wi+1)∩Ud) = ∞. Of course by construc-
tion Π(Wi+1) ⊆ βi+1Ti+1.

From this we have constructed

V = W0 ⊇ W1 ⊇ · · ·

a decreasing sequence of subvarieties of V , with Wi irreducible for i ≥ 1. For
dimension reasons, this sequence must eventually stabilize. Thus the torsion coset
βiTi stabilizes too. So we conclude there exists

• an irreducible affine subvariety W ⊆ V ,
• a particular torsion coset βT ⊆ Gd

m, where β = (β1, . . . , βd) ∈ Ud and T is
a torus, and

• Z := Π(W ) ∩ Ud a set of torsion points of Gd
m

such that

Π(W ) ⊆ βT, Z = βT, and #Z = ∞.

(In the case V is already an irreducible subvariety, then W = V , the torsion coset
βT is exactly Gd

m, and Z = Ud. On the other hand if V is not irreducible, then the
Wi start to decrease after the first step.)

Let r := dimT ; note that r ≥ 1 since T contains the infinite set Z.
We now wish to apply Theorem 3.2. Consider the composed map π : W → Gr

m

defined by taking ϕ as below:

W T Gr
m

(x1, . . . , xd, y) (β−1
1 x1, . . . , β

−1
d xd).

ϕ ψ

�

From the fact that Z = β ·T , we conclude that the set of torsion points in π(W ) is
Zariski-dense in Gr

m. Applying Theorem 3.2, there exist an isogeny μ : Gr
m → Gr

m

and a birational map ρ : Gr
m ��� W such that the diagram

Gr
m W T

Gr
m

ρ

μ
π

ϕ

ψ−1

commutes.
Assume

ρ(x) = (R1(x), . . . , Rd(x), R(x))
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for rational functions R1, . . . , Rd, R (here x ∈ Gr
m); then

ϕ(ρ(x)) =
(
β−1
1 R1(x), . . . , β

−1
d Rd(x), R(x)

)
.

Now, the right-hand side of ϕ ◦ ρ = ψ−1 ◦ μ is the composition of an isogeny
and an isomorphism, thus (for instance by [1, Proposition 3.2.17]), we recover that
Ri(x) = βix

vi for some vectors vi ∈ Zr which are linearly independent (and in
particular nonzero).

Thus

ρ(x) = (β1x
v1 , . . . , βdx

vd , R(x))

and we obtain an identity

h(R(x)) =
d∑

i=1

ei · βix
vi .

Since the vi are independent, it follows that one can specialize x to a choice of the
form x = (xc1 , . . . , xcr) for some integers ci ∈ Z so that the terms xvi are pairwise
distinct. Thus we finally obtain

h(S(x)) =
d∑

i=1

βieix
ni ,

where S is a rational function (defined by S(x) := R(xnr , . . . , xcr)), and the right-
hand side is nonconstant in x. This is the desired A-short witness. �

Proof of Theorem 2.7. First suppose h(x) ∈ kc(x). Then by Theorem 2.5, h is
PA-avoiding unless we have an identity

h(S(x)) =

d∑
i=1

βieix
ni ,

where the right-hand side has at most d ≤ L (A ·B) terms.

First assume that S = μ(axn + bx−n) for some μ ∈ PGL2(k). Set now S̃ =

μ(ax+ bx−1), deg S̃ = 2. We now see that

h(S̃(x))

is an A-short witness, establishing the theorem.
Otherwise Theorem 3.3 applies with 	 = d+ 1, and we deduce that

deg h ≤ 2016 · 5d+1

which contradicts the first hypothesis of Theorem 2.7. This implies one direction.
In the case h ∈ kc[x], we repeat the same argument, applying the second part

of Theorem 3.3. (That S is a Laurent polynomial follows from the fact that it
cannot have any nonzero poles, in light of the right-hand side having the same
property.) �

Proof of Corollary 1.4. Suppose by contradiction h is not PA-avoiding; then by
Theorem 2.5 there is an A-short witness and we may write

h(S(x)) =
∑
i

βieix
ni .

View this as an identity of rational functions in C(x).



AVOIDING INTEGERS IN ORBITS OVER CYCLOTOMIC CLOSURES 4197

On the one hand, since S ∈ C(x) is a nonconstant rational function, its range
in C omits at most one point of C. Since h has at least three poles, it follows that
there is an x0 �= 0 such that S(x0) is a pole of h.

On the other hand, the only possible pole of the right-hand side is x = 0, which
is the desired contradiction. �

5. Proof of results on strong PA-avoidance

Proof of Theorem 1.5. Since h is given to be PA-avoiding, it suffices to show that
for a given γ ∈ PA, there are only finitely many α ∈ kc such that hn(α) = γ for
some n ≥ 1.

Assume by contradiction there are infinitely many pairs (α, n) such that hn(α) =
γ. Select T > 0 and D ∈ Z by Lemma 3.5, and let

C := Dmax(T,A).

We make the following claim.

Claim. For any integer N , D · hN (x) is not weakly PC -avoiding.

To see this, discard the finitely many pairs with n ≤ N , and consider only those
with n > N . Then by applying Lemma 3.5 to such pairs (α, n) with n > N , there
are infinitely many α such that D · hN (α) is an algebraic integer; moreover, the
house of D · hN (α) is at most D ·max(T,A) = C, giving the claim.

Consequently, by Theorem 2.5 for every integer N there exists a C-short witness.
In other words, for all N ≥ 1 there exists S ∈ kc(x) such that

D · hN (S(x)) =
d∑

i=1

βieix
ni ,

where d ≤ L (BC) = L (BDmax(T,A)).
By hypothesis, deg h ≥ 2. Assume that deg h ≥ 3. Since we are given that h

is special, by Corollary 3.4, hN has at least log
(

(deg h)N−2

2016

)
terms, which gives a

contradiction if we take

N > 2 + logdeg h

(
2016 · 5L (BDmax(T,A))

)
.

For deg h = 2 one can apply the same argument replacing h with h ◦ h. �
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