On geodesic ray bundles in hyperbolic groups
HTML articles powered by AMS MathViewer
- by Nicholas Touikan
- Proc. Amer. Math. Soc. 146 (2018), 4165-4173
- DOI: https://doi.org/10.1090/proc/14117
- Published electronically: July 5, 2018
- PDF | Request permission
Abstract:
We construct a Cayley graph $\mathbf {Cay}_{S}\left (\Gamma \right )$ of a hyperbolic group $\Gamma$ such that there are elements $g,h\in \Gamma$ and a point $\gamma \in \partial _{\infty }\Gamma = \partial _{\infty }\mathbf {Cay}_{S}\left (\Gamma \right )$ such that the sets $\mathcal {R}\mathcal {B}\left (g,\gamma \right )$ and $\mathcal {R}\mathcal {B}\left (h,\gamma \right )$ in $\mathbf {Cay}_{S}\left (\Gamma \right )$ of vertices along geodesic rays from $g,h$ to $\gamma$ have infinite symmetric difference, thus answering a question of Huang, Sabok, and Shinko.References
- J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and H. Short, Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 3–63. Edited by Short. MR 1170363
- M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), no. 1, 85–101. MR 1152226, DOI 10.4310/jdg/1214447806
- Mladen Bestvina and Mark Feighn, Addendum and correction to: “A combination theorem for negatively curved groups” [J. Differential Geom. 35 (1992), no. 1, 85–101; MR1152226 (93d:53053)], J. Differential Geom. 43 (1996), no. 4, 783–788. MR 1412684
- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121, DOI 10.1090/S0002-9947-1994-1149121-0
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648, DOI 10.1007/978-1-4684-9167-8
- Jingyin Huang, Marcin Sabok, and Forte Shinko, Hyperfiniteness of boundary actions of cubulated hyperbolic groups, arXiv preprint arXiv:1701.03969, 2017.
- Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001) Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39–93. MR 1921706, DOI 10.1090/conm/296/05068
- O. Kharlampovich and A. Myasnikov, Hyperbolic groups and free constructions, Trans. Amer. Math. Soc. 350 (1998), no. 2, 571–613. MR 1390041, DOI 10.1090/S0002-9947-98-01773-5
- Jonathan P. McCammond and Daniel T. Wise, Fans and ladders in small cancellation theory, Proc. London Math. Soc. (3) 84 (2002), no. 3, 599–644. MR 1888425, DOI 10.1112/S0024611502013424
- Jean-Pierre Serre, Trees, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell; Corrected 2nd printing of the 1980 English translation. MR 1954121
- Peter Scott and Terry Wall, Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 137–203. MR 564422
- Nicholas Touikan, On the one-endedness of graphs of groups, Pacific J. Math. 278 (2015), no. 2, 463–478. MR 3407182, DOI 10.2140/pjm.2015.278.463
Bibliographic Information
- Nicholas Touikan
- Affiliation: Department of Mathematical Sciences, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030
- MR Author ID: 803915
- Email: nicholas.touikan@gmail.com
- Received by editor(s): June 23, 2017
- Received by editor(s) in revised form: January 29, 2018
- Published electronically: July 5, 2018
- Communicated by: David Futer
- © Copyright 2018 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 146 (2018), 4165-4173
- MSC (2010): Primary 20F65, 20E08, 03E15
- DOI: https://doi.org/10.1090/proc/14117
- MathSciNet review: 3834647