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PERIODIC ORBIT ANALYSIS
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ZUOWEI CAI, JIANHUA HUANG, AND LIHONG HUANG

(Communicated by Wenxian Shen)

Abstract. In this paper, a general class of the delayed differential equation
with a discontinuous right-hand side is considered. Under the extended Filip-
pov differential inclusions framework, some new criteria are obtained to guar-
antee the existence of a periodic solution by employing Kakutani’s fixed point
theorem of set-valued maps and matrix theory. Then, we apply these criteria to
the time-delayed neural networks with discontinuous neuron activations. Our

analysis method and theoretical results are of great significance in the design
of time-delayed neural network circuits with discontinuous neuron activation
under a periodic environment.

1. Introduction

In practice, discontinuities arise naturally and are often caused by control actions
of many interesting engineering tasks. For instance, the discontinuous feedback
controllers are used to realize the stabilization or synchronization, neural network
circuits are implemented by memristor possessing a discontinuous switching prop-
erty, thermostats implement on-off or discontinuous controllers to regulate room
temperature, etc. [7, 10, 14, 25, 29]. On the other hand, time-delays are inevitable
because of the finite processing time of signals and the energy propagating with a
finite speed [13]. Actually, many practical dynamical systems exhibit time-delay
phenomenon and so possess memory feature. That is, the future state of the system
not only depends upon the current state but also upon the past state. Generally
speaking, these practical dynamical systems are usually described by the time-
delayed differential equations with discontinuous right-hand sides when both the
time-delays and discontinuities exist in such dynamical systems. However, the tra-
ditional time-delayed differential equation theory is invalid to deal with the solutions
of discontinuous dynamical systems with time-delays. That is because the existence
of a continuously differentiable solution is not guaranteed in a discontinuous vector
field. Fortunately, in 1964, Filippov developed the theory of differential inclusion
to handle an ordinary differential equation whose right-hand side was only required
to be Lebesgue measurable in the time and state variables [9]. By constructing
the Filippov set-valued map (i.e., Filippov-regularization method), the solution of
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ordinary differential equations could be transformed into a solution of differential
inclusion. After that, the time-delayed differential inclusion in the sense of Filippov
(that is, time-delayed Filippov system) was further developed [2, 3, 11, 12, 15, 23].
In 1981, a systematic introduction for the solution sets of time-delayed differential
inclusion was given by Haddad [12]. In 1984, Aubin and Cellina presented the prop-
erties of the set of solution trajectories for time-delayed differential inclusion [2]. In
[3] and [23], Benchohra and Lupulescu investigated the existence of the solutions
for convex and nonconvex time-delayed differential inclusion, respectively. In [15],
Hong discussed the existence of functional differential inclusion with infinite delay.
However, most of the previous results on time-delayed differential inclusion were
mainly concerned with the fundamental questions of solutions (e.g., the local and
global existence of the Filippov solution). To the best of our knowledge, the results
on periodic orbit analysis for the time-delayed Filippov system are still few.

In many real applications, the study of periodic orbit is of great significance. For
example, in the field of neural networks, the periodic orbit analysis is an important
step for understanding the function of the human brain and further enables us to
simulate the human brain under periodic environment. Up to now, much atten-
tion has been paid to analyzing periodic orbit problems of differential inclusions
[5,6,8,17–20,26,28,30]. The authors of [17] obtained the existence of periodic solu-
tions for nonconvex differential inclusions based on degree theory arguments. Also,
the existence of periodic solutions for nonconvex differential inclusions was proved
by using a continuous selection theorem in [26] and [18]. By constructing the topo-
logical degree for the Poincaré maps, the authors of [5] studied the periodic solution
problem of differential inclusion under a guiding potential condition. In [8], some
fixed point theorems of discontinuous set-valued operators were improved and fur-
ther applied to solve the periodic boundary value problem for differential inclusion.
In [20], by generalizing Halanay’s criterion, Yoshizawa’s theorem, Krasnosel’skii’s
theorem and Mawhin’s coincidence degree theorem, the existence problem of peri-
odic solutions for differential inclusion was investigated. In [6, 19, 30], the periodic
problem of differential inclusions was dealt with by using the Leray-Schauder alter-
native principle. In [28], the existence of periodic solutions for nonlinear differential
inclusions with multi-valued perturbations was investigated based on Schauder’s
fixed point theorem and Kakutani’s fixed point theorem. However, all these pa-
pers mentioned above did not consider the case of time-delay. For this reason, we
consider the existence of a periodic solution for time-delayed differential inclusion
in the sense of Filippov. In this paper, our approach is different from those of
[1–3, 10, 21, 26] and our conclusions hold under more general conditions.

Notation. Let R be the set of real numbers and let Rn denote the n-dimensional
Euclidean space. For x ∈ Rn, ‖x‖ represents any vector norm of x. For the matrix
Q = (qij)n×n, Q−1 represents the inverse of Q, and En stands for the identity
matrix of size n. 0 denotes a zero matrix or zero vector. A vector or matrix U ≥ 0
means that all entries of U are greater than or equal to zero, and U > 0 can be
defined similarly. For given vectors or matrices U and V , U ≥ V (or U > V ) means
that U − V ≥ 0 (or U − V > 0). Let L1([0, ξ),Rn), ξ ≤ +∞ denote the Banach
space of the Lebesgue integrable functions g : [0, ξ) :→ Rn equipped with the norm
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0
‖g(t)‖dt. For any continuous ω-periodic function h(t) defined on R, we denote

h =
1

ω

∫ ω

0

h(t)dt, ĥ =
1

ω

∫ ω

0

|h(t)|dt, hM = sup
t∈[0,ω]

|h(t)|, hL = inf
t∈[0,ω]

|h(t)|.

2. Preliminaries

In this section, we give some useful definitions and lemmas on set-valued analysis,
delayed differential inclusions and matrix theory, which will be needed in the devel-
opment. For more details, the readers may consult [1, 2, 4, 7, 9, 16, 21, 22, 24, 27, 31].

Let Rn(n ≥ 1) have inner product 〈·, ·〉 and induced norm ‖·‖. For givenX ⊆ Rn,
we introduce some useful notation as follows:

P0(X) = {A ⊂ X : A �= ∅}, P(X) = P0(X) ∪ {∅},
Pkc(X) = {A ⊂ X : nonempty compact and convex}.

For convenience, we sometimes denote 2X = P0(X). For X ⊆ Rn, we say the map
x �→ F (x) is a set-valued map from X ↪→ P(Rn) if to each point x of the set X
there corresponds a nonempty set F (x) ⊂ Rn. We say a set-valued map F with
nonempty values is upper semi-continuous (USC) at x0 ∈ X if for any open set N
containing F (x0) there exists a neighborhood M of x0 such that F (M) ⊂ N.

Now we introduce the concept of the Filippov solution by constructing the
Filippov set-valued map [9]. Let τ > 0 denote a given real number and let
Cτ = C([−τ, 0],Rn) represent the Banach space of continuous functions φ =
(φ1, φ2, . . . , φn)

T mapping the interval [−τ, 0] into Rn with the supremum norm

‖φ‖Cτ
=

n∑
i=1

|φi|0, where |φi|0 = sup
−τ≤s≤0

|φi(s)|. If for ξ ∈ (0,+∞], x(t) : [−τ, ξ) →

Rn is continuous, then xt ∈ Cτ is defined by xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0 for any
t ∈ [0, ξ). Consider the following nonautonomous delayed differential equation:

dxi(t)

dt
= −bi(t)xi(t) + fi(t, xt),(2.1)

where t denotes time; xi(t) is the state variable; xt(·) represents the history of the
state from time t − τ , up to the present time t; dxi(t)/dt is the time derivative of
xi(t); bi : R → R is continuous; fi : R × Cτ → R is measurable and essentially
locally bounded. In this case, fi(t, xt) is allowed to be discontinuous. In addition,
for fixed ω > 0, bi(t) = bi(t+ ω) and fi(t, φ) = fi(t+ ω, φ) for φ ∈ Cτ .

The equation (2.1) can be transformed into the following vector form:

dx(t)

dt
= −B(t)x(t) + f(t, xt),(2.2)

where x(t)= (x1(t), x2(t), . . . , xn(t))
T, f(t, xt)= (f1(t, xt), f2(t, xt), . . . , fn(t, xt))

T,
and the matrix B(t) = diag(b1(t), b1(t), . . . , bn(t)).

Construct the Filippov set-valued map F = (F1, F2, . . . , Fn)
T : R× Cτ → 2R

n

:

F (t, xt) =
⋂
�>0

⋂
meas(N )=0

co[f(t,B(xt, �) \ N )].(2.3)

Here meas(N ) stands for the Lebesgue measure of set N ; intersection is taken
over all sets N of Lebesgue measure zero and over all � > 0; B(xt, �) := {x′

t ∈ Cτ |
‖x′

t − xt‖Cτ
< �}; co[E] denotes the closure of the convex hull of some set E.
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Definition 2.1. We say the function x(t) defined on a nondegenerate interval I ⊆ R

is a Filippov solution for delayed differential equation (2.1) or (2.2) if it is absolutely
continuous on any compact subinterval [t1, t2] of I, and for a.e. t ∈ I, x(t) satisfies
the following delayed differential inclusion:

dx(t)

dt
∈ −B(t)x(t) + F (t, xt).(2.4)

The initial condition associated with system (2.1) or (2.2) is given as

xi(s) = φi(s), s ∈ [−τ, 0], i = 1, 2, . . . , n,

where φ(s) = (φ1(s), φ2(s), . . . , φn(s))
T ∈ C([−τ, 0],Rn). Because f(t, xt) is essen-

tially locally bounded, it is easy to check that the set-valued function F : R×Cτ →
2R

n

is USC with nonempty, compact, convex values and locally bounded.

Lemma 2.2 (Kakutani’s fixed point theorem [2]). If Ω is a compact convex subset
of a Banach space X and the set-valued map ϕ : Ω → Pkc(Ω) is an upper semi-
continuous (USC) convex compact map, then ϕ has a fixed point in Ω, that is to
say, there exists x ∈ Ω such that x ∈ ϕ(x).

For convenience, set Iω = [0, ω]. Let F (t, xt)=(F1(t, xt), F2(t, xt), . . . , Fn(t, xt))
T

be a set-valued function and let L1(Iω,Rn) represent the Banach space of all func-
tions γ = (γ1, γ2, . . . , γn)

T : Iω → Rn which are Lebesgue integrable. Let us define
a set-valued operator

F = (F1,F2, . . . ,Fn)
T : X → L1(Iω,Rn)(2.5)

by letting

Fi(x) =
{
γi ∈ L1(Iω,R) : γi(t) ∈ Fi(t, xt) for a.e. t ∈ I

ω
}
, i = 1, 2, . . . , n.

Definition 2.3 (See [16, 27]). We say a set-valued function F : Iω × X → 2X is
L1-Carathéodory if

(i) t → F (t, z) is measurable with respect to t for each z ∈ X;
(ii) t → F (t, z) is USC with respect to z for a.e. t ∈ Iω;
(iii) for every real number � > 0 there exists a function �� ∈ L1(Iω,R) such

that
∣∣∣∣∣∣F (t, z)

∣∣∣∣∣∣ ≤ ��(t) for a.e. t ∈ Iω and any z ∈ X with ‖z‖ ≤ �, where∣∣∣∣∣∣F (t, z)
∣∣∣∣∣∣ = sup{‖γ‖ : γ ∈ F (t, z)}.

If only the assumptions (i) and (ii) hold, then F is said to be Carathéodory.

Lemma 2.4 (See [22]). Suppose that diam(X) < ∞ and F : Iω × X → 2X is
L1-Carathéodory; then the set F (x) is nonempty for every fixed x ∈ X.

Lemma 2.5 (See [16, 24, 27]). For given compact real interval Iω = [0, ω], if F
is a Carathéodory set-valued map with F (x) �= ∅ for every fixed x ∈ X and L :
L1 (Iω,Rn) → C(Iω) is a continuous linear mapping, then the operator L ◦ F :
C(Iω) → 2C(Iω) is a closed graph operator in C(Iω)× C(Iω).

Definition 2.6. We say a real invertible n×n matrix Q = (qij)n×n is an M-matrix,
if qij ≤ 0 for all i, j = 1, 2, . . . , n, i �= j and Q−1 ≥ 0.

Lemma 2.7 (See [21]). Let Q = (qij)n×n be an n × n matrix with nonpositive
off-diagonal elements, then Q is a nonsingular M -matrix if and only if one of the
following statements holds:

(i) all of the principal minors of Q are positive;
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(ii) there exists a η = (η1, η2, . . . , ηn)
T > (0, 0, . . . , 0)T such that Qη > 0;

(iii) all diagonal elements of Q are positive and there exists a diagonal matrix
� = diag(λ1, λ2, . . . , λn) with λi > 0(i = 1, 2, . . . , n) such that Q� is strictly
diagonally dominant, that is to say, qiiλi >

∑
j �=i

|qij |λj , i = 1, 2, . . . , n.

Lemma 2.8 (See [4]). Let Q = (qij)n×n be an n × n matrix with Q ≥ 0 and let
ρ(Q) be the spectral radius of Q. If ρ(Q) < 1, then En −Q is an M-matrix.

Lemma 2.9 (See [4]). Let U = (uij)n×n and V = (vij)n×n be nonnegative matrixes
with U ≥ V ; then the spectral radius satisfies ρ(U) ≥ ρ(V ).

3. Main results

In this section, by using extended Filippov framework, Kakutanni’s fixed point
theorem of set-valued maps and matrix theory, we prove the main results on the
existence of periodic orbits for the delayed differential inclusion (2.4). First, let

Cω = {x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ C(R,Rn) : x(t+ ω) = x(t), ∀t ∈ R}.

Define the supremum norm

‖x‖Cω
=

n∑
i=1

|xi|0, |xi|0 = sup
t∈[0,ω]

|xi(t)|, i = 1, 2, . . . , n.

Then Cω is a Banach space endowed with the above norm ‖ · ‖Cω
. Based on

Definition 2.1, if x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Cω is a Filippov solution of

delayed system (2.1) or (2.2), then we can get from (2.4) that

d

dt

[
xi(t)exp

{∫ t

0

bi(s)ds

}]
∈ exp

{∫ t

0

bi(s)ds

}
Fi(t, xt), for a.e. t ≥ 0,(3.1)

where i = 1, 2, . . . , n, Fi(t, xt) is the ith component of Filippov set-valued map
F (t, xt) given by (2.3).

By integrating both sides of delayed differential inclusion (3.1) over the interval
[t, t+ ω], we can obtain the following nonlinear integral inclusions:

xi(t) ∈
∫ t+ω

t

Gi(t, s)Fi(s, xs)ds, for t ≥ 0, i = 1, 2, . . . , n,(3.2)

where Gi(t, s) denotes Green’s function and it is described by

Gi(t, s) =
1

1− exp{−ωbi}
exp

{
−
∫ t+ω

s

bi(σ)dσ

}
, for t ≤ s ≤ t+ ω.(3.3)

Clearly, the denominator of Green’s function Gi(t, s) is not zero, and Gi(t, s) =
Gi(t + ω, s + ω) for all (t, s) ∈ R2. If x(t) is an ω-periodic Filippov solution of
system (2.1) or (2.2), then it is easy to find that each ω-periodic Filippov solution
of system (2.1) or (2.2) is an ω-periodic solution of integral inclusions (3.2) and
the converse is also true. Hence, the existence of an ω-periodic solution for system
(2.1) or (2.2) in the sense of Filippov is equivalent to the existence of an ω-periodic
solution for integral inclusions (3.2). For t ≤ s ≤ t + ω and i = 1, 2, . . . , n, we can
obtain from (3.3) that

Gi(t, s) ≤ |Gi(t, s)| ≤
exp{ωb̂i}

|1− exp{−ωbi}|
� Gmax

i ,(3.4)
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where bi =
1
ω

∫ ω

0
bi(t)dt, b̂i =

1
ω

∫ ω

0
|bi(t)|dt. For convenience, let us set Ψ(u, v) by

Ψ(u, v) =
1

1− exp{−ωv} sup
t∈[0,ω]

∫ ω

0

u(s+ t) · exp
{
−
∫ ω

s

v(σ + t)dσ

}
ds,

where u(t) and v(t) are any ω-periodic functions on R.

Theorem 3.1. Suppose that the following conditions are satisfied:

(H 1) For each i = 1, 2, . . . , n, bi =
1
ω

∫ ω

0
bi(s)ds > 0.

(H 2) There exist constants Rj > 0 and nonnegative continuous ω-periodic func-
tions αij(t) and βi(t)(i, j = 1, 2, . . . , n) such that

sup
γi∈Fi(t,φ)

|γi| ≤
n∑

j=1

αij(t)Rj + βi(t) for φ ∈ Cτ with |φj |0 ≤ Rj , j = 1, 2, . . . , n,

and (En−Θ)(R1,R2, . . . ,Rn)
T>(β̆1, β̆2, . . . , β̆n)

T; here Θ=(Ψ(αij , bi))n×n

and β̆i = Ψ(βi, bi) for i = 1, 2, . . . , n.

Then the delayed system (2.1) or (2.2) has at least one ω-periodic solution.

Proof. Let us choose a compact convex subset Ω ⊂ Cω defined by

Ω =
{
x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈ Cω : |xi|0 ≤ Ri, i = 1, 2, . . . , n
}
.(3.5)

For any x ∈ Cω, let us define a set-valued map ϕ : Cω → Pkc(Cω) given by

ϕ(x)(t) = (ϕ1(x)(t), ϕ2(x)(t), . . . , ϕn(x)(t))
T,(3.6)

where

ϕi(x)(t) =

∫ t+ω

t

Gi(t, s)Fi(s, xs)ds, i = 1, 2, . . . , n.(3.7)

Recalling the formulas (3.2), (3.6) and (3.7), it is not difficult to verify that x∗(t) =
(x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))

T ∈ Cω is an ω-periodic solution of delayed system (2.1) or
(2.2) provided that x∗(t) is a fixed point of the set-valued map ϕ in Ω. Actually, if
x∗(t) ∈ Cω is a fixed point of the set-valued map ϕ in Ω, then x∗(t) ∈ ϕ(x∗)(t) =

(ϕ1(x
∗)(t), ϕ2(x

∗)(t), . . . , ϕn(x
∗)(t))T, where ϕi(x

∗)(t) =
∫ t+ω

t
Gi(t, s)Fi(s, x

∗
s)ds,

i = 1, 2, . . . , n. That is, x∗(t) is a solution of integral inclusion (3.2). It is noted
that x∗(t) ∈ Cω = {x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈ C(R,Rn) : x(t + ω) =
x(t), ∀t ∈ R}. This means that x∗(t + ω) = x∗(t), i.e., x∗(t) is an ω-periodic
function. Thus, x∗(t) is an ω-periodic solution of integral inclusion (3.2), and so
x∗(t) is an ω-periodic solution of system (2.1) or (2.2). �

In the following, we will solve the fixed point problem by using Kakutanni’s fixed
point theorem (see Lemma 2.2). The discussion will be divided into four steps.

Step 1. Let us prove that the set-valued map ϕ maps Ω into Pkc(Ω), i.e., ϕ(x) ∈
Pkc(Ω) for each fixed x ∈ Ω.

To see this, let x = (x1, x2, . . . , xn)
T ∈ Ω and ζ = (ζ1, ζ2, . . . , ζn)

T ∈ ϕ(x). Then
there exists measurable function γ = (γ1, γ2, . . . , γn)

T : [−τ, ξ) → Rn such that
γi(t) ∈ Fi(t, xt)(i = 1, 2, . . . , n) for a.e. t ∈ [−τ, ξ) and

ζi(t) =

∫ t+ω

t

Gi(t, s)γi(s)ds ∈
∫ t+ω

t

Gi(t, s)Fi(s, xs)ds = ϕi(x)(t).(3.8)
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Notice that

ζi(t) =

∫ t+ω

t

Gi(t, s)γi(s)ds

=
1

1− exp{−ωbi}

∫ t+ω

t

γi(s)exp

{
−
∫ t+ω

s

bi(σ)dσ

}
ds

=
1

1− exp{−ωbi}

∫ ω

0

γi(s+ t)exp

{
−
∫ ω

s

bi(σ + t)dσ

}
ds.(3.9)

Therefore, for any t ∈ [0, ω], x ∈ Cω with |xi|0 ≤ Ri, i = 1, 2, . . . , n, we can obtain
from the condition (H 2) and (3.9) that

|ζi(t)| ≤
1

1− exp{−ωbi}

∫ ω

0

|γi(s+ t)|exp
{
−
∫ ω

s

bi(σ + t)dσ

}
ds

≤ 1

1− exp{−ωbi}

∫ ω

0

(

n∑
j=1

αij(s+ t)Rj+βi(s+ t))exp{−
∫ ω

s

bi(σ + t)dσ}ds

≤
n∑

j=1

Rj
1

1− exp{−ωbi}
sup

t∈[0,ω]

∫ ω

0

αij(s+ t)exp

{
−
∫ ω

s

bi(σ + t)dσ

}
ds

+
1

1− exp{−ωbi}
sup

t∈[0,ω]

∫ ω

0

βi(s+ t)exp

{
−
∫ ω

s

bi(σ + t)dσ

}
ds

=

n∑
j=1

Ψ(αij , bi)Rj + β̆i < Ri, i = 1, 2, . . . , n.

(3.10)

Hence, for any x ∈ Ω and ζ ∈ ϕ(x), we have ζ ∈ Ω. Consequently, ϕ(x) ∈ Pkc(Ω)
for each fixed x ∈ Ω, that is to say, ϕ : Ω → Pkc(Ω).

Step 2. We will prove that the set-valued map ϕ(x) is convex for each x ∈ Ω.
In fact, for any x = (x1, x2, . . . , xn)

T ∈ Ω, let ζ = (ζ1, ζ2, . . . , ζn)
T ∈ ϕ(x)

and ζ∗ = (ζ∗1 , ζ
∗
2 , . . . , ζ

∗
n)

T ∈ ϕ(x). Then there exists measurable function γ =
(γ1, γ2, . . . , γn)

T : [−τ, ξ) → Rn such that γi(t) ∈ Fi(t, xt)(i = 1, 2, . . . , n) for
a.e. t ∈ [−τ, ξ) and (3.8) holds. Meanwhile, there also exists measurable function
γ∗ = (γ∗

1 , γ
∗
2 , . . . , γ

∗
n)

T : [−τ, ξ) → Rn such that γ∗
i (t) ∈ Fi(t, xt)(i = 1, 2, . . . , n) for

a.e. t ∈ [−τ, ξ) and

ζ∗i (t) =

∫ t+ω

t

Gi(t, s)γ
∗
i (s)ds ∈

∫ t+ω

t

Gi(t, s)Fi(s, xs)ds = ϕi(x)(t).(3.11)

From (2.3), it can be seen that Fi(s, xs) is convex. That is, for 0 ≤ λ ≤ 1,
λγi(s) + (1 − λ)γ∗

i (s) ∈ Fi(s, xs) for a.e. s ≥ 0 and all i = 1, 2, . . . , n. Therefore,
for all t ∈ [0, ω], we have

λζi(t) + (1− λ)ζ∗i (t) =

∫ t+ω

t

Gi(t, s)[λγi(s) + (1− λ)γ∗
i (s)]ds

∈
∫ t+ω

t

Gi(t, s)Fi(s, xs)ds = ϕi(x), i = 1, 2, . . . , n,

and so
λζ(t) + (1− λ)ζ∗(t) ∈ ϕ(x).

This means that ϕ(x) is a convex set in Ω for each x ∈ Ω.
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Step 3. We will prove that the set-valued map ϕ : Ω → Pkc(Ω) is compact.
According to the Ascoli-Arzela theorem, it is sufficient to prove that ϕ(Ω) is a

uniformly bounded and equi-continuous set. First, we show that ϕ(Ω) is a uniformly
bounded set. To see this, let x = (x1, x2, . . . , xn)

T ∈ Ω and ζ = (ζ1, ζ2, . . . , ζn)
T ∈

ϕ(x) be arbitrary. Then there exists measurable function γ = (γ1, γ2, . . . , γn)
T :

[−τ, ξ) → Rn such that γi(t) ∈ Fi(t, xt)(i = 1, 2, . . . , n) for a.e. t ∈ [−τ, ξ) and
(3.8) still holds. Clearly, for any x ∈ Ω, it follows from (3.10) that

n∑
i=1

|ζi(t)| <
n∑

i=1

Ri � Rsum,(3.12)

which implies

‖ζ(t)‖Cω
=

n∑
i=1

sup
t∈[0,ω]

|ζi(t)| < Rsum, ∀ x ∈ Ω.(3.13)

This shows that ϕ(Ω) is a uniformly bounded set for all x ∈ Ω.
Next, we will show that ϕ(Ω) is an equi-continuous set. For this purpose, let

t, t∗ ∈ [0, ω]; then for any ζ ∈ ϕ(Ω) and every i = 1, 2, . . . , n, we can obtain from
(3.4) and (3.8) that

|ζi(t)− ζi(t
∗)| =

∣∣∣∣∣
∫ t+ω

t

Gi(t, s)γi(s)ds−
∫ t∗+ω

t∗
Gi(t

∗, s)γi(s)ds

∣∣∣∣∣
≤

∣∣∣∣∫ t+ω

t

Gi(t, s)γi(s)ds−
∫ t+ω

t

Gi(t
∗, s)γi(s)ds

∣∣∣∣
+

∣∣∣∣∣
∫ t+ω

t

Gi(t
∗, s)γi(s)ds−

∫ t∗+ω

t∗
Gi(t

∗, s)γi(s)ds

∣∣∣∣∣
≤

∣∣∣∣∫ t+ω

t

[Gi(t, s)−Gi(t
∗, s)] γi(s)ds

∣∣∣∣
+

∣∣∣∣∫ t

t∗
Gi(t

∗, s)γi(s)ds

∣∣∣∣+ ∣∣∣∣∫ t+ω

t∗+ω

Gi(t
∗, s)γi(s)ds

∣∣∣∣
≤ max

t≤s≤t+ω
{|Gi(t, s)−Gi(t

∗, s)|}
∫ ω

0

|γi(s)|ds

+Gmax
i

∣∣∣∣∫ t

t∗
|γi(s)|ds

∣∣∣∣+Gmax
i

∣∣∣∣∫ t+ω

t∗+ω

|γi(s)|ds
∣∣∣∣ , ∀ x ∈ Ω.(3.14)

Obviously, for any x ∈ Ω and each i = 1, 2, . . . , n, it follows from (H 2) that

|γi(t)| ≤ sup
γi(t)∈Fi(t,φ)

|γi(t)| ≤
n∑

j=1

αij(t)Rj + βi(t) ≤
n∑

j=1

αM
ij Rj + βM

i � Si.

(3.15)

From (3.14) and (3.15), we can obtain that

|ζi(t)− ζi(t
∗)| ≤ max

t≤s≤t+ω
{|Gi(t, s)−Gi(t

∗, s)|}ωSi + 2Gmax
i Si|t− t∗|, ∀ x ∈ Ω.

As t → t∗, the right-hand side of the above inequality tends to zero. Thus, we have
‖ζ(t)− ζ(t∗)‖ → 0 as t → t∗, where ‖ · ‖ denotes any vector norm. This shows that
ϕ(Ω) is an equi-continuous set in Cω.
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Step 4. We will prove that the set-valued map ϕ : Ω → Pkc(Ω) is upper semi-
continuous (USC).

It should be pointed out that the upper semi-continuity (USC) of a set-valued
map is equivalent to the condition of being a closed graph operator when the map
has nonempty compact values. Therefore, we need only to prove that the set-
valued map ϕ is a closed graph operator. Actually, according to Definition 2.3,
we can see that F (t, xt) = (F1(t, xt), F2(t, xt), . . . , Fn(t, xt))

T defined in (2.3) is an
L1-Carathéodory set-valued map. Recalling the set-valued operator F defined by
(3.2), we can obtain from Lemma 2.4 that F (x) �= ∅ for each fixed x ∈ Cω. Now,
let us define a continuous linear operator L : L1 (Iω,Rn) → C(Iω) given by

Lγ(t) =

⎛⎜⎜⎜⎜⎝
∫ t+ω

t
G1(t, s)γ1(s)ds∫ t+ω

t
G2(t, s)γ2(s)ds

...∫ t+ω

t
Gn(t, s)γn(s)ds

⎞⎟⎟⎟⎟⎠ , t ∈ I
ω.

By Lemma 2.5, it follows that ϕ = L ◦ F is a closed graph operator. That is, we
have proven that the set-valued map ϕ is USC.

By now, we have proven that all the requirements of Lemma 2.2 are satisfied;
then the set-valued map ϕ : Ω → Pkc(Ω) has at least one fixed point x∗(t) =
(x∗

1(t), x
∗
2(t), . . . , x

∗
n(t))

T ∈ Ω such that x∗(t) ∈ ϕ(x∗)(t). Therefore, there exists at
least one ω-periodic solution of delayed system (2.1) or (2.2). The proof is complete.

Corollary 3.2. Suppose that (H 1) is satisfied and assume further that:

(H 3) There exist nonnegative continuous ω-periodic functions αij(t) and βi(t)
(i, j = 1, 2, . . . , n) such that for any φ = (φ1, φ2, . . . , φn)

T ∈ Cτ ,

sup
γi∈Fi(t,φ)

|γi| ≤
n∑

j=1

αij(t)|φj |0 + βi(t), i = 1, 2, . . . , n.

(H 4) En −Θ is an M-matrix, where Θ = (Ψ(αij , bi))n×n.

Then the delayed system (2.1) or (2.2) has at least one ω-periodic solution.

Proof. Since En − Θ is an M-matrix, we can deduce from Lemma 2.7 that there
exists a vector η = (η1, η2, . . . , ηn)

T > (0, 0, . . . , 0)T such that

ϑ = (ϑ1, ϑ2, . . . , ϑn)
T = (En −Θ)η > 0.

Let β̆i = Ψ(βi, bi) for i = 1, 2, . . . , n. We can select a sufficiently large constant

O > 0 such that Oϑi > β̆i for each i = 1, 2, . . . , n. Let us denote Ri = Oηi,
i = 1, 2, . . . , n. Then we have

(En −Θ)(R1,R2, . . . ,Rn)
T > (β̆1, β̆2, . . . , β̆n)

T.

On the other hand, we can obtain from (H 3) that

sup
γi∈Fi(t,φ)

|γi| ≤
n∑

j=1

αij(t)Rj + βi(t) for φ ∈ Cτ with |φj |0 ≤ Rj , j = 1, 2, . . . , n.

This means that the condition (H 2) is satisfied. According to Corollary 3.2, the
delayed system (2.1) or (2.2) has at least one ω-periodic solution. The proof is
complete. �

According to Lemma 2.8 and Corollary 3.2, we can obtain the Corollary 3.3.
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Corollary 3.3. Suppose that (H 1) and (H 3) are satisfied and assume further
that ρ(Θ) < 1, where Θ = (Ψ(αij , bi))n×n. Then the system (2.1) or (2.2) has at
least one ω-periodic solution.

Corollary 3.4. Suppose that (H 1) and (H 3) are satisfied and bLi ≥ 0 for each

i = 1, 2, . . . , n. Assume further that ρ(W ) < 1, where W =

(
ωαM

ij

1−exp{−ωbi}

)
n×n

.

Then the delayed system (2.1) or (2.2) has at least one ω-periodic solution.

Proof. Since bLi ≥ 0 for each i = 1, 2, . . . , n, we can obtain

Ψ(αij , bi) =
1

1− exp{−ωbi}
sup

t∈[0,ω]

∫ ω

0

αij(s+ t) · exp
{
−
∫ ω

s

bi(σ + t)dσ

}
ds

≤ 1

1− exp{−ωbi}
sup

t∈[0,ω]

∫ ω

0

αij(s+ t)ds

≤
ωαM

ij

1− exp{−ωbi}
.

Let W =

(
ωαM

ij

1−exp{−ωbi}

)
n×n

. Obviously, we have 0 ≤ Θ ≤ W . By virtue of Lemma

2.9, we can get that ρ(Θ) ≤ ρ(W ). According to Corollary 3.3, the delayed system
(2.1) or (2.2) has at least one ω-periodic solution. The proof is complete. �
Corollary 3.5. Suppose that (H 1) and (H 3) are satisfied and bLi > 0 for each

i = 1, 2, . . . , n. Assume further that ρ(Z) < 1, where Z =

(
αM

ij

bLi

)
n×n

. Then the

system (2.1) or (2.2) has at least one ω-periodic solution.

Proof. Since bi(t) is an ω-periodic function and bLi > 0, it follows that

Ψ(αij , bi)

=
1

1− exp{−ωbi}
sup

t∈[0,ω]

∫ ω

0

αij(s+ t) · exp
{
−
∫ ω

s

bi(σ + t)dσ

}
ds

≤ 1

1− exp{−ωbi}
·
αM
ij

bLi
· sup
t∈[0,ω]

∫ ω

0

bi(s+ t) · exp
{
−
∫ ω

s

bi(σ + t)dσ

}
ds

=
1

1− exp{−ωbi}
·
αM
ij

bLi
· sup
t∈[0,ω]

[
1− exp

{
−
∫ ω

0

bi(σ + t)dσ

}]
=

1

1− exp{−ωbi}
·
αM
ij

bLi
· sup
t∈[0,ω]

[
1− exp

{
−
∫ ω

0

bi(θ)dθ

}]
=

1

1− exp{−ωbi}
·
αM
ij

bLi
·
(
1− exp{−ωbi}

)
=

αM
ij

bLi
.

Let Z =

(
αM

ij

bLi

)
n×n

. It is clear that 0 ≤ Θ ≤ Z. By virtue of Lemma 2.9, we can

obtain that ρ(Θ) ≤ ρ(Z). According to Corollary 3.3, the delayed system (2.1) or
(2.2) has at least one ω-periodic solution. The proof is complete. �
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4. Applications to neural networks

Consider a class of neural networks described by the delayed differential equations
with discontinuous right-hand sides as follows:

dxi(t)

dt
=− bi(t)xi(t) +

n∑
j=1

aij(t)gj(xj(t)) +

n∑
j=1

cij(t)gj(xj(t− τij(t))) + Ji(t),

(4.1)

where i = 1, 2, . . . , n, xi(t) stands for the state variable of the potential of the ith
neuron at time t; bi(t) denotes the self-inhibition of the ith neuron at time t; aij(t)
and cij(t) are the connection weights between the jth unit and the ith unit at
time t, respectively; gj(·) represents the activation function of the jth neuron; Ji(t)
denotes neuron input at time t; τij(t) stands for the time-varying transmission delay
at time t and is a continuous ω-periodic function satisfying 0 ≤ τij(t) ≤ τ, τ =
max

1≤i,j≤n
{τMij }. We always assume that bi(t), aij(t), cij(t), Ji(t) are continuous ω-

periodic functions on R and
∫ ω

0
bi(s)ds > 0. The discontinuous activation functions

in (4.1) are assumed to satisfy the following conditions:

(H 5) gi : R → R is continuous except on a countable set of isolated points {ρik},
where there exist finite right and left limits, g+i (ρ

i
k) and g−i (ρ

i
k), respectively.

Moreover, gi has at most a finite number of discontinuities on any compact
interval of R.

(H 6) There exist nonnegative constants �i and pi such that

sup
Ii∈co[gi(xi)]

|Ii| ≤ �i|xi|+ pi, ∀xi ∈ R,

where, for θ ∈ R, co[gi(θ)] =
[
min{g−i (θ), g+i (θ)},max{g−i (θ), g+i (θ)}

]
.

Let x(t) denote a solution of system (4.1) with given initial condition φ(s) =
(φ1(s), φ2(s), . . . , φn(s))

T ∈ C([−τ, 0],Rn). By constructing the Filippov set-valued
map, it is easy to see that if x(t) is a Filippov solution of (4.1), then it is a solution
of the following delayed differential inclusion (4.2):

dxi(t)

dt
∈ − bi(t)xi(t) +

n∑
j=1

aij(t)co[gj(xj(t))]

+

n∑
j=1

cij(t)co[gj(xj(t− τij(t)))] + Ji(t)

� −bi(t)xi(t) + Fi(t, xt), for a.e. t ≥ 0.(4.2)

Clearly, the set-valued map F = (F1, F2, . . . , Fn)
T is USC with nonempty, com-

pact, convex values and locally bounded. So, it is measurable. By measurable se-
lections Theorem [10], there exists a measurable function I = (I1,I2, . . . ,In)

T :
[−τ,+∞) → Rn such that Ij(t) ∈ co[gj(xj(t))] for a.e. t ∈ [−τ,+∞) and

dxi(t)

dt
= −bi(t)xi(t) +

n∑
j=1

aij(t)Ij(t)

+
n∑

j=1

cij(t)Ij(t− τij(t)) + Ji(t), a.e. t ≥ 0.
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Theorem 4.1. Suppose that (H 5) and (H 6) are satisfied and assume further that

(H 7) En −Θ is an M-matrix, where Θ = (Ψ((|aij |+ |cij |)�j , bi))n×n.

Then the system (4.1) has at least one ω-periodic solution.

Proof. From (4.2), the set-valued map F = (F1, F2, . . . , Fn)
T is given as

Fi(t, xt) =
n∑

j=1

aij(t)co[gj(xj(t))] +
n∑

j=1

cij(t)co[gj(xj(t− τij(t)))] + Ji(t),

where i = 1, 2, . . . , n. That is, for any φ = (φ1, φ2, . . . , φn)
T ∈ Cτ ,

Fi(t, φ) =
n∑

j=1

aij(t)co[gj(φj(0))] +
n∑

j=1

cij(t)co[gj(φj(−τij(t)))] + Ji(t).

It follows from (H 6) that

sup
γi∈Fi(t,φ)

|γi| ≤
n∑

j=1

�j(|aij(t)|+ |cij(t)|)|φj |0 +
n∑

j=1

pj(|aij(t)|+ |cij(t)|) + Ji(t).

Let αij(t) = �j(|aij(t)|+ |cij(t)|) and βi(t) =
n∑

j=1

pj(|aij(t)|+ |cij(t)|) + Ji(t). This

implies that the conditions (H 3) and (H 4) hold. According to Lemma 2.8, the
system (4.1) has at least one ω-periodic solution. The proof is complete. �

Similar to corollaries 3.3-3.5, we can obtain the following corollaries.

Corollary 4.2. Suppose that (H 5) and (H 6) are satisfied and assume further
that ρ(Θ) < 1, where Θ = (Ψ((|aij |+ |cij |)�j , bi))n×n. Then the system (4.1) has
at least one ω-periodic solution.

Corollary 4.3. Suppose that (H 5) and (H 6) are satisfied and bLi ≥ 0 for each

i = 1, 2, . . . , n. Assume further that ρ(W ) < 1, where W =

(
(aM

ij +cMij )	jω

1−exp{−ωbi}

)
n×n

.

Then the system (4.1) has at least one ω-periodic solution.

Corollary 4.4. Suppose that (H 5) and (H 6) are satisfied and bLi > 0 for each

i = 1, 2, . . . , n. Assume further that ρ(Z) < 1, where Z =

(
(aM

ij +cMij )	j

bLi

)
n×n

. Then

the system (4.1) has at least one ω-periodic solution.

Example 4.5. Consider the neural network system (4.1) with time-delay τij(t) = 1.

Case 1. Take n = 2, b1(t) = 3 + cos 4t, b2(t) = 3 + sin 4t, a11(t) = a22(t) = −0.4,
c11(t) = c22(t) = −0.3, a21(t) = a12(t) = 0.4 c21(t) = c12(t) = 0.3, J1(t) = sin 4t
and J2(t) = cos 4t. The discontinuous activation functions are given as

gi(xi) =

{
0.4 tanh(xi)− 0.8, xi ≥ 0,

0.4 tanh(xi) + 0.8, xi < 0,
i = 1, 2.

Clearly, the discontinuous activation functions satisfy (H 5) and are nonmonotonic.
Furthermore, 0 is a discontinuous point of the activation function gi(·) and co[gi(0)]
= [g+i (0), g

−
i (0)] = [−0.8, 0.8]. It is not difficult to check that the linear growth
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Figure 1. Time-domain behaviors of x1(t) and x2(t) for Case (1)
of system (4.1).

condition (H 6) is satisfied by letting �1 = �2 = 0.4 and p1 = p2 = 0.8. By simple
computation, we have

Z =

(
(aMij + cMij )�j

bLi

)
2×2

=

(
0.14 0.14
0.14 0.14

)
.

Moreover, ρ(Z) = 0.28 < 1. By Corollary 4.4, we can conclude that the system
(4.1) has at least one π

2 -periodic solution. Consider the initial condition of system

(4.1): φ(t) = (1,−1.5)T for t ∈ [−1, 0]. The numerical simulations are shown in
Figure 1 which also confirms the existence of a periodic solution for system (4.1).

Case 2. Take n = 3, b1(t) = b2(t) = b3(t) = 2 + sin 3t, a11(t) = a22(t) = a33(t) =
0.5, c11(t) = c22(t) = c33(t) = 0.4, aij(t) = cij(t) = 0(i �= j), J1(t) = sin 3t,
J2(t) = J3(t) = cos 3t. The discontinuous activation functions are described by

gi(xi) =

{
xi + 0.5, xi ≥ 0,

xi − 0.5, xi < 0,
i = 1, 2, 3.

Obviously, the discontinuous activation function gi(xi) satisfies (H 5) and (H 6)
with �1 = �2 = �3 = 1 and p1 = p2 = p3 = 0.5. We can easily calculate that

Z =

(
(aMij + cMij )�j

bLi

)
3×3

=

⎛⎝ 0.9 0 0
0 0.9 0
0 0 0.9

⎞⎠ .

Clearly, ρ(Z) = 0.9 < 1. Therefore, all the conditions in Corollary 4.4 are satisfied
and imply that the system (4.1) has at least one 2π

3 -periodic solution. Consider the

initial condition of system (4.1): φ(t) = (2,−3, 1)T for t ∈ [−1, 0]. The numerical
simulation results are shown in Figure 2, which also confirms the validity of the
theoretical result concerning the existence of periodic solution.
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Figure 2. Time-domain behaviors of x1(t), x2(t), x3(t) for Case
(2) of system (4.1).
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