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REGULARITY OF FI-MODULES AND LOCAL COHOMOLOGY

ROHIT NAGPAL, STEVEN V SAM, AND ANDREW SNOWDEN

(Communicated by Jerzy M. Weyman)

Abstract. We resolve a conjecture of Ramos and Li that relates the regularity
of an FI-module to its local cohomology groups. This is an analogue of the
familiar relationship between regularity and local cohomology in commutative
algebra.

1. Introduction

Let S be a standard-graded polynomial ring in finitely many variables over a field
k, and let M be a nonzero finitely generated graded S-module. It is a classical fact
in commutative algebra that the following two quantities are equal (see [Ei, §4B]):

• The minimum integer α such that TorSi (M,k) is supported in degrees≤ α+i
for all i.

• The minimum integer β such that Hi
m(M) is supported in degrees ≤ β − i

for all i.

Here Hi
m is local cohomology at the irrelevant ideal m. The quantity α = β is

called the (Castelnuovo–Mumford) regularity of M and is one of the most
important numerical invariants of M . In this paper, we establish the analog of the
α = β identity for FI-modules.

To state our result precisely, we must recall some definitions. Let FI be the
category of finite sets and injections. Fix a commutative noetherian ring k. An
FI-module over k is a functor from FI to the category of k-modules. We write
ModFI for the category of FI-modules. We refer to [CEF] for a general introduction
to FI-modules.

Let M be an FI-module. Define Tor0(M) to be the FI-module that assigns to
S the quotient of M(S) by the sum of the images of the M(T ), as T varies over
all proper subsets of S. Then Tor0 is a right-exact functor, and so we can consider
its left derived functors Tor•. In §2, we explain how Tor• is the derived functor
of a tensor product. We note that the FI-module homology considered in [CE] is
the same as our Tor•. We let ti(M) be the maximum degree occurring in Tori(M)
(using the convention ti(M) = −∞ if Tori(M) = 0) and define the regularity of
M , denoted reg(M), to be the minimum integer ρ such that ti(M) ≤ ρ+ i for all i.
We note that, while most FI-modules have infinite projective (and Tor) dimension,
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every finitely generated FI-module has finite regularity; see [CE, Theorem A] or
Corollary 2.6 below.

An element x ∈ M(S) is torsion if there exists an injection f : S → T such
that f∗(x) = 0. Let H0

m(M) be the maximal torsion submodule of M . Then H0
m

is a left-exact functor, and so we can consider its right derived functors H•
m, which

we refer to as local cohomology. If M is finitely generated, then each Hi
m(M) is

finitely generated and torsion, and Hi
m(M) = 0 for i � 0 (see Proposition 2.7). We

let hi(M) be the maximum degree occurring in Hi
m(M), with the convention that

hi(M) = −∞ if Hi
m(M) = 0.

We can now state the main result of this paper.

Theorem 1.1. Let M be a finitely generated FI-module. Then

(1.1a) reg(M) = max
(
t0(M),max

i≥0
(hi(M) + i)

)
.

Moreover, we have

tn(M) = n+max
i≥0

(hi(M) + i)

for all n � 0. In particular,

max
n>0

(tn(M)− n) = max
i≥0

(hi(M) + i).

Remark 1.2. If M is a module over a polynomial ring in finitely many variables,
then one can omit the t0(M) on the right side of (1.1a). However, it is necessary
in the case of FI-modules. Indeed, if M is the FI-module given by M(S) = k for
all S and all injections act as the identity, then all local cohomology groups of M
vanish, so hi(M) = −∞ for all i, but reg(M) = t0(M) = 0. �

Remark 1.3. Theorem 1.1 can be proved for FI-modules presented in finite degrees.
We have restricted ourselves to finitely generated modules to keep the paper less
technical. �

Remark 1.4. The theorem was first conjectured by Li and Ramos [LR, Conjec-
ture 1.3]. In fact, they conjectured the result for FIG-modules, where G is a
finite group. The version for FIG-modules follows immediately from the version
for FI-modules, since local cohomology and regularity do not depend on the G-
action: we clearly have ΨH0

m(M) = H0
m(ΨM) and ΨTor0(M) = Tor0(ΨM), where

Ψ: ModFIG → ModFI is the forgetful functor, and since Ψ preserves both the in-
jective and the projective objects, these results extend to higher derived functors
as well. �

Overview of proof. Using the structure theorem for FI-modules (Theorem 2.5),
an easy spectral sequence argument shows that the regularity of M is at most the
maximum of hi(M) + i. Theorem 1.1 essentially says that there is not too much
cancellation in this spectral sequence.

In characteristic 0, one can see this as follows. Let Mλ be the irreducible repre-
sentation of Sn corresponding to the partition λ. Let �(λ) be the number of parts
in λ. For a representation V of Sn, define �(V ) to be the maximum �(λ) over those
λ for which Mλ occurs in V . Now consider the relevant spectral sequence. One
can directly observe that various terms in the spectral sequence have different �
values, and so some representations must always survive on the subsequent page.
This proves that there is not too much cancellation.
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In positive characteristic, there does not seem to be a complete analog of �.
However, we construct an invariant ν that has some of the same properties. This is
one of the key insights of this paper. The invariant ν is strong enough to distinguish
terms in the spectral sequence and thus allows the characteristic 0 argument to be
carried out.

Outline of paper. In §2, we review some basic results on local cohomology of
FI-modules. In §3, we define the invariant ν mentioned above and establish some
of its basic properties. These results are combined in §4 to obtain Theorem 1.1.

2. Preliminaries on FI-modules

We fix a commutative noetherian ring k for the entirety of the paper. We set
[0] = ∅, and for each positive integer n, we set [n] = {1, . . . , n}. Let Rep(S�) be
the category of sequences of representations of the symmetric groups over k. Given
V• and W• in Rep(S�), we define their tensor product by

(V• ⊗W•)n =
⊕

i+j=n

IndSn

Si×Sj
(Vi ⊗Wj).

Then ⊗ endows Rep(S�) with a monoidal structure (this is easier to see using the
equivalence described in [SS2, (5.1.6), (5.1.8)]). Furthermore, there is a symmetry
of this monoidal structure by switching the order of V and W and conjugating
Si×Sj to Sj×Si via the element τij ∈ Sn which swaps the order of the two subsets
1, . . . , i and i+1, . . . , n. We thus have notions of commutative algebra and module
objects in Rep(S�).

Let A = k[t], where t has degree 1. We regard A as an object of Rep(S�) by
letting Sn act trivially onAn = k. In this way, A is a commutative algebra object of
Rep(S�). By an A-module, we will always mean a module object for A in Rep(S�).
We write ModA for the category of A-modules. As shown in [SS3, Proposition
7.2.5], the categories ModA and ModFI are equivalent. We pass freely between the
two points of view. We regard k as an A-module in the obvious way (t acts by 0).
We denote by Tori(−) the ith left derived functor of k ⊗A − on the category of
A-modules. One easily sees that this definition coincides with the one from the
introduction.

There is essentially only one Tor computation that we will use, namely Tor•(k).
Let sgnn be the sign representation of Sn, which we regard as an object of Rep(S�)
supported in degree n. There is an inclusion of k-modules sgn1 → A. We can
consider the resulting Koszul complex

∧•
(sgn1)⊗A in the category Rep(S�). We

now describe this complex explicitly. As a k-module,
⊗n

(sgn1) is freely spanned
by the generators i1 ⊗ · · · ⊗ in, one for each permutation (i1, . . . , in) of the first n
natural numbers. From this, one sees that

∧n(sgn1) = sgnn. Thus the k-module

(
∧k

(sgn1)⊗A)n = IndSn

Sk×Sn−k
(sgnk ⊗An−k)

is freely spanned by i1 ∧ · · · ∧ ik, where {i1, . . . , ik} is a subset of size k of [n]. The
differential is the usual alternating sum

i1 ∧ · · · ∧ ik 	→
k∑

j=1

(−1)ji1 ∧ · · · ı̂j · · · ∧ ik
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where ı̂j means that we omit that term. So in degree n, the Koszul complex is
the usual complex that calculates the reduced homology of the standard (n − 1)-
simplex. It is well known that the standard (n − 1)-simplex has no nontrivial
reduced homology for n > 0. This implies that this complex is exact in degrees > 0
and that its 0th homology is just k. We thus have a resolution A⊗sgn• → k. Since
A⊗ sgnp is acyclic with respect to the functor k⊗A − (also see Theorem 2.2), we
see that Torp(M) is equal to the Koszul homology of M .

Proposition 2.1. If T is an A/A+-module, then Torp(T ) = T ⊗ sgnp.

Proof. By the paragraph above, we have

Torp(T ) = Hp(T ⊗A (A⊗ sgn•)) = Hp(T ⊗ sgn•).

Since A+T = 0, we see that all the differentials in T ⊗ sgn• vanish. This shows
that Hp(T ⊗ sgn•) = T ⊗ sgnp, completing the proof. �

The restriction functor from ModFI to Rep(S�) admits a left adjoint denoted I.
We call FI-modules of the form I(V ) induced FI-modules. In terms ofA-modules,
we have I(V ) = A⊗ V . For a representation V of Sd we have

I(V )n = k[HomFI([d], [n])]⊗k[Sd] V = V ⊗An−d.

See [CEF, Definition 2.2.2] for more details on I(V ); note that there the notation
M(V ) is used in place of I(V ). We say that an FI-module M is semi-induced if it
has a finite length filtration where the quotients are induced. (Semi-induced mod-
ules have also been called 	-filtered modules in the literature.) In characteristic 0,
induced modules are projective, and so semi-induced modules are induced.

In the introduction, we defined H0
m(M) to be the maximal torsion submodule of

an FI-module M . We now introduce Γm as a synonym for H0
m, as it is better suited

to the derived functor notation RΓm. Note that RiΓm is exactly the same as Hi
m.

Theorem 2.2. Let M be a finitely generated FI-module. Then the following are
equivalent:

(a) M is semi-induced.
(b) RΓm(M) = 0.
(c) Tori(M) = 0 for i > 0.

Proof. The equivalence (a) ⇐⇒ (b) is proven in [LR, Proposition 5.12], and the
equivalence (a) ⇐⇒ (c) is established in [R, Theorem B] (and independently in
[LY, Theorem 1.3]). �
Lemma 2.3. Suppose A is a locally noetherian abelian category. Let M be a
bounded chain complex in A with finitely generated homologies. Then there exists a
bounded complex N with finitely generated terms which is quasi-isomorphic to M .
Moreover, we may also assume that Ni is a subobject of Mi for each i.

Proof. We proceed by induction on the length of the complex. The base case when
M is supported in at most one homological degree is trivial. Now suppose the
length of M is at least 2. By shifting, we may assume 0 is the smallest i such
that Mi is nonzero. Let N0 be a finitely generated subobject of M0 such that
N0/(d1(M1)∩N0) ∼= H0(M). Let M ′ be the complex supported in positive degrees
such that M ′

i = Mi if i > 1, M ′
1 = d−1

1 (d1(M1) ∩ N0), and M ′
0 = 0. By induction

on length, there exists a complex N ′ with finitely generated terms which is quasi-
isomorphic to M ′ such that N ′

i is a subobject of M ′
i for each i. Since the map
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d1 : N
′
1 → M0 factors through H1(N

′) = H1(M
′) = d−1

1 (d1(M1) ∩ N0)/(d2(M2)),
we see that d1(N

′
1) = N0 ∩ d1(M1). Set Ni = N ′

i for i > 1. Then N has all of the
required properties. �
Lemma 2.4. Let M be a bounded complex of FI-modules. Suppose all cohomology
groups are finitely generated torsion FI-modules. Then M is quasi-isomorphic to a
bounded complex of finitely generated torsion FI-modules.

Proof. For an FI-module N , let N≤n be the natural FI-module defined by

(N≤n)k =

{
Nk if k ≤ n,

0 if k > n.

It is clear that the functor (−)≤n is exact. We note that there is a natural surjection
N → N≤n.

Over a noetherian ring, the category of FI-modules is locally noetherian [CEFN,
Theorem A]. Thus by the previous lemma, we may assume that the terms of M
are finitely generated. Let n be large enough so that all cohomology groups of M
are supported in degrees ≤ n. Then M → M≤n is a quasi-isomorphism and M≤n

is a bounded complex of torsion modules. Finally, apply Lemma 2.3 to M≤n to
conclude that M is quasi-isomorphic to a bounded complex of finitely generated
torsion modules. �
Theorem 2.5 (Structure theorem for FI-modules). Let M be a finitely generated
FI-module over a noetherian ring k. Then, in the derived category of FI-modules,
there is an exact triangle T → M → F → such that

(a) T is a bounded complex of finitely generated torsion modules supported in
nonnegative degrees.

(b) F is a bounded complex of finitely generated semi-induced modules supported
in nonnegative degrees.

In characteristic 0, this theorem was proved in [SS1].

Proof. In [N, Theorem A, part (B)], a complex F and a mapM → F 0 is constructed
such that F satisfies the condition in (b) and the augmented complex M → F 0 →
F 1 → · · · is exact in high enough degrees (in the reference the terminology “	-
filtered” is used for semi-induced modules). Since M is supported in cohomological
degree 0, we see that the augmented complex M → F 0 → F 1 → · · · is the mapping
cone of the natural map M → F of complexes. Since Cone(M → F ) is exact in high
enough degrees, there exists a quasi-isomorphic complex T satisfying the condition
in (a) by Lemma 2.4. The theorem now follows as Cone(M → F ) → M → F → is
an exact triangle. �

The following corollary is a weaker version of [CE, Theorem A].

Corollary 2.6. A finitely generated FI-module has finite regularity.

Proof. Using Theorem 2.5 and a dévissage argument, one is reduced to the case of
induced FI-modules, which obviously have finite regularity, and A/A+-modules,
which have finite regularity by Proposition 2.1. �
Proposition 2.7. Let M be a finitely generated FI-module, and let T → M → F →
be the triangle in Theorem 2.5. Then Hi

m(M) = Hi(T ). In particular, Hi
m(M) is

finitely generated for all i and vanishes for i � 0.
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Proof. This follows from Theorem 2.2 and the fact that RΓm(N) = N if N is a
torsion FI-module. See also [LR, Theorem E]. �

For a nonzero graded k-module M , we let maxdeg(M) be the maximum degree
in which M is nonzero, or ∞ if M is nonzero in arbitrarily high degrees. We also
put maxdeg(M) = −∞ if M = 0. With this notation, we have

reg(M) = max
i≥0

[maxdeg(Tori(M))− i] , hi(M) = maxdegHi
m(M).

3. A result on symmetric group representations

Over a field of characteristic 0, representations of symmetric groups decompose
as a direct sum of simple representations, and the simples are indexed by partitions.
Often, the number of rows in the partitions that appear gives useful information
about the representation. Our goal is to extend the notion of “the number of rows”
to a more general ring. Call a two-sided ideal I ⊆ k[Sp] good if the following
properties hold:

(a) I is idempotent,
(b) I annihilates sgnp,

(c) I does not annihilate Ind
Sp

Sp−1
(sgnp−1)⊗k M for any nonzero k-module M ,

(d) I is k-flat (and thus k-projective).

We show that if k[Sp] has a good ideal, then for a k[Sn]-module M and n − n
p ≤

k ≤ n, we can make sense of the number of rows in M being equal to k.

Proposition 3.1. If 2 is invertible in k, then there is a good ideal in k[S2].

Proof. Let N = 1 + (1, 2) be the norm element of k[S2], and let I be the two-sided
ideal generated by N. We verify that I is good:

(a) We have N2 = 2N, and so, since 2 is invertible, I is idempotent.
(b) It is clear that N annihilates sgn2, and so I does as well.

(c) If M is a k-module, then IndS2

S1
(sgn1)⊗k M = k[S2]⊗k M , which is clearly

not annihilated by N.
(d) As a k-module, I is free of rank 1, and thus k-flat. �.

Proposition 3.2. If 3 is invertible in k, then there is a good ideal in k[S3].

Proof. Let N =
∑

σ∈S3
σ be the norm element of k[S3]. Note that it is central. Let

I be the two-sided ideal generated by

τ = (1 + (1, 2))(1 + (1, 3))− 2
3N.

Note that 2
3 makes sense as we have assumed 3 to be invertible in k. We now verify

that I is good:

(a) A straightforward computation shows that τ2 = τ , and so I is idempotent.
(b) Both (1 + (1, 2)) and N annihilate sgn3, so the same is true for I.

(c) We have IndS3

S2
(sgn2)⊗k M ∼= M⊕3, where

σ · (m1,m2,m3) = sgn(σ)(mσ−1(1),mσ−1(2),mσ−1(3)).

Let x ∈ M be any nonzero element. Then τ · (x, 0, 0) = (x,−x, 0) �= 0, so I

does not annihilate IndS3

S2
(sgn2)⊗k M .



REGULARITY OF FI-MODULES AND LOCAL COHOMOLOGY 4123

(d) We first claim that I is equal to the ideal J generated by the differences
of two transpositions. The sum of the coefficients of the odd (or even)
permutations appearing in 3τ is zero. This shows that I ⊂ J . The reverse
inclusion J ⊂ I follows from the following identity:

(1, 3)− (1, 2) = (1, 3)τ − τ (1, 2).

This establishes the claim. Clearly, we have k[S3]/J ∼= k2. This implies
that k[S3]/I ∼= k2. Thus, as a k-module, I is a summand of k[S3], and
therefore k-flat. �

Throughout the rest of this section, we fix an integer p ≥ 1 and a good ideal I
of k[Sp]. If pr ≤ n, we define In(r) to be the two-sided ideal of k[Sn] generated

by I�r under the inclusion k[S×r
p ] ↪→ k[Sn]. For convenience, we set In(r) = 0 if

pr > n. It is clear that In(r) is idempotent.

Definition 3.3. Let M be a k[Sn]-module. We define ν(M) = n − r if M is
not annihilated by In(r) but is annihilated by In(s) for all r < s, and we set
ν(0) = ∞. �
Proposition 3.4. Consider an exact sequence

0 → M1 → M2 → M3 → 0

of k[Sn]-modules. Then M2 is annihilated by In(r) if and only if both M1 and M3

are. Consequently,
ν(M2) = min(ν(M1), ν(M3)).

Proof. IfM2 is annihilated by In(r), then obviouslyM1 andM3 are as well. Suppose
that M1 and M3 are annihilated by In(r). Then the image of In(r)M2 in M3

vanishes, and so In(r)M2 ⊂ M1, and so In(r)
2M2 = 0. But In(r)

2 = In(r), and so
M2 is annihilated by In(r). �

Lemma 3.5. Let N be any nonzero k-module. Then the ideal I�r of k[S×r
p ] does

not annihilate (Ind
Sp

Sp−1
sgnp−1)

�r ⊗k N .

Proof. This follows by induction on r and the definition of good. �
The following proposition is motivated by [CE, Proposition 3.1].

Proposition 3.6. Let M be a nonzero representation of Sd, let (p− 1)d ≤ k, and
put n = k + d. Then we have ν(M ⊗ sgnk) = k.

Proof. Set ν = ν(M⊗sgnk). We first show that In(r) does not annihilate M⊗sgnk
for r ≤ d. The Mackey decomposition theorem gives

ResSn

S×r
p

(M⊗sgnk)=
⊕

g∈(Sd×Sk)\Sn/S
×r
p

Ind
S×r
p

S×r
p ∩(Sd×Sk)g

Res
(Sd×Sk)

g

S×r
p ∩(Sd×Sk)g

(M⊗sgnk)
g,

where the sum is over double coset representatives, and (−)g means conjuga-
tion by g. Taking g so that S×r

p ∩ (Sd × Sk)
g = S×r

p−1, we see that it contains

(Ind
Sp

Sp−1
sgnp−1)

�r ⊗k M as a direct summand. Since In(r) is generated by I�r, it

suffices to show that I�r does not annihilate this direct summand. But this follows
from Lemma 3.5.

Now we show that In(r) annihilates M ⊗ sgnk if n/p ≥ r > d. Note that

ResSn

S×r
p

(M ⊗ sgnk) decomposes naturally into a finite direct sum of k[S×r
p ]-modules
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of the form �r
i=1Mi. Since r > d, at least one Mi is isomorphic to sgnp for each

such direct summand. Thus I�r annihilates each such direct summand. This shows
that In(r) annihilates M ⊗ sgnk, completing the proof. �

Remark 3.7. Our invariant ν is an attempt to extend the notion of a “minimum
number of rows in a simple object” away from characteristic zero. To see this, let
notation be as in Proposition 3.6. In characteristic 0, the partitions in M have d
boxes. Thus, by the Pieri rule, every partition appearing in M ⊗ sgnk has at least
k rows, and some have exactly k rows.

Since In(r) = 0 for r > n/p, our invariant ν can’t distinguish between partitions
with at most n− n

p rows. �

4. The main theorem

The aim of this section is to prove Theorem 1.1. Before beginning we note that
if M is a graded k-module and M [ 12 ] and M [ 13 ] are the localizations of M obtained
by inverting 2 and 3, respectively, then

maxdeg(M) = max(maxdeg(M [ 12 ]),maxdeg(M [ 13 ])).

(Proof: the kernel of the localization map M → M [ 1p ] is the set of elements annihi-

lated by a power of p; if x ∈ M is annihilated by both 2n and 3m, then x = 0, since
2n and 3m are coprime.) Localization commutes with Tor and local cohomology,
so it suffices to prove Theorem 1.1 assuming that either 2 or 3 is invertible in k. In
particular, for the remainder of this section, we may assume that k[Sp] has a good
ideal for either p = 2 or p = 3.

For a complex M of FI-modules, we define

Torn(M) = H−n(M ⊗L
A k).

(We use cohomological indexing throughout this section.) The regularity of M is
the minimal ρ so that maxdeg(Torn(M)) ≤ n+ ρ for all n ∈ Z.

Lemma 4.1. Let M be a finite length complex of finitely generated torsion FI-
modules. Let m be minimal such that Mm �= 0. Then ν(Torn(M)) ≥ n+m for all
n � 0.

Proof. Using the Koszul complex, we see that Torn(M) is a subquotient of⊕
j≥0

M j−n ⊗ sgnj .

Only the terms with j ≥ n + m contribute. Each of these has ν ≥ n + m by
Proposition 3.6, and this passes to subquotients by Proposition 3.4. �

The following lemma recovers [GL, Theorem 2].

Lemma 4.2. Let M be a finitely generated nonzero torsion FI-module, and let
ρ = maxdeg(M). Then the regularity of M is ρ, and for n � 0 we have

ν(Torn(M)n+ρ) = n.

Proof. Let M1 be the degree ρ piece of M = M2, and let M3 = M2/M1. If M3 = 0,
then we are done by Proposition 2.1. Now assume M3 �= 0. By induction on ρ, we
can assume reg(M3) < ρ. We have an exact sequence

Torn+1(M3)n+ρ → Torn(M1)n+ρ → Torn(M2)n+ρ → 0.
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Note that Torn(M3)n+ρ = 0 by the bound on the regularity of M3, which is why
we have a 0 on the right above. Since M1 is concentrated in one degree, we have
Torn(M1) = M1 ⊗ sgnn. So by Proposition 3.6, the lemma is true for M1. By
Lemma 4.1, the leftmost term above has ν ≥ n + 1. Since the middle term has
ν = n, we see (from Proposition 3.4) that the rightmost term is nonzero and has
ν = n, which completes the proof. �
Proposition 4.3. Let M be a finite length complex of finitely generated torsion
FI-modules. Put

ρ = max
i∈Z

(i+maxdegHi(M)).

Then the regularity of M is ρ. Moreover, if r is minimal so that ρ = r+
maxdegHr(M), then

ν(Torn(M)n+ρ) = n+ r

for all n � 0.

Proof. Let j be the minimal index so that Hj(M) �= 0; we may as well assume
that M i = 0 for i < j. Let M1 be the kernel of d : M j → M j+1, regarded as a
complex concentrated in degree j, let M2 = M , and let M3 = M2/M1, so that
we have a short exact sequence of complexes. Note that Hj(M1) → Hj(M2) is an
isomorphism and Hi(M2) → Hi(M3) is an isomorphism for all i > j. Since M3 has
fewer nonzero cohomology groups than M2, we can assume (by induction) that the
proposition holds for M3. The proposition holds for M1 by Lemma 4.2. We have
an exact sequence

Torn+1(M3)n+ρ → Torn(M1)n+ρ → Torn(M2)n+ρ → Torn(M3)n+ρ → 0.

Note that Torn−1(M1)n+ρ = 0, since the regularity of M1 is at most ρ, which is
why we have a 0 on the right. We now consider two cases:

• Case 1: j = r. We then have that ν(Torn(M1)n+ρ) = n+r. By Lemma 4.1,
ν(Torn+1(M3)n+ρ) > n + r. If there exists s > r such that ρ = s +
maxdegHs(M) (and is chosen to be the smallest such s), then M3 has
regularity ρ and ν(Torn(M3)n+ρ) = n+ s > n+ r for n � 0; otherwise, M3

has regularity < ρ and Torn(M3)n+ρ = 0. Thus the two outside terms in
the above 4-term sequence have ν > n+ r (or vanish), and so Tor2(M2)n+ρ

is nonzero and has ν = n+ r.
• Case 2: j �= r. In this case,M1 has regularity< ρ, and so Torn(M1)n+ρ = 0.
Thus Torn(M2)n+ρ = Torn(M3)n+ρ, and the result follows by the inductive
hypothesis. �

We now prove our main result.

Proof of Theorem 1.1. Let T → M → F → be the exact triangle as in Theorem 2.5.
By taking Tor we get a long exact sequence

· · · → Torn(T ) → Torn(M) → Torn(F ) → · · · .
Note that F is represented by a bounded complex of semi-induced modules and
that higher Tor groups of semi-induced modules are zero. Hence F ⊗L

A k is com-
puted by the usual tensor product F ⊗A k. Since F is concentrated in nonnegative
cohomological degrees, this shows that Torn(F ) = 0 for n > 0. Thus, by the long
exact sequence above, we have Torn(T ) = Torn(M) for n > 0. Thus

reg(M) = max(t0(M), reg(T )).
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By Proposition 2.7, we have Hi(T ) = Hi
m(M) for all i, and so maxdeg(Hi(T )) =

hi(M). The theorem therefore follows from Proposition 4.3. �
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